

5 th International Particle Accelerator Conference DRESDEN, GERMANY

Overview of worldwide accelerators for ADS

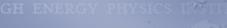
Weimin Pan **IHEP, Chinese Academy of Sciences**

IPAC14, June. 15-20, 2014

Acknowledgements Special THANKS to

IHEP

- Hamid Aït Abderrahim, Lucia Popescu, Luis Medeiros Romão, Dirk Vandeplassche, Roberto Salemme, Dominik Mader (MYRRHA, SCK•CEN, Belgium)
- **H. Saugnac (CNRS/IN2P3, IPN Orsay, France)**
- Toshinobu Sasa , Hiroyuki Oigawa, Y. Kondo (J-PARC Center, Japan Atomic Energy Agency, Japan)
- 🙂 Masahito Tomizawa (KEK Acc. Lab., Japan)
- **Wan He (Chinese Academy of Science, China)**
- **Oracle R. Garoby (SPL CERN, Switzerland)**
- **Wike Seidel (PSI, Switzerland)**

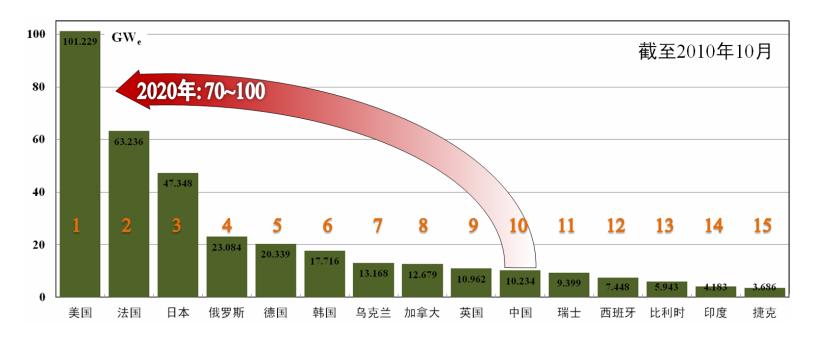

Acknowledgements Special THANKS to

IHEP

- **T. Y. Song, etc (Korea Atomic Energy Research Institute ,Daejeon, Korea)**
- Stuart Henderson (Fermilab, US)
- [☺] Sang-ho Kim (SNS/ORNL, US)
- Yousry Gohar (Argonne National Laboratory, US)
- S.Sidorkin, E.Koptelov, L.Kravchuk, A.Rogov (Institute for Nuclear Research RAS, Moscow, Russia)
- **OVER UNIVERSITY OVER UNIVER**
- P.K. Nema, S.B.Degweker, Pitambar Singh, P.Satyamurthy and Amar Sinha BARC, Mumbai, India)
- **I. Mardor, etc (Soreq NRC, Yavne, Israel)**
- 🙂 M. Arik, etc (Bogazici University, Istanbul, Turkey)
- And many others...

- **1. Brief introduction to ADS**
- 2. Basic requirements of ADS accelerator
- 3. Introduction of worldwide ADS accelerator progresses
- 4. Summary

Brief introduction to ADS (Accelerator-driven Subcritical System)

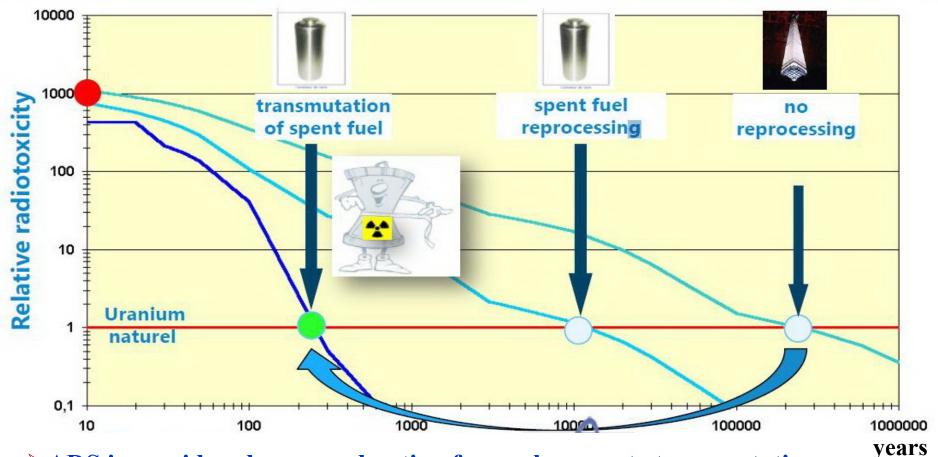


Nuclear Power in the world

IHEP

- ☑ 2009: ~14% electric power from the nuclear energy
- ☑ Till Oct., 2010: 441 reactors, 376.3GW_e

Nuclear waste is a bottleneck for nuclear power development.



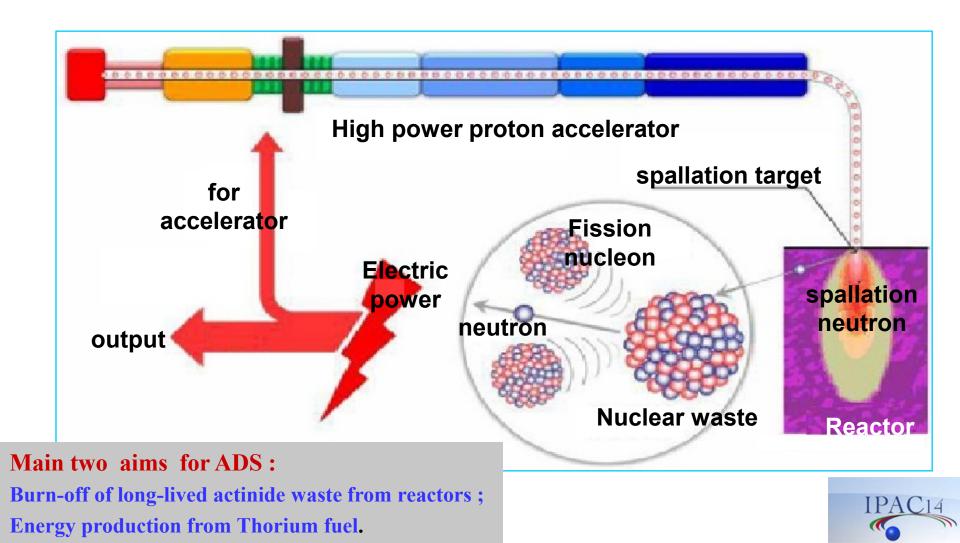
I ENERGY PHYSICS IN THE

5th International Particle Accelerator Conference June 15 - 20, 2014 | Dresden, Germany

Nuclear Waste Management

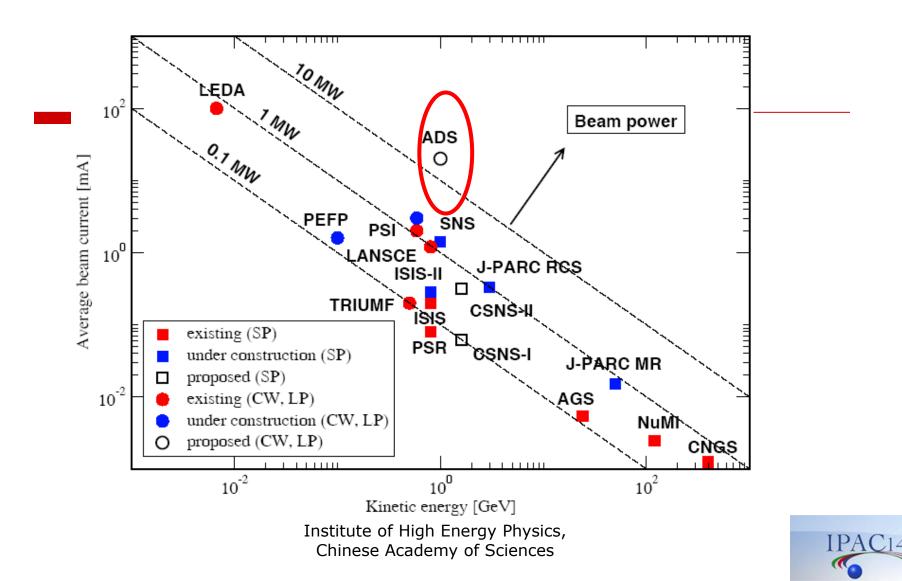
Motivation for transmutation

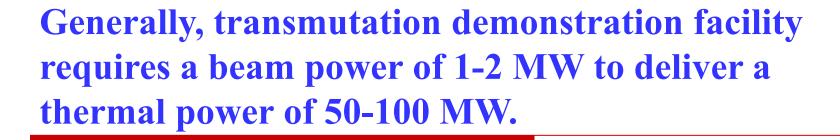
>ADS is considered as a good option for nuclear waste transmutation, but never tested, many challenges faced.



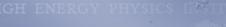
T th International Particle Accelerator Conference UNE 15 - 20, 2014 | DRESDEN, GERMANY

ADS system




2. Basic requirements of ADS accelerator

行去位生


HRP

A example : MYRRHA Project : 600 MeV /1.5 MW beam power, 85 MW thermal power.

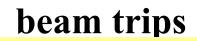
CW beams are preferential for ADS, because target for pulsed heating is a challenge space charge effect is weaker in CW

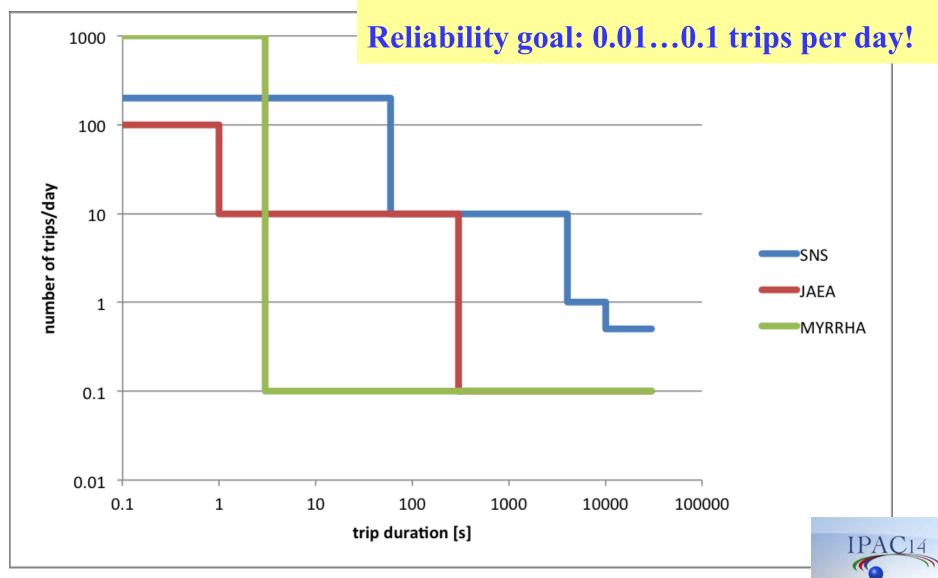
Restrictions to ADS particle accelerators :

High beam power : high energy and/or high beam current
 Very high stability: very few interruptions during long run
 Very low beam loss: <1W/m.

special design for high power ADS!

Reliability, trip performance


	Transmutation	Industrial Scale	Industrial Scale	Industrial Scale
	Demonstration	Transmutation	Power Generation	Power Generation
			with Energy	without Energy
			Storage	Storage
Beam Power	1-2 MW	10-75 MW	10-75 MW	10-75 MW
Beam Energy	0.5-3 GeV	1-2 GeV	1-2 GeV	1-2 GeV
Beam Time	CW/pulsed (?)	CW	CW	CW
Structure				
Beam trips	N/A	< 25000/year	<25000/year	<25000/year
(t < 1 sec)				
Beam trips	< 2500/year	< 2500/year	<2500/year	<2500/year
(1 < t < 10 sec)	5-			12754
Beam trips	< 2500/year	< 2500/year	< 2500/year	< 250/year
(10 s < t < 5 min)				
Beam trips	< 50/year	< 50/year	< 50/year	< 3/year
(t > 5 min)			-	
Availability	> 50%	> 70%	> 80%	> 85%



GH ENERGY PHYSICS INTE

5th International Particle Accelerator Conference June 15 - 20, 2014 | Dresden, Germany

High Availability

Control strategies for high availability

- ——reliable components in key parts, much over their limits,
- -----redundant elements,
- —perfect protections,
- ——fault predicting function.

JUNE 15 - 20, 2014 | DRESDEN, GERMANY

Table 1. The con	parison of accelerator	technologies for ADS
------------------	------------------------	----------------------

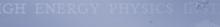
Technology	Cyclotron	Synchrotron	FFAG	Linac
Advantages	High current	High energy	High current and high energy	High current and high energy
Disadvantages	Energy limited	Current limited	Not yet proven	Expense
Examples	PSI	CERN PSB	EMMA	ESS, SNS

Linac

- Good beam quality, low beam loss
- Expensive (Large real estate, large RF system)

Cyclotron

- CW, stable, cost effective, small
- Heavy magnet, beam energy is limited


Synchrotron

- Higher energy
- High intensity injection is limited

FFAG many merits but not proven yet

Today's Linear Accelerators :

SRF linac is quickly developed and has most potential
large aperture, low loss, CW possible
high beam power --- couplers are critical

The main disadvantage is high expense, but mass production will be lower .

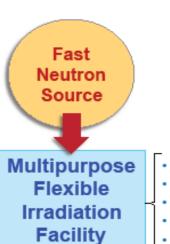
3. Introduction of

worldwide ADS accelerators progresses

MYRHHA

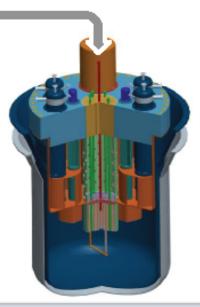
-Multipurpose Hybrid Research Reactor for

High-tech Applications (MYRHHA) Project


 European Transmutation Demonstrator — by coupling the three components (accelerator, spallation target and sub-critical reactor) at power level scalable to an industrial demonstrator — demonstrate the physics and technology of ADS for transmuting long-lived radioactive waste .

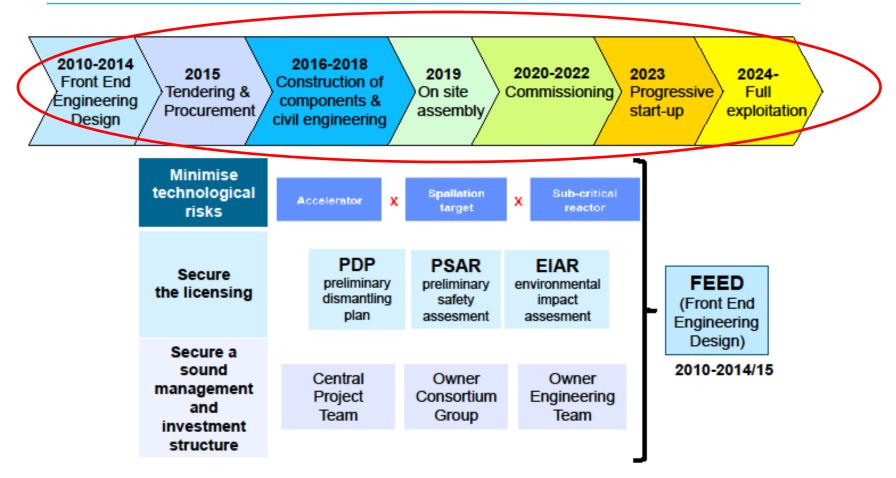
MYRRHA ADS – Technical specifications

Accelerator		
particles	protons	
beam energy	600 MeV	
beam current	4 mA	
mode	CW	
MTBF	> 250 h	


Reactor	
power	$\sim 85 \text{ MW}_{\text{th}}$
k _{eff}	0.955
spectrum	fast (flexible)
fuel	MOX
coolant	LBE

Target		
main reaction	spallation	
output	2·10 ¹⁷ n/s	
material	LBE (coolant)	
power	2.4 MW	

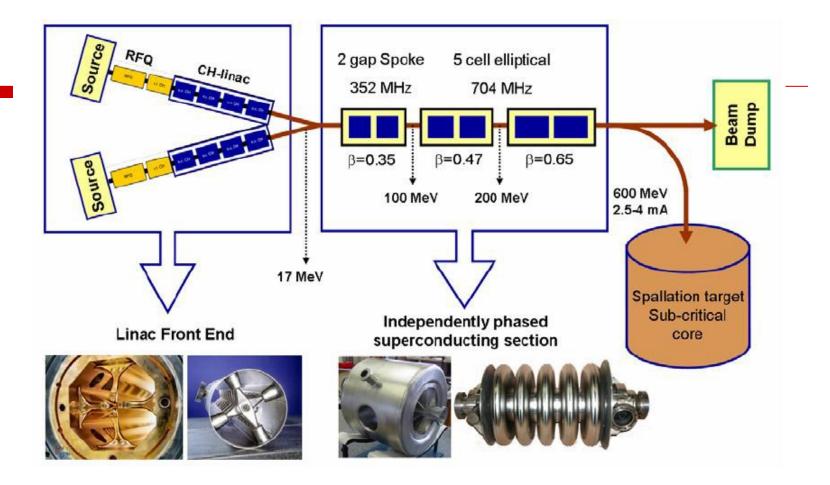
- Transmutation concept
- Irradiation facility for GEN-IV materials
- Neutron irradiated silicon
- Radioisotopes for nuclear medicine
- Fundamental research


IHEP

5th International Particle Accelerator Conference June 15 - 20, 2014 | Dresden, Germany

An Alt

MYRRHA ADS – Schedule


THEP^F HIGH ENERGY PHYSICS 174

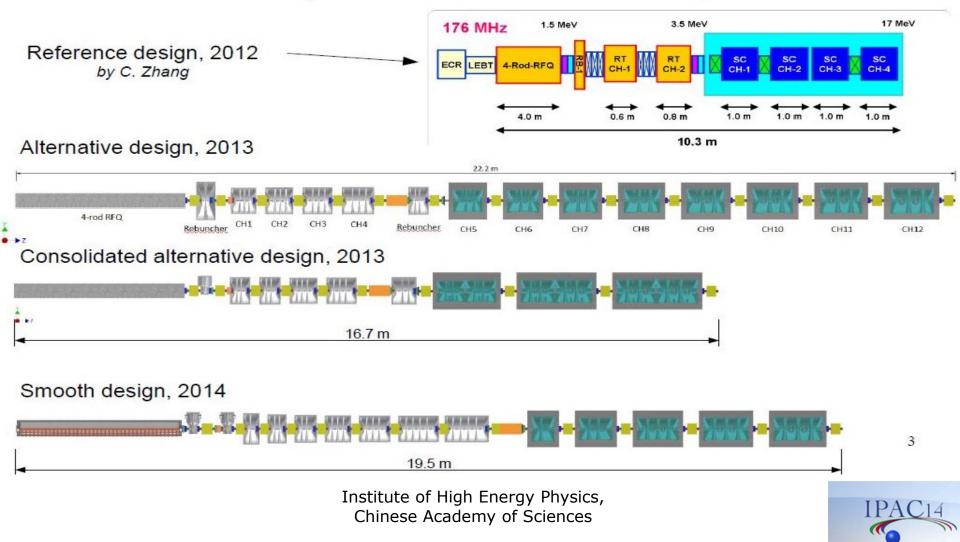
C th International Particle Accelerator Conference JUNE 15 - 20, 2014 | DRESDEN, GERMANY

MYRRHA - Accelerator

MYRRHA proton beam requirements

High power proton beam (up to 2.4 MW)

Proton energy	600 MeV
Peak beam current	0.1 to 4.0 mA
Repetition rate	1 to 250 Hz
Beam duty cycle	10 ⁻⁴ to 1
Beam power stability	< \pm 2% on a time scale of 100ms
MTBF	> 250 h
# of allowed beam trips on reactor longer than 3 sec	10 maximum per 3-month operation period
# of allowed beam trips on reactor longer than 0.1 sec	100 maximum per day
# of allowed beam trips on reactor shorter than 0.1 sec	unlimited


---> Extreme reliability level

H ENERGY PHYSICS 1731

Beam dynamics development

The ECR proton source

30 kV (40 kV capable)

0.1 π·mm·mrad RMS norm.

2.45 GHz, 1200 W

Permanent Magnets

NI CompactRIO

20 mA DC

PANTECHNIK Monogan 1000 ECR Ion souce – 30keV, 20mA

- Electron Cyclotron Resonance, 2.45 GHz
- multi-electrodes extraction system
- flat magnetic profile configuration by PMs
- tapered axial RF injection
- Einzel electrostatic focusing lens

	3	•
	provisions for reliability/repairability	
	beam diagnostics devices incl.:	Faraday Cup, Allison scanner
	·	
	ators for Accelerator Driven Systems Workshop vitzerland – March 20#–21# 2014	5

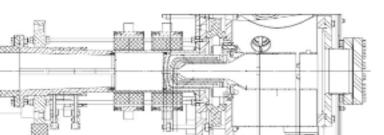
transverse emittance @ 5 mA

autonomous control system

accelerating voltage

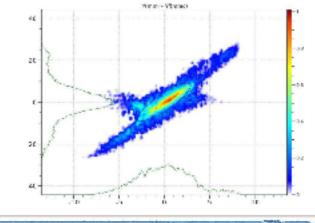
beam current

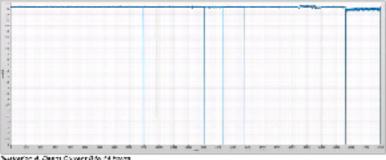
magnetic system

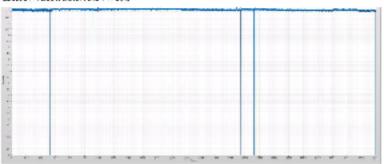

RF

courtesy of Pantechnik SA

Copyright © 2014 **3CK+CEN**


IHEP





5th International Particle Accelerator Conference June 15 - 20, 2014 | Dresden, Germany

Acceptance Tests

adrailon & Beaux Conten) 14 to 21 (none parts Portschlaft), second and axis Harberty, he

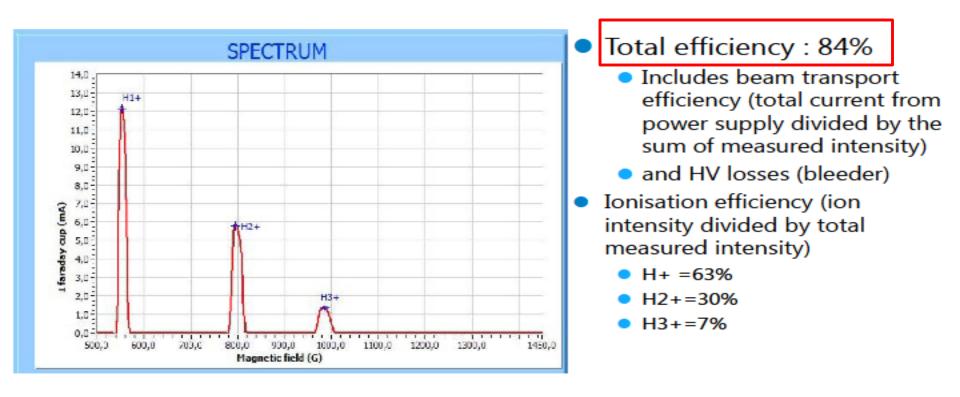
Figure 22: Source parameters at 15 mA@30keV

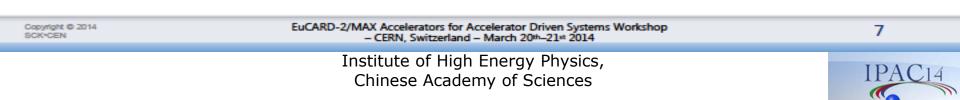
- Beam characterization in a short test line (source, dipole, FC, Allison scanner, dump)
- Max p beam current achieved: 16mA
- Long stability run (24hrs), standalone system, up to 12 mA
- Excellent stability shown with brief recovery time in case of electrical discharges

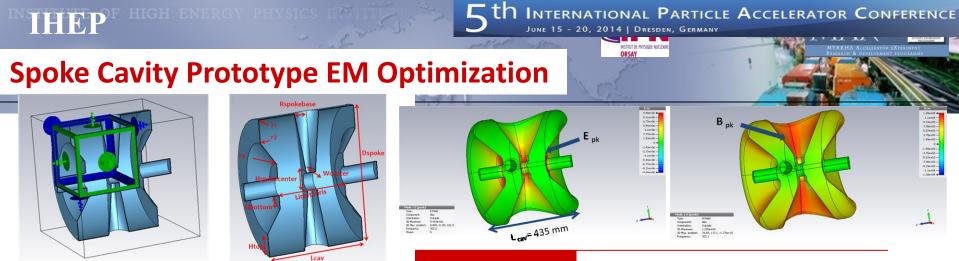
Copyright © 2014 SCK-CEN

HEP

M1000


WARNING


5th International Particle Accelerator Conference June 15 - 20, 2014 | Dresden, Germany


· A IA IL & so i high 19 raio li

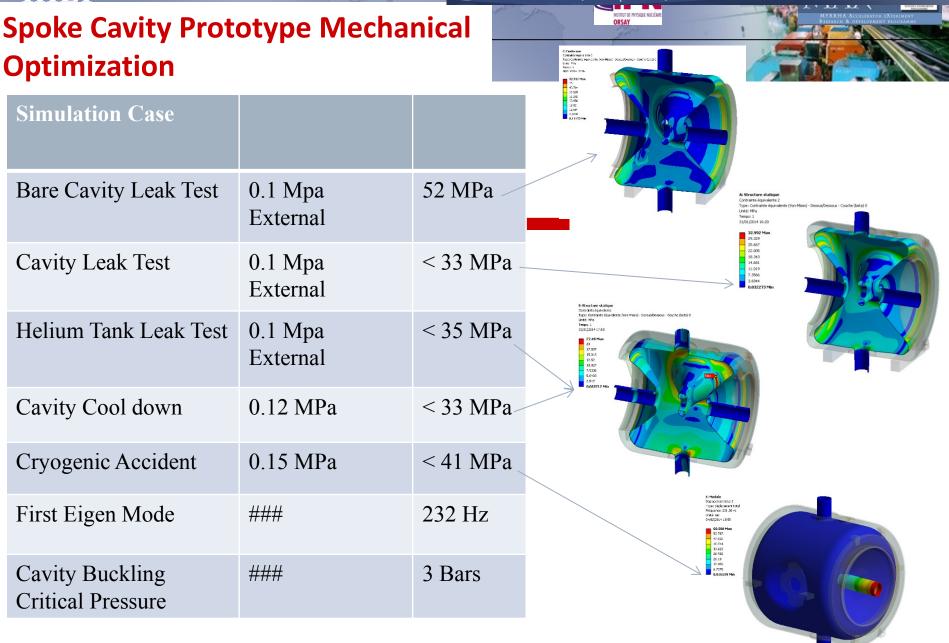
IHEP

Acceptance Tests

Numerical Model : Symetries and BC

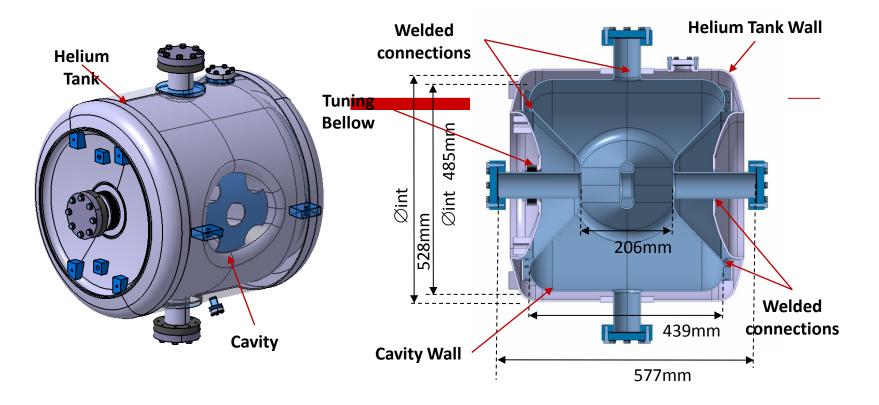
Geometrical Parameters

Optimized RF parameters	
Optimal beta	0.37
Vo.T [MV/m] @ 1 Joule & optimal beta	0.693
Epk/Ea	4.29 *
Bpk/Ea [mT/MV/m]	7.32 #
G [Ohm]	109
r/Q [Ohm]	217
Qo @ 2K for Rres=20 n Ω	5.2 E+09
Pcav for Qo=2 E+09 & 6.4 MV/m [W]	9.35
Lacc=0.315m= beta optimal. c. f	


* Goal at 4.4, # Goal at 8.3

Goal: E $_{acc nom.}$ = 6.2 MV/m, E $_{acc fault tol.}$ = 8.2 MV/m

The MYRRHA Spoke Cryomodule - H. SAUGNAC- EuCARD2/MAX- CERN 20&21/03/2014 - Genève


JUNE 15 - 20, 2014 | DRESDEN, GERMANY

The MYRRHA Spoke Cryomodule – H. SAUGNAC- EuCARD2/MAX- CERN 20&21/03/2014 - Genève

Spoke Cavity Prototype Overview

Cavity Wall thickness 3 mm (Nb RRR> 250)

Helium Tank Wall thickness 4 mm

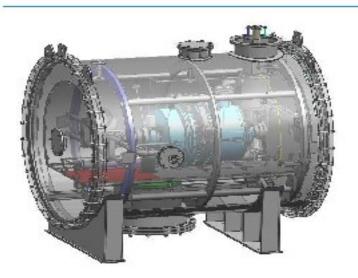
IHEP

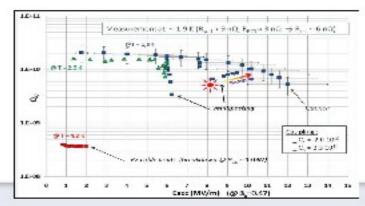
Power Coupler

A power coupler 350 MHz, 20 kW CW (designed) was manufactured and tested at 8 kW (limited by amplifier) CW on a 350 MHz, beta 0.15 Spoke cavity.

 \Box th International Particle Accelerator Conference

GERMANY


- 1 port for electron emission measurement pick up
- 1 water cooling loop for the window
- Plain Copper Antenna


The MYRRHA Spoke Cryomodule – H. SAUGNAC- EuCARD2/MAX- CERN 20&21/03/2014 - Genève

Linac components: elliptical

(JAEA

IHEP

Plan of Transmutation Experimental Facility (TEF) as Phase-II of J-PARC

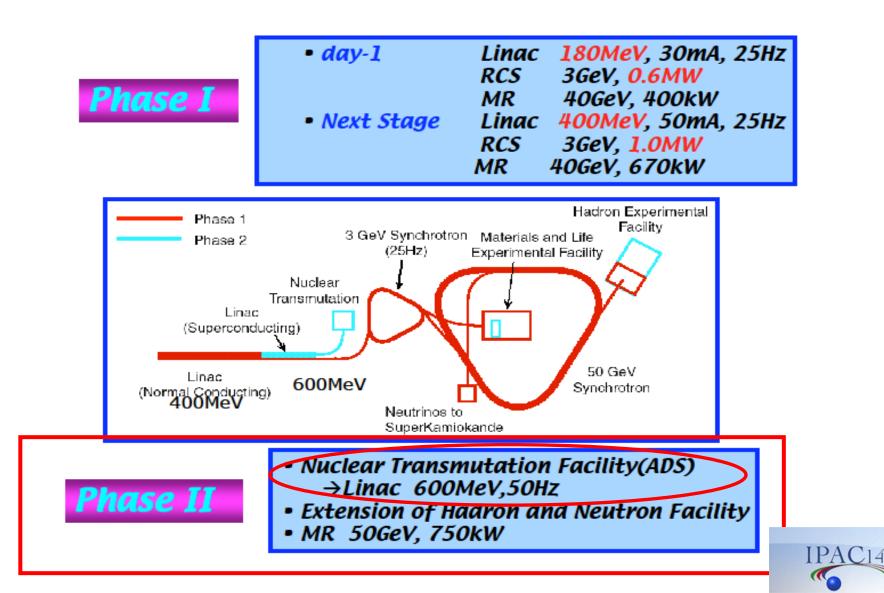
Transmutation Physics Experimental Facility: TEF-P

Purpose: To investigate physics properties of subcritical reactor with low power, and to accumulate operation experiences of ADS. Licensing: Nuclear reactor: (Critical assembly) Proton beam: 400MeV-10W Thermal power: <500W

ADS Target Test Facility : TEF-T

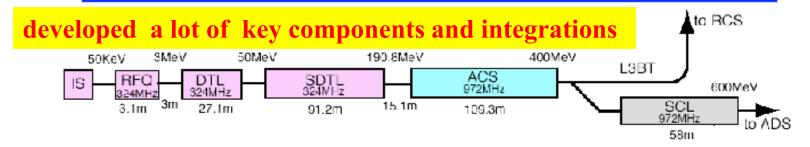
Purpose: To research and develop a spallation target and related materials with highpower proton beam. Licensing: Particle accelerator Proton beam: 400MeV-250kW Target: Lead-Bismuth Eutectic (LBE, Pb-Bi)

Pb-Bi Target


Critical Assembly

Multi-purpose Irradiation Area

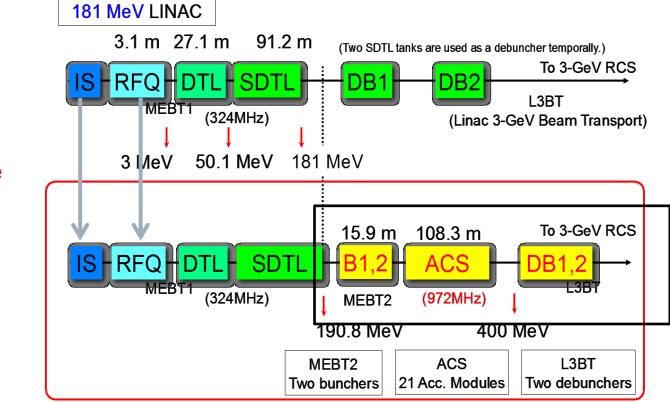
1 OV



5th International Particle Accelerator Conference June 15 - 20, 2014 | Dresden, Germany

Linac structures and parameters

Ion Source: • RFQ: • DTL: • Separated DTL(SDTL): • Annular Coupled Structur • Super Conducting Linac (
•particles: • Energy:	H 181 MeV (RCS injection) 400 MeV (RCS injection)
• Peak current:	600 MeV (to ADS) 30 mA @181MeV 50 mA @400 MeV
 Repetition: 	25 Hz (RCS Injection) 50 Hz(RCS Injection + ADS application)
• Pulse width:	0.5 msec


INSTITUTE OF HIGH ENERGY PHYSICS 17

国科学院高能物理研究所

Upgrade plan of J-PARC linac

Energy is upgraded with ACS, current is upgraded with new ion source and RFQ.

J-P/IRC

Construction Schedule (Tentative Plan)

Fiscal Year	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024
Beamline		R&D, D)esign	Cor	nstructi	on							
TEF-T									O	peratio	n		
		R8	D, Des	ign									
TEF-P				Li	censin	g 📕	(Constru	iction				
											0	peratio	n

- The construction of Beam line and TEF-T will be started in 2014 and the operation with 1/4 beam power will be started in 2017
- To start the construction of TEF-P in 2017, just after the completion of TEF-T, a few years of licensing activities should be started in 2015

KIPT Experimental Neutron Source Facility at Kharkov, Ukraine

- ✓ Provide capabilities for performing basic and applied research using neutrons
- Perform physics and material experiments inside the subcritical assembly and neutron experiments using the radial neutron beam ports of the subcritical assembly
- Produce medical isotopes and provide neutron source for performing neutron therapy procedures
- Support the Ukraine nuclear power industry by providing the capabilities to train young specialists

a 100MeV/100 kW electron linac for KIPT is used as the driver of a neutron source based on a subcritical assembly.

Parameters	Values	Units
RF frequency	2856	MHz
Beam energy / power	100 / 100	MeV / kW
Beam current (max.)	0.6	Α
Energy spread (p-to-p)	±4	%
Emittance	5×10-7	m-rad
Beam pulse length	2.7	μs
RF pulse length	3	μs
Pulse rep. rate	625	Hz
Klystron	6×30MW / 50kW	Units
Accelerating structures	10×1.336m	Units
Gun high voltage	~120	kV
Nominal gun beam current	~1–1.2	Α

The injector testing facility installed

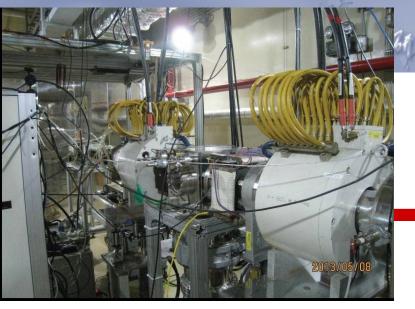
~780mA obtained with ~90% transport efficiency at the injector exit

- The maximum beam current obtained at the injector exit is ~2A with 2.7 μs beam pulse.
- **Energy spread is ~2%** @ 1σ

HYPER (Hybrid Power Extraction Reactor)

The Korea Atomic Energy Research Institute (KAERI) performs HYPER for the transmutation of nuclear waste and energy production, to develop the elemental technologies for the subcritical transmutation system and build a small bench scale test facility (5 MW). 1 GeV/16 mA proton beam is designed to be provided for HYPER.

KOMAC (Korea multi-purpose accelerator complex)


KOMAC accelerator facility was put into the operation from July 2013, which consists of a 100MeV proton linac including a 50keV ion source, a 3MeV RFQ and a 100MeV DTL, and 20MeV and 100MeV beam lines. The goal of the Beam commissioning is delivering 100MeV 1kW proton beams to a bump in a 100MeV target room.

HIGH ENERGY PHYSICS

5th International Particle Accelerator Conference June 15 - 20, 2014 | Dresden, Germany

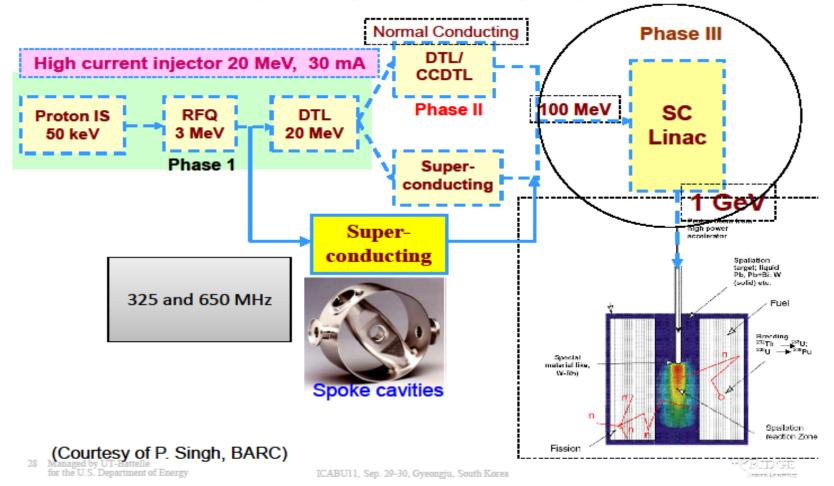
50-keV injector including ion source and LEBT.

High power rf system

DTL in the accelerator tunnel

Parameters of KOMAC Linac Frequency 350 MHz Beam Energy 100 MeV Operation Mode Pulsed Max. Peak Current 20 mA Pulse Width <1.33 ms (< 2.0 ms for 20 MeV) Max. Beam Duty 8% (24% for 20 MeV) Max. Beam Power 160 kW (96 kW for 20 MeV)

Institute of High Energy Physics, Chinese Academy of Sciences



Proton Linac in India ADS Program

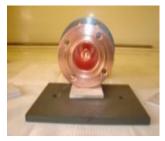
Indian-ADS (especially thorium-cycle)

10 11 th ab i has

IHEP

Accelerator Development for ADS

30 mA /20 MeV Linac injector (LEHIPA) and High energy Linac (1 GeV)


60 kW RF System

Design completed & fabrication is in progress

ECR Ion Source

50 kW RF Coupler

LEBT

RFQ

Drift Tube Linac

1.3 MW Klystron

C th International Particle Accelerator Conference JUNE 15 - 20, 2014 | DRESDEN, GERMANY

Formed Niobium Half Cell

Developing Technique for SC RF Cavity Fabrication

Welded dumbell

23

Courtesy of P.K. Nema, **BARC** Mumbai

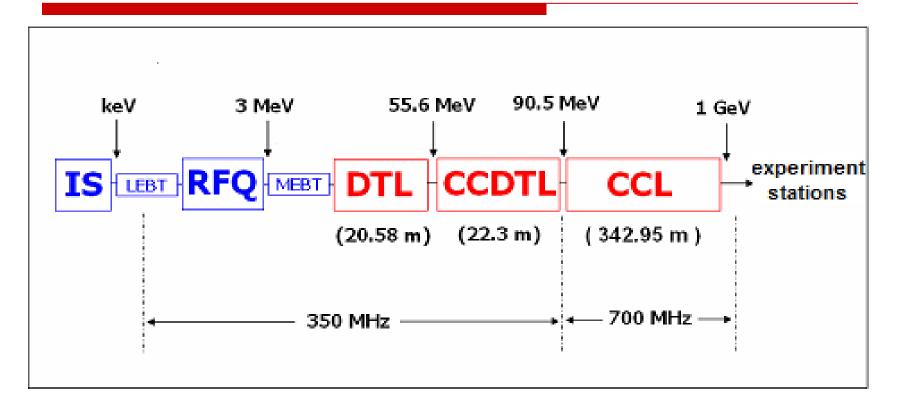
Roadmap for ADS Developments

IHEP

<u>alendar years</u> —>	2010	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33
Proiects & Milesto	ones																							
1 LEHIPA R&D																								
(20 MeV, 30 mA)																							
2 LEHIPA linking																								
with AHWR CF																								
(20 MeV, 1 mA)																								
3 LINAC injector f proton SNS	or																							
1 GeV, 1-2 mA)																								
4 SNS for ADS R& applications	D																							
(1GeV, 1MWt)																								
5 ADS Demo LINA	c																							
(0.6 GeV, 2 mA)															U									
6 ADS Demo read																								
and target coup	ling																							
(20-40 MWt)																					_			
7 Industrial ADS f		(a) 1 (
thorium & actin	ides		(30 m																					
burner		_		actor 8		et																		
		- '	(1000	MWt)	,																			
Note:	Deal																							
Note:		gn and for en									forol	ects		Ca	ourt	esy	of P	? <i>K</i> .	Nen	na.				
		on fue											e sd			•	•			,			IDA	C
														ЬA	KU	' Mu	mb	at					IPA	10

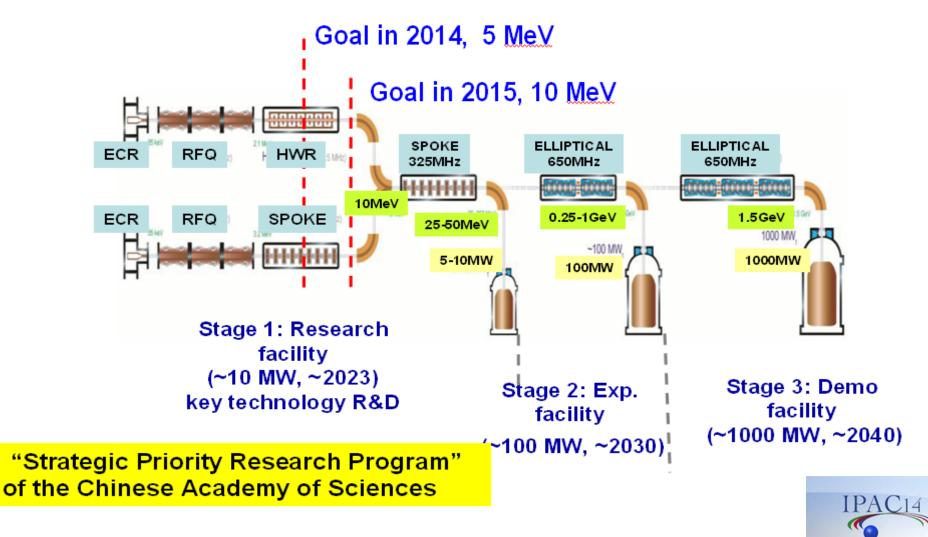
TAC (Turkic Accelerator Complex project)

Planning to have four facilities: SASE FEL Facility; Third Generation Synchrotron Radiation Facility (SR); Super-Charm Factory ($\sqrt{s} =$ 3.77 GeV); GeV scale proton accelerator which has two-fold goal: Neutron Spallation Source (NSS) and ADS.


The proton accelerator construction will have 3 MeV, 100 MeV, and 1 GeV phases.

Institute of High Energy Physics, Chinese Academy of Sciences

The TAC proton accelerator: GeV energy high intensity (>1mA) proton linac.

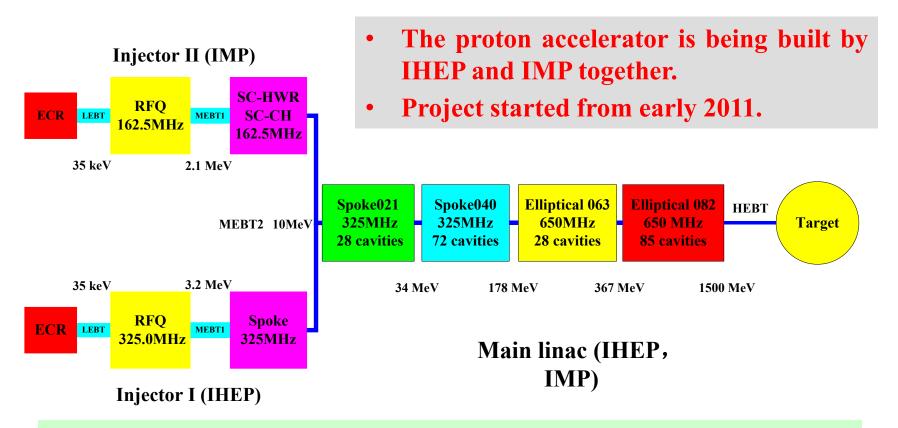


Institute of High Energy Physics, Chinese Academy of Sciences

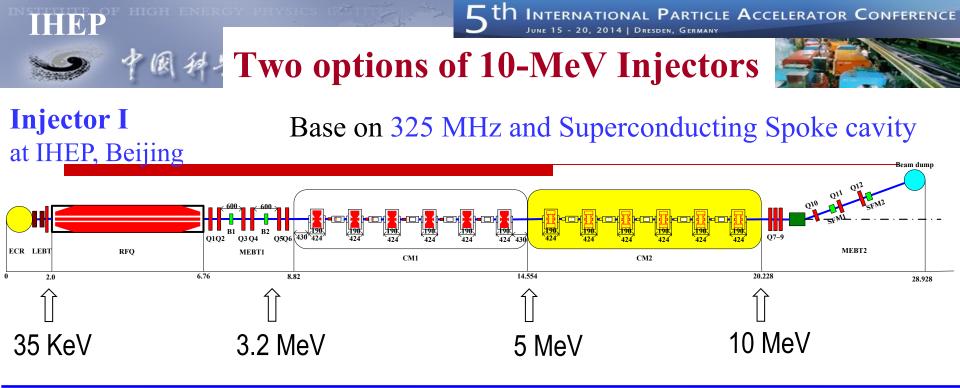
Roadmap of ADS Project in China

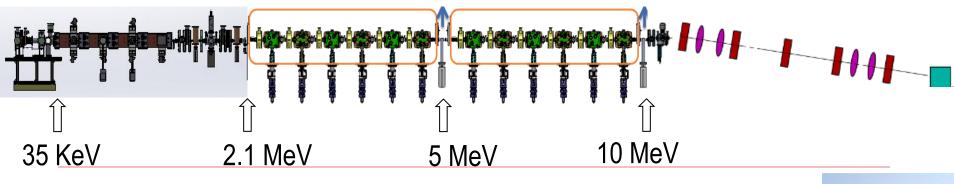
Medium-energy, very high beam power, very high reliability, CW beam

HEP


Reliability and availability much higher than actual accelerators in operations

Particle	Proton
Energy (GeV)	1.5
Current (mA)	10
Beam power (MW)	15
Duty factor (%)	100
Beam Loss (W/m)	<1
Beam trips/year	
$1s \le t \le 10s$	<25000
10s <t<5m< td=""><td><2500</td></t<5m<>	<2500
t>5m	<25




Layout of ADS Accelerator

Final project has two identical injectors. Two designs of injector _ is due to technical uncertainty at very low energy segment. IPAC

Injector IIBase on 162.5 MHz and Superconducting HWR cavityat IMP, Lanzhou

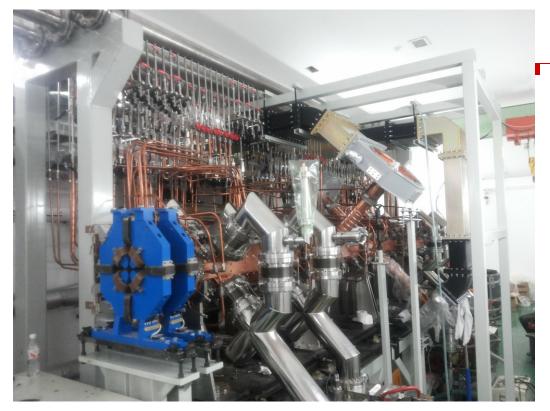
Progresses of accelerator (Injector I & II)

key technologies :

- I. CW RFQ with a high intensity——Great chellage !
- II. Very Low beta SC cavities —— Spoke cavity & HWR ——lowest beta!

1) **RFQ for Injector I**

4 technical modules, 64 tuners, 4 RF power couplers, 4 dipole rods on each plate .



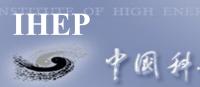
The beam transmission is about 98.7%

Parameters	Value
Frequency (MHz)	325
Injection energy (keV)	35
Output energy (MeV)	3.2128
Pulsed beam current (mA)	15
Beam duty factor	100%
Inter-vane voltage V(kV)	55
Beam transmission	98.7%
Average bore radius <i>r_o</i> (mm)	2.775
Vane tip curvature (mm)	2.775
Maximum surface field (MV/m)	28.88 (1.62Kilp.)
Input norm. rms emittance (x,y,z)(πmm.mrad)	0.2/0.2/0
Output norm. rms emittance(x/y/z) (πmm.mrad/MeV-deg)	0.2/0.2/0.061 2
Vane length (cm)	467.75 ₅
Accelerator length (cm)	469.95

中国科学院高能物理研究所

RFQ on site and aging

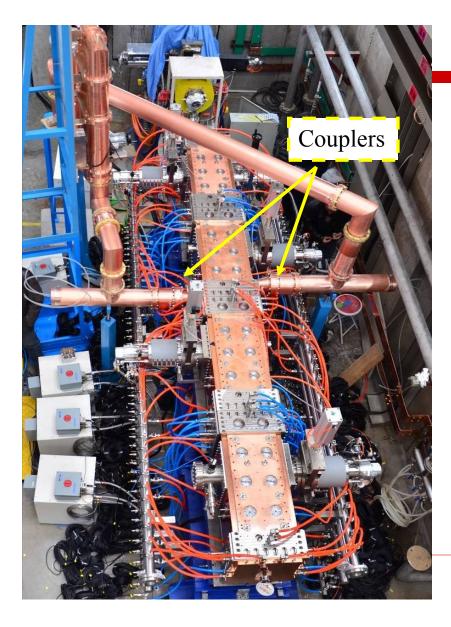
Conditioning goal: 270kW Status: 80% of the full power.



5th International Particle Accelerator Conference June 15 - 20, 2014 | Dresden, Germany

Oct 31,2011,14:07:05

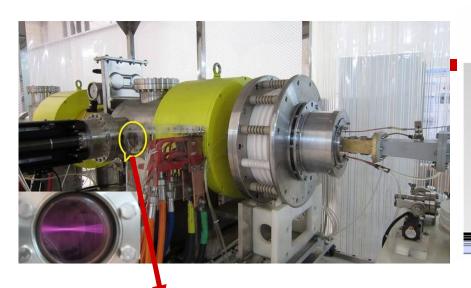
Multi-particles simulation

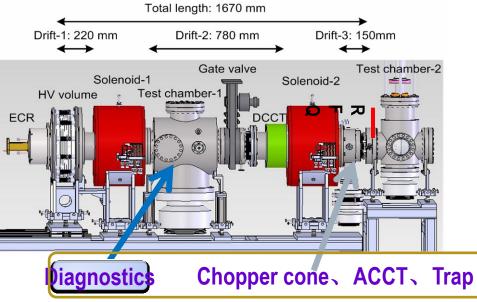


2) **PFO** for Injector II

2) RFQ for	Injector II		Oct 31,2011,14:19:07
Parameter	Value		0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
Ion species	Proton	0.000	Yom 000 Amount Mag Current-14.874 mA -400
frequency [MHz]	162.5	4.000 - 4.000	4,000 448 hz/rz= 0.75 0 0.200 040 -30000 -15000 0.000 15000 30000
Inter-vane voltage V (kV)	65		Y
Average bore radius r_{θ} (cm)	0.5731		
Vane tip curvature (cm)	0.4298		
ρ/r_{0}	0.75	0.000 Page (eg) 180.00	50
Vane length / Total length (cm)	419.2 / 420.8		ollaborating with LBNL
<i>m</i> _{max}	2.38		
Number of cells	192 (including 2 T cell)		
Maximum surface field (MV/m)	15.7791		
Synchronous phase (⁰)	from -90 to -22.7		0.00 Fr
a _{min} (cm)	0.3158		modules, 4200mm long
Transverse acceptance	0.3/0.3		0 Tuners, 32 Pi-mode
(RMS, x/y, πmm.mrad)	0.3/0.3		Rods, 2 RF input ports
Input norm. RMS emittance (x/y, πmm.mrad)	0.3/0.3		n Module 2, 8 vacuum
Output norm. RMS emittance	0.31/0.31/0.92	-	orts
(x/y/z, πmm.mrad, keV.ns)		Structure	
Overall beam transmission @ 0 /15 mA	99.7% / 99.6%		IPAC14
		1	

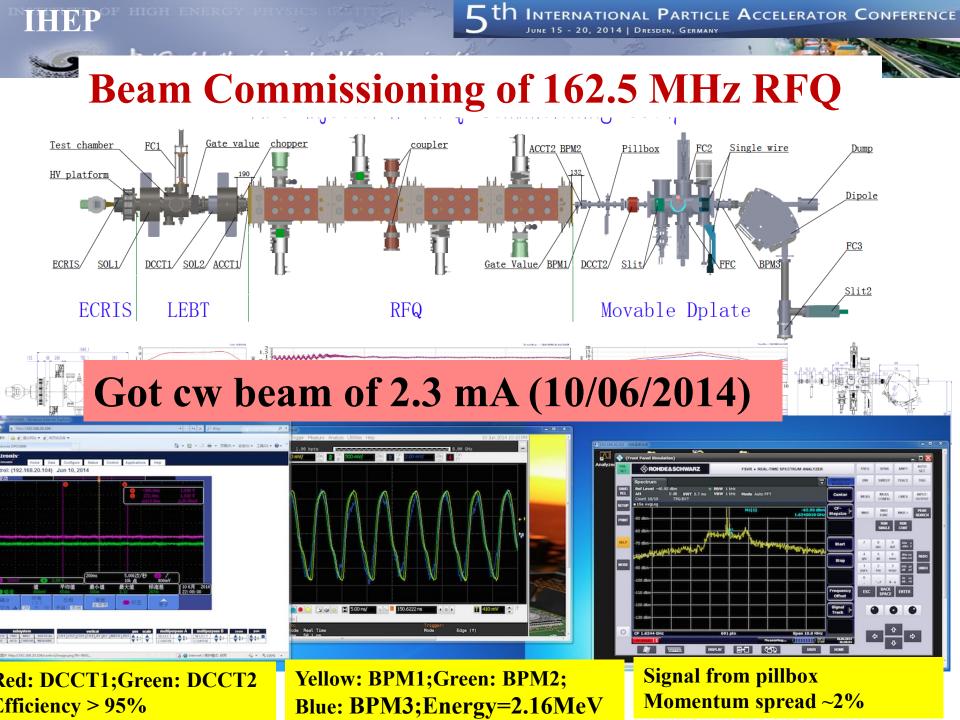
modules has Four been finished. The flatness is \pm 1%, and symmetry is $\pm 1.5\%$ w/o tuners.


Conditioning goal: 91kW Status: full power in CW. commisioning beam now.



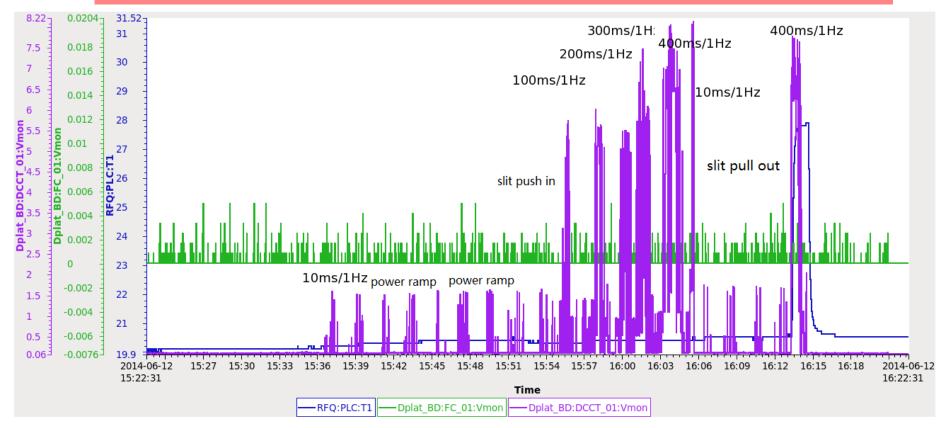
JUNE 15 - 20, 2014 | DRESDEN, GERMANY

ECRIS+LEBTs finished commissioning

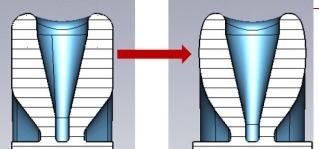


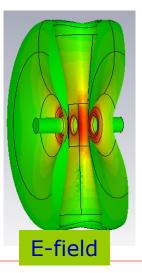
Two ECR Proton Ion Sources was commissioned at IMP and IHEP.

25 mA proton with 35 keV has been extracted.



Pulsed beam mode: max. beam ~8 mA, max. pulse length is 400 ms at repetition of 1 Hz


The Purple is the signal of the DCCT2 at exit of RFQ. the Blue is the temperature of the Faraday Cup, means average beam power, ~8 degree C increasing in maximum .


3) Spoke012 Cavity (β=0.12) for Injector I

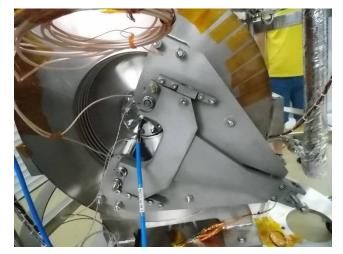
Main Geometrical parameters	Units	Value
Diameter of cavity	mm	468
Length of cavity	mm	180
Diameter of beam tube	mm	35
RF parameters	Units	Value
E _{peak} /E _{acc}		4.54
B _{peak} /E _{acc}	mT/(MV/m)	6.37
G	Ω	61
Transition Time Factor		0.76
R/Q@β=0.12	Ω	142

IHEP

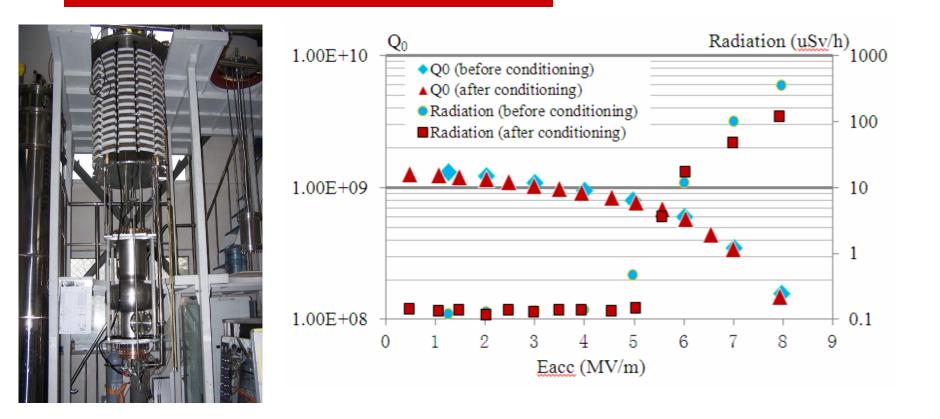
The Convex end wall (right) is dopted, which has better mechanical performance than the flat one (left).

Institute of High Energy Physics, Chinese Academy of Sciences

Fabrication of Spoke012 cavity finished on Nov. 8, 2012

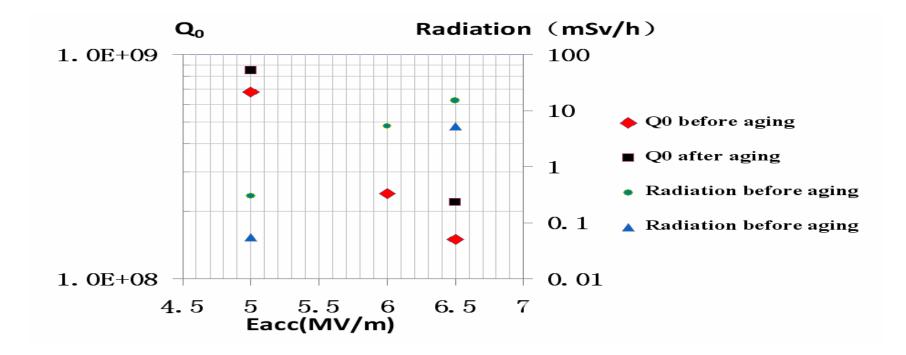

国科学院高能物程研究

IHEP



df/dp =10Hz/mbar

Vertical test result of Spoke012

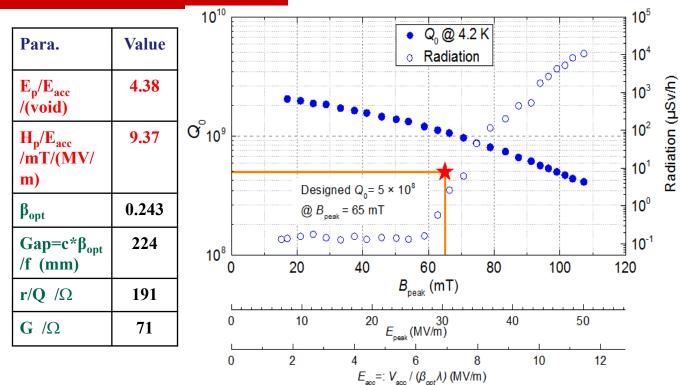


✓Q0=5.8x10⁸ @6MV/m, 4K; Q0=3.4x10⁸ @7MV/m, 4K

Horizontal test result on Sept. 12, 2013 ——the first horizontal test for the low beta proton SC cavity

行去從

✓Q0=2.2x10⁸ @6.5MV/m, 4K; Q0=8.5x10⁸@5MV/m, 4K.



4) Spoke021 Cavity (β =0.21) of Main Linac

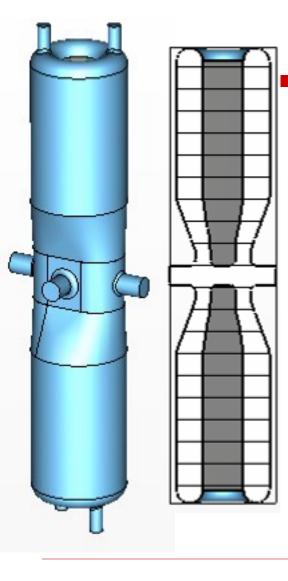
国科学院高能物程和

IHEP

✓V-T: Bp=98 /mT, Q0=5e8; Max. Bp=107 /mT

5) Elliptical Cavity (β =0.63 & 0.83) of Main Linac

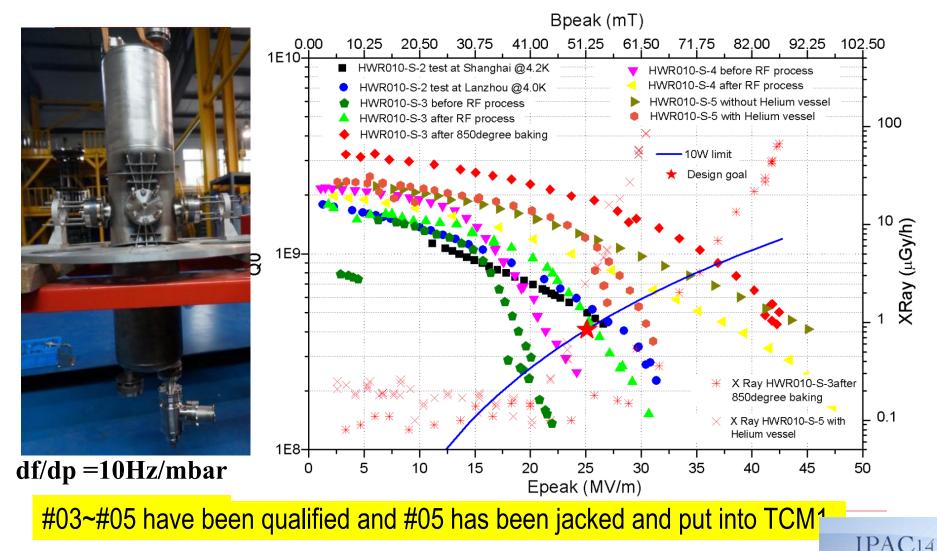
650MHz(preparing for test)

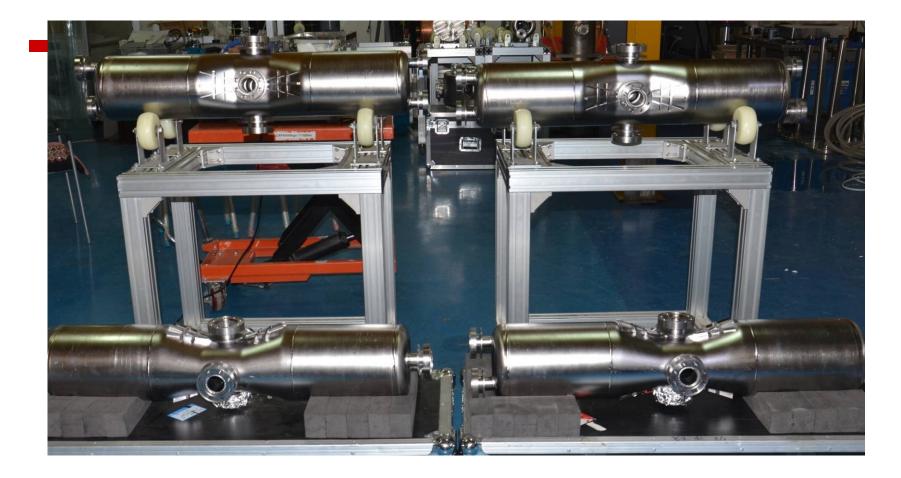


IHEP

6) HWRs for Injector II

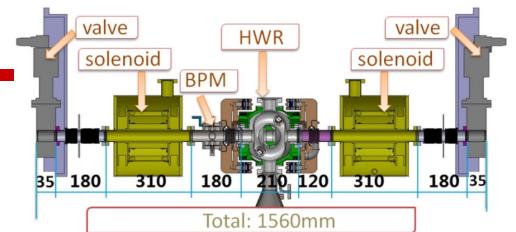
f (MHz)	162.5
β _{opt}	0.101
Epeak / Eacc	5.9
Bpeak / Eacc	12.1
$\mathbf{G} = \mathbf{Rs} \times \mathbf{Q0} \ (\mathbf{\Omega})$	28.4
R / Q0	153
Q0 (4.4K, Rs=71.4 nΩ)	4E8
Vacc (MV)	0.78
Epeak (MV/m)	25
Bpeak (mT)	50
Pdiss(W) (4.4K, Rs=71.4nΩ)	10


 $\overset{}{\times} \quad Eacc=Vacc/(\beta_{opt}\times\lambda)$

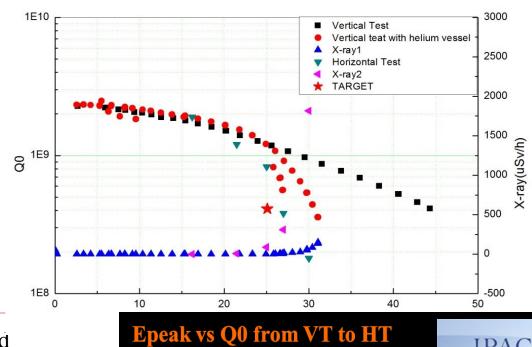

VT results of HWR

IHEP

Four HWRs with ribs on both surfaces has been fabricated


5 th International Particle Accelerator Conference UNE 15 - 20, 2014 | DRESDEN, GERMANY

IHEP^{P HIGH ENERGY PHYSICS} **Horizontal Testing for HWR**

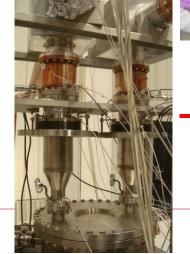


IPAC

Op. Temperature	4.4 K
Op. Pressure	1.25 bar
Cooling	bath
Pressure	± 1.5 mbar
Dynamic load	10 W
Solenoid storage	27KJ

finished

7) High Power Input Couplers for Injector I &II


Spoke cavity couplers tested over 10 kW CW power, one operated in spoke012 cavity horizontal test.

科学院高能物

IHEP

RFQ coupler's windows tested up to 100 kW CW power.

111111

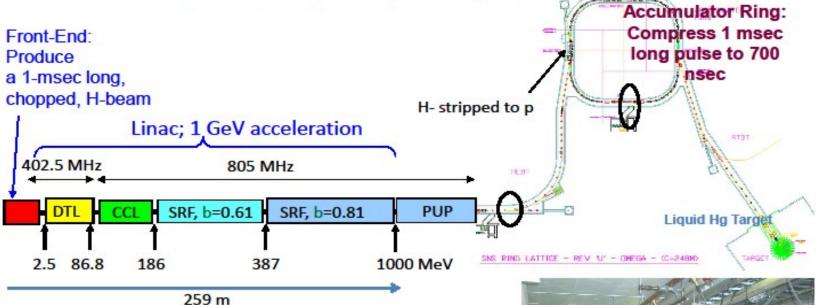
HWR couplers tested over 20 kW CW, and put into HT of HWR .

coupler operated with cavity

Helium Recovery System putting into operation

Other International ADS Programs?

IAEA reported that 18 countries are performing ADS R&D


Also, there are many similar accelerator technologies (as ADS) used for other purposes.

th International Particle Accelerator Conference

JUNE 15 - 20, 2014 | DRESDEN, GERMANY

SNS SCL many parts, equipment, design are based on CEBAF, TESLA, APT, LEDA, KEK experiences

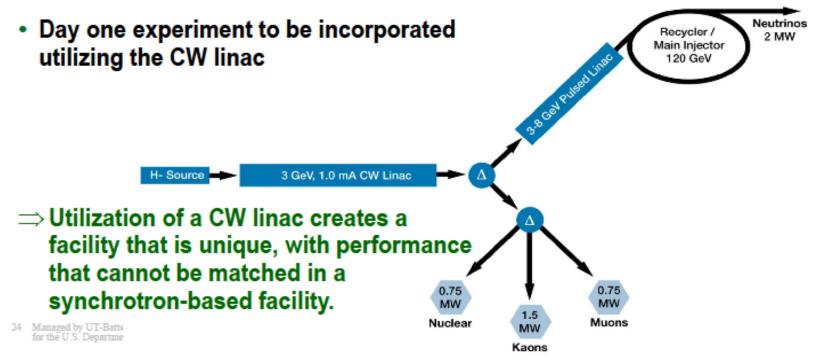
- Most powerful spallation neutron source
- 259-m long linac + accumulator
- Short pulse

HEP

SNS

 71-m long Space is reserved for additional cryomodules to give 1.3 GeV

for the U.S. Department of Energy



Project-x

HDP

Project-X (Courtesy of S. Nagaitsev)

- 3 GeV CW superconducting H- linac with 1 mA average beam current.
- 3-8 GeV pulsed linac capable of delivering 300 kW at 8 GeV
- Upgrades to the Recycler and Main Injector to provide ≥ 2 MW to the neutrino production target at 60-120 GeV.

Project-x

A Zoo of RF Structures for $\beta < 1$ Acceleration

Structures

Normal Conducting

0

0.25

0.8

Superconducting Structures

R=

5th International Particle Accelerator Conference June 15 - 20, 2014 | Dresden, Germany

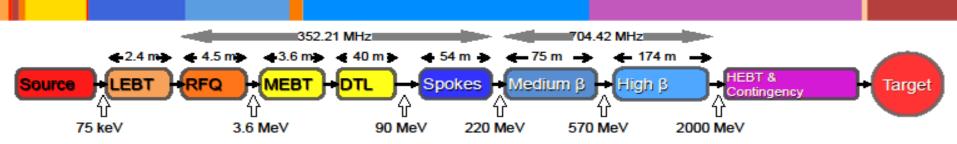
PSI Ring Cyclotron

8 Sector Magnets:	1
Magnet weight:	-
4 Accelerator Cavities:	8
1 Flat-Top Resonator	1
Accelerator frequency:	5
harmonic number:	6
kinetic beam energy:	7
beam current max.:	2
extraction orbit radius:	4
outer diameter:	1
RF efficiency	C
Grid/Beam	

rel. losses @ 2.2mA: transmitted power: 1 T ~280 tons 860 kV (1.2 MV) 150 MHz 50.63 MHz 6 72 → 590 MeV 2.4 mA 4.5 m 15 m 0.90×0.64×0.55 = 32%

-~1..2.10-4

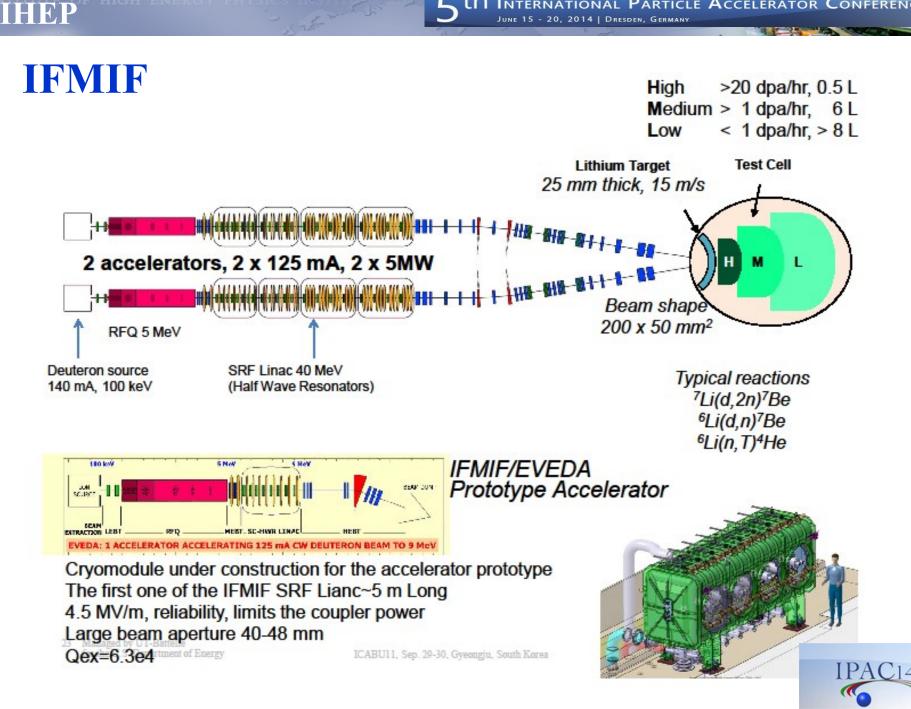
0.32 MW/Res.



all a start and

IHEP P HIGH ENERI

ESS Linac


	Energy (MeV)	No. of Modules	No. of Cavities	βg	Temp (K)	Cryo Length (m)
Source	0.075	1	0	_	~300	_
LEBT	0.075	—	0	_	~300	—
RFQ	3.6	1	1	_	~300	_
MEBT	3.6	_	3	_	~300	_
DTL	90	5	5	_	~300	_
Spoke	220	13	2 (2S) × 13	0.5 β _{opt}	~2	4.28
Medium β	570	9	4 (6C) × 9	0.67	~2	8.52
High β	2000	21	4 (5C) × 21	0.86	~2	8.52
HEBT	2000	_	0	_	~300	-

ESS 2014-03-19

L th International Particle Accelerator Conference JUNE 15 - 20, 2014 | DRESDEN, GERMANY

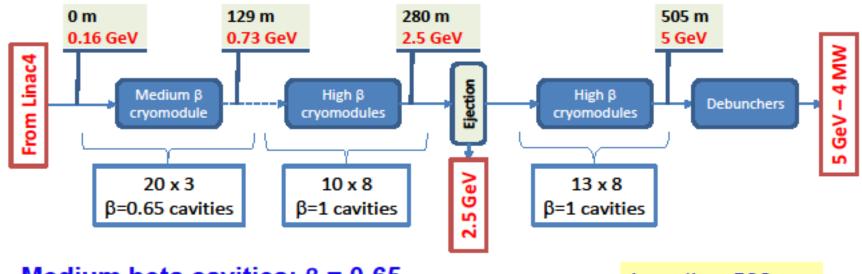
IHEP

Linac4: Block diagram

45k	eV 3MeV		3MeV	50MeV	103MeV 160MeV
H- +		CHOPPER			PIMS
RF volume source (DESY) 45 kV Extrac.	Radio Frequency Quadrupole 3 m 1 Klystron 550 kW	Chopper & Bunchers 3.6 m 11 EMquad 3 cavities	Drift Tube Linac 18.7 m 3 tanks 1+2 klystrons 4.7 MW	Drift Tube Linac 25 m 21 tanks	Pi-Mode Structure 22 m 12 tanks 4+4 klystrons ~12 MW
H ⁻ ion current: 40 mA (avg.), 65 mA (peak)			111 PMQs	21 EMQuads	12 EMQuads

Length: 80 m 19 klystrons [13 x 1.3 MW (LEP), 6 x 2.8 MW (new)] Normal conducting accelerating structures of 4 types: RFQ, DTL, CCDTL, PIMS Single frequency: 352.2 MHz Duty cycle: 0.1% phase 1 (Linac4), 3-4% phase 2 (SPL), (design: 10%)

5th International Particle Accelerator Conference June 15 - 20, 2014 | Dresden, Germany


SPL

IHEP

SPL block diagram

SC-linac [160 MeV ® 5 GeV] with ejection at intermediate energy

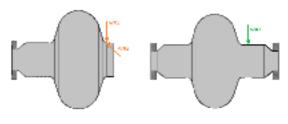
Medium beta cavities: β = 0.65

Length: ~500 m

• High beta cavities: β = 1

Length: ~500 h

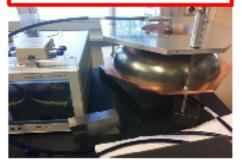
"New" TDR to be published during Q2/2014

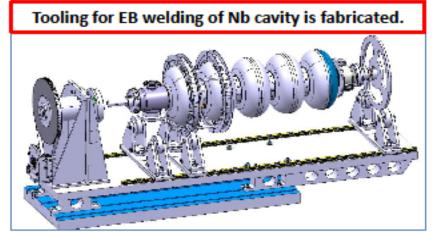

IHEP^{P HIGH ENE}

Niobium cavities at CERN

REPAIR OF FIRST MONOCELL

Material defects observed after electro-polishing. Repaired with new e-beam welding machine from outside (W#1 and W#3) and inside (W#2)




CAVITY FABRICATION AT CERN

Half-cells and beam tubes fabricated by spinning.

RF measurements.

th International Particle Accelerator Conference

SARAF-PHASE 2 LINAC DESIGN

Particles : deuterons and protons Input energy : 20 keV/u Input emittance (rms, norm.) : 0.2 pi.mm.mrad **Output energy : 1.3 MeV/u Emittance growth < 25% Time structure : pulsed and cw** Beam current : 0.04 – 5 mA **Beam losses :** <150 nA/m for E < 5 MeV (0.4-0.75 W/m) < 40 nA/m 10 MeV (0.2-0.4 W/m) < 5 nA/m 20 MeV (0.05-0.1 W/m) < 1 nA/m > 20 MeV (0.02-0.04 W/m) << 1 W/m !!!

HEP

SARAF

Summary to ADS accelerators

背子的

- 1. The ADS program is to speed up from the basic study to the real facility.
- 2. The key technologies in high power proton accelerator are severe challenges for us.
- 3. Many good technologies have been developed, e.g. SNS demonstrated <1 W/m beam loss in MW-class pulsed accelerator: Could go higher power; SRF became a choice especially for high power and high duty factor machines
- 4. There are many common interests in the high power proton acceleration technology for the labs involved in proton accelerator. Close international cooperation is very important and expected.

I 'm sorry for uncovering all ADS plans probably.

Thanks for your attentions!

Accelerator architectures for high power

- Linear accelerator only (long pulse beam, pulsed or CW) LANSCE, PEFP, ESS, Project X driver, IMFIF, FRIB, SNS-STS, China ADS
- Linear accelerator + accumulator (short pulse, pulsed) SNS, PSR/LANL, CSNS
- Lower energy linear accelerator + RCS (short pulse, pulsed) ISIS, J-PARC, CSNS
- Circular accelerator: Cyclotron (or FFAG) (long pulse, CW) PSI, (future FFAG in somewhere)

For Injector I:

Emittance (RMS) at entrance of MEBT1: 0.198 / 0.199 / 0.159 pi.mm.mrad (x / y / z) 10MeV: 3.4% /3.0% /5.0% (no error case) (x / y / z)