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Abstract 
Dielectric targets that concentrate Cherenkov radiation 

(CR) are presented. We suppose that CR is produced by a 
small bunch moving along the axis of cylindrical channel 
inside targets. The first case is a part of cone that 
concentrates CR near the line being the symmetry axis of 
the target. The second case is the target with hyperbolic 
profile that concentrates CR in a small vicinity of given 
point (focus). Ray optics laws and aperture integration 
method are used for the calculation of the field. We show 
that the hyperbolic concentrator working at terahertz 
frequencies can increase the field at least up to two orders 
in comparison with that on the surface of the target. 

INTRODUCTION 
Cherenkov radiation (CR) is a convenient tool for 

detection of charged particle [1] and bunch diagnostics 
[2]. Other promising applications of this effect are 
wakefield acceleration [3], terahertz radiation sources 
[4,5], Cherenkov luminescence tomography [6] etc. 
However, due to the complexity of real radiator geometry, 
different approximate techniques are elaborated for 
investigation of the excited radiation [5,7]. Here we 
develop recently reported approximate method for 
calculating Cherenkov radiation of a charge flying near a 
dielectric target having two main boundaries (the first 
interacts with a charge field and the second mainly 
refracts a generated radiation) [8]. This method combines 
the exact solution of certain “key” problem and ray optics 
laws. Since it is frequently important to concentrate the 
CR energy in certain small area of space, we focus here 
on cases where the radiation outside the target is 
convergent. In other words, we suggest target geometries 
that combine radiator and concentrator into a single 
device. Because ray optics fails near the focal points, we 
also involve the aperture integration technique for 
calculating the field.  

CONICAL TARGET 
CR from a conical target with cylindrical channel was 

investigated recently [8]. Here we discuss in more detail 
the situation where a conical target can concentrate CR. 
We deal with the problem where a point charge ݍ moves 
with constant velocity ݒԦ ൌ ܿߚ Ԧ݁௭ along the axis of 
cylindrical channel in the target [Fig. 1(a)]. As was shown  

Figure 1: (a) Geometry of a cross-section of a conical 
target and convergent rays, sinߙ ൌ ሺ√ߚߤߝሻିଵ. (b) 
Behavior of the Fourier transform of the electric field 
along a ray. 

 
in [8], if the angle of cone c  in not too large, namely 

tanߙ௖ ൏ ሺ1 െ ଶߚߤߝඥ	ሻ/ߚ െ 1,                    (1) 
then we obtain the convergent geometry of refracted rays. 
As the ray optics calculation shows, the field increases 
along a ray [Fig. 1(b)] and possesses an infinite peak in 
the point where a ray intersects the symmetry axis. This 
means that real field (which can be calculated using, for 
example, the aperture integration approach [9]) increases 
significantly. However, as formula (1) shows, a conical 
target has several serious limitations for practice. First, 
the expected concentration is not strong because energy is 
spread over the axis of symmetry. Second, for ultra-
relativistic particles (ߚ → 1) one should have extremely 
small angle ߙ௖ to satisfy the condition for concentration 
(1). These are the reasons to consider other target 
geometries. 
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HYPERBOLIC TARGET 
Here we solve the problem of finding the target shape 

that concentrates the charge’s radiation in the focus point 
 ௙ situated on the axis of symmetry of the problemݖ
[Fig. 2(a)]. First, to find the CR field inside the target, we 
utilize the approximate method suggested in [8]. In short, 
this field is supposed to be the same as in corresponding 
“key” problem: a point charge moves along the vacuum 
channel in unbounded medium with   and  . Exact 

solution for the Fourier transform of the field can be 
found in [10]. The interaction of this field with the target 
surface can be described in the frame of ray optics. Using 
far-field approximation for the field inside the target, the 
wave front and corresponding rays inside the target can be 
found. Refracted ray is obtained using the Snell’s law and 
the field is multiplied by the corresponding Fresnel 
transmission coefficient. 

  

Figure 2: (a) Geometry of the problem for the target 
providing CR concentration in a point. (b) Problem on the 
lens antenna to which the initial problem is reduced. 

 
To find the shape of the surface that provides ray 

convergence to the focus after transmitting the boundary, 
we consider this problem from another side. We expand 
the ray picture from the “upper” part of the target to the 
whole plane and turn over the rays by supposing that a 
point source is located in the focus point [Fig. 2(b)].  

After that, we obtain the known problem of finding the 
surface of the lens antenna [9], and the solution is 
hyperbolic surface, 

ሻݑሺݎ ൌ ݂ሺ1 െ ሻ/ሾ1ߤߝ√ െ  ሿ,              (2)ݑ	cos	ߤߝ√
where ݂ is the shortest distance from the source to the 
surface, other abbreviations are shown in Fig. 2. From the 
physical point of view, the fact that rays go parallel after 
refraction means that the optical path difference for two 
arbitrary rays 1 and 2 equals zero in points ܯଵ and ܯଶ. 
Now we cut from the whole surface the corresponding 
piece, rotate it over z  axis and obtain the required target.  

In the frame of ray optics, nonzero components of the 
field in the vacuum area are calculated as follows: 
ఝఠܪ ൌ െܧఏఠ ൌ ∗ఝఠܪ ‖ܶඥܦሺ0ሻ/ܦሺℓሻexp	ሺ݅ωℓ/ܿሻ	,   (3) 

where   is the ray length in vacuum, ܪఝఠ∗  is the field in 
the point of the ray start ݑ∗, ‖ܶ is the Fresnel transmission 
coefficient, 

‖ܶ ൌ ௜ߠcosߤߝ√௜ሾߠcosߤߝ√2 ൅ cosߠ௧	ሿିଵ,         (4) 

i  and t  are angles of incidence and transmission,  

cosߠ௧ ൌ
௡	ୡ୭ୱ	௨ିଵ

ඥଵିଶ௡ୡ୭ୱ௨ା௡మ
, sinߠ௜ ൌ sinߠ௧/݊,                (5) 

ඥܦሺ0ሻ/ܦሺℓሻ ൌ |1 െ ℓ/ݎሺݑ∗ሻ|ିଵ.              (6) 

The value (6) describes the convergence of the ray tube. 
As one can see from (3) and (6), ray optics approach 

gives the infinite field in the focus since ( )r u  in this 

point. In other words, this approach is not applicable here.  
To overcome this difficulty, we involve the aperture 

integration technique [9]. For example, the field in a point 
 ,  , 0z   can be presented as an integral over 

aperture aS  (an area “illuminated” by refracted rays in 

the plane 0z  ) 
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where d d d       , the prime sign means that 

differentiation and integration are performed over primed 
coordinates of the point at the aperture, exp( )g ikR R   ,  

෨ܴ ൌ ඥߩଶ ൅ ᇱଶߩ െ ᇱߩߩ2 cosሺ߮ െ ߮ᇱሻ ൅ ሺݖ െ  ᇱሻଶ,    (8)ݖ
aH


 and aE


 are the filed components on aS  calculated 

via (3). Integral (7) should be calculated numerically. 
Figures 3(a) and 3(b) show the field behavior along a 

ray calculated using two discussed techniques. As was 
mentioned, ray optics (RO) shows the infinite field in the 
focus, while the aperture integration (AI) shows the finite 
one. The curves are in a good agreement (excluding 
narrow vicinity of the peak’s center). The larger wave 
number ݇ ൌ ߱/ܿ, the better agreement between curves. 
Expressed oscillations in the AI curve are explained by 
interference of fields of the equivalent elementary 
radiators of the aperture [9]. As one can see, height of the  
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Figure 3: (a), (b) Field behavior along the ray determined by the angle 179    calculated via the ray optical formulas 
(3) (RO) and the aperture integration approach (7) (AI). Problem parameters: ݍ ൌ െ1nC, √ߤߝ ൌ ߚ ,1.12 ൌ 0.9, 
ߙ ൌ ୫ୟ୶ݔ ,߱/ܿߨ2 ൌ 26cm, ݖ௙ ൌ 5.5cm, ݂ ൌ 5cm. Value ℓ ൌ 5.6cm corresponds to the focus point. (c) Distribution of 
the absolute value of the field |ܧఏ| over a cross-section calculated with AI approach (7). Frequency ߱ ൌ ߨ2 ∙ 10ଵଶsିଵ. 
 

 
peak increases and the width if the peak decreases with an 
increase in k . Moreover, the field in the focus is around 
two orders larger compared with the field on the surface 
of the target. 

Figure 3(c) shows the two-dimensional field 
distribution over a cross-section of the problem. As we 
see, for a decimeter-size target, the focal spot (where the 

field is larger than 4 110 Vm s  ) is around 1cm in 

longitudinal direction and 0.1cm in orthogonal direction. 
Moreover, we should expect that an increase in frequency 
will lead to further decrease of the focal spot dimensions.  
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