

Preprint: http://tiny.cc/thoab02

Options for UK 99mTc Production Using Accelerators

Hywel Owen on behalf of UK Isotope Working Group

Global Radiopharmaceutical Diagnostic Market

2010

1 Global Radiopharmaceuticals Market (PET/SPECT Imaging & Therapy) – Current Trends & Forecasts (2010 – 2015); MarketsandMarkets, August 2011 2 BMI - Business Monitor International Ltd, Molybdenum-99: Privatising Nuclear Medicine, Special Report 2011

3 Interim Report on the OECD/NEA High-Level Group on Security of Supply of Medical Radioisotopes, The Supply of Medical Radioisotopes, OECD 2012

Hywel Owen IPAC14 | THOAB02 | 19 June 2014 | 3

UK HPA 2008

Mo-99/Tc-99m/Tc-99

Mass 99 Decay Chain

Nuclide	Halflife
99Y	1.470(7) s
99Zr	2.1(1) s
99Nb	15.0(2) s
99Mo	2.7489(6) d
99Тс	2.111(12)E+5 a
99Ru	Stable

Thermal Neutron Fission of U-235

5

MANCHESTER

Current Irradiators 2013

Reactor	Targets	Normal operating days	Available weekly capacity (6-day Ci)	Potential annual production (6-day Ci) ¹	Estimated stop production date
BR-2	HEU	140	7 800	156 000	2026
HFR	HEU	280	4 680	187 200	2024
LVR-15	HEU	210	2 800	84 000	2028
MARIA	HEU	180	1 400	36 000	2030
NRU	HEU	280	4 680	187 200	2016
OPAL	LEU	290	1 000	42 900	2055
OSIRIS	HEU	182	1 200	31 200	2015
RA-3	LEU	336	400	19 200	2027
SAFARI-1	HEU ² /LEU	305	3 000	130 700	2030

OECD January 2014 HLG-MR Report

Current Processors

Processor	Targets	Capacity per week (6-d Ci)	Available annual capacity (6-d Ci) ¹	Expected date of conversion to LEU targets
AECL/NORDION	HEU	7 200	374 400	Not expected
ANSTO HEALTH	LEU	1 000	52 000	Started as LEU
CNEA	LEU	900	46 800	Converted
MALLINCKRODT	HEU	3 500	182 000	2016
IRE	HEU	2 500	130 000	2016
NTP	HEU ³ /LEU	3 500	182 000	2014 ⁴

OECD January 2014 HLG-MR Report

Irradiation capacity and projected future demand, Global, 2015-2020

'A Review of the Supply of Molybdenum-99, the Impact of Recent Shortages and the Implications for Nuclear Medicine Services in the UK', Administration of Radioactive Substances Advisory Committee

Hywel Owen IPAC14 | THOAB02 | 19 June 2014 | 8

6-day curies EOP

Mo-99 supply chain

Potential New Irradiators 2013

Reactor	Targets	Operating days (Number)	Available weekly capacity (6-day Ci)	Potential annual production (6-day Ci) ¹	Estimated stop production date	Status
RIAR (Russia)	HEU in CRR	350	1200	60000	2015	Started
Karpov Institute	HEU in CRR	345	300	14800	2015	Started
NORTHSTAR/ MURR (USA)	Non-fissile in CRR	365	2750/ 3000	39100/ 156400	2015/17	Phase 1
FRM-II (Germany)	LEU in CRR	240	1 600	54300	2017	Infrastructure in place
MORGRIDGE/ SHINE (US)	LEU solution with DTA	300	3000	144000	2017	NYS
OPAL	LEU in CRR	300	2600	111400	2017	NYS
KOREA	LEU in CRR	300	2000	85700	2018	Concept
NORTHSTAR (USA)	Non-fissile from LINAC	336	3000	144000	2018	NYS
CHINA Advanced RR	LEU in CRR	350	1000	50000	2019	Modification
Brazil MR	LEU in CRR	290	1000	41400	2019	Preliminary
RA-10 (Argentina)	LEU in CRR	336	2500	120000	2019	Preliminary
Jules HOROWITZ RR (France)	LEU in CRR	220	3200	100600	2020	Under Construction

OECD January 2014 HLG-MR Report

Photofission

235U

Haxby et al., Phys. Rev. 58(1), 92 (1940)

(also benefits from neutron reflection and fission cascade)

238U

W. Diamond, NIM A 432, 471 (1999) RG Bennett et al., Nucl. Tech. 126(1), 102 (1999)

Neutron Capture

65 MeV Protons into Be target (7 hour exposure)

Fig. 3. ⁹⁹Mo activity generated by irradiation of metallic Mo foils with neutrons produced by bombarding the Be target with a 65 MeV proton beam. The results are presented as a function of the distance (R) between the sample and the Be target.

Froment et al., NIM A 493, 165 (2002) Abbas et al. 601, 223 (2009)

Options for neutron production:

- Li, Be targets at low energy (p, 3 to 30 MeV)
- Pb spallation at high energy (p, c. 1 GeV)
- Photoneutron production (e-, 30-50 MeV)
- D-T reaction

Moderated Neutron Capture for 99Mo Production

ne Cockcroft Institute

Subcritical Neutron Fission

SHINE/Morgridge

6

100 mA, 30 kW, 10¹⁴ ns/s @ 14 MeV 125 Ci tritium consumption per year Multiple isotopes cf. reactor targets

- D-T source in center
- Be multiplier
- Annular Geometry
- LEU Solution
- Externally moderated
- No active control elements
 - Fission power:
 ~ 75 kW per device
 - ⁹⁹Mo production rate: 500 6-day Ci / wk

Photonuclear

- Photo-nuclear reaction on ¹⁰⁰Mo:
 - ¹⁰⁰Mo (γ, n) ⁹⁹Mo
- Natural Mo about 10 % ¹⁰⁰Mo
- Available at enrichments of > 95 %
- Known for more than 40 years
- Photons produced via Bremsstrahlung using high-energy electrons from linear accelerator ⇒ high-energy X-rays

NRC INMS Proof-of-concept

GE Dale et al., AIP Conf.Proc.1525, 355(2013) JA Osso Jr, Curr. Radiopharm. 5, 178 (2012)

Cyclotron Production of Tc-99m

⁹⁸Mo(p,γ)^{99m}Tc
¹⁰⁰Mo(p,2n)^{99m}Tc
¹⁰⁰Mo(p,pn)⁹⁹Mo -> ^{99m}Tc

Celler et al., PMB 56, 5469 (2011)

Steps in Accelerator (Cyclotron) Production of 99mTc

- Enriched ¹⁰⁰Mo target
- Irradiate in proton cyclotron, 4-6 h at around 19MeV/500 uA
- Extract ^{99m}Tc from target
- (Recover and recycle ¹⁰⁰Mo)
- Purify ^{99m}Tc to pharmaceutical standards
- Prepare ^{99m}Tc products on site or ship ^{99m}Tc pertechnetate to satellite radiopharmacies
- Do the same thing again later...

Yield vs. Current

Target Issues

TABLE 3 Large Target Production Runs

Parameter	Run 1	Run 2	Run 3	Run 4
Target enrichment (%)	99.01	99.01	97.39	97.39
Energy (MeV)	18-11	18-12	18-12	18-12
Irradiation time (h)	1.5	1.32	6.43	6.9
Average current (µA)	85	159	188	223
Charge (µA·min)	7,775	13,555	74,895	83,223
99mTc activity (GBq)	55.5*	96.2*	333	348
Saturated yield (GBq/µA)	4.05*	4.0*	3.3	3.03

- Sintering/pressing of 100Mo onto Cu backing
- Target power is a limiting factor
- Set thickness to optimise yield/ purity
- Need efficient chemical recovery of unconverted 100Mo (>95%)

Benard F et al., 'Implementation of Multi-Curie Production of 99mTc by Conventional Medical Cyclotrons', J Nucl. Med. 2014;55(6):1017-1022.

Gagnon et al., 'Cyclotron production of 99mTc: recycling of enriched 100Mo metal targets', Appl. Radiat. Isot. 2012; 70:1685-90

Hou X, Celler A, Grimes J, Benard F, Ruth T, 'Theoretical dosimetry estimations for radioisotopes produced by proton-induced reactions on natural and enriched molybdenum targets', Phys. Med. Biol. 2012; 57:1499-1515

Yield is Not Everything...

Typical radiation dose: 2-4 mSv (~0.5 J energy deposited)

Distributed production, shipping each day

99Mo (fission): 1 centre, UK/overseas 99mTc (direct): Local centres, commercial/hospital

Sources of protons

Siemens Oniac, IPAC14/TUPME039

PIP FFAG, IPAC2013/THPWA037

All too low energy; laser-based sources too low current

Hywel Owen IPAC14 | THOAB02 | 19 June 2014 | 23

Conventional and/or compact cyclotrons

Ionetix 'Isotron' SC cyclotron (6T,12.5MeV) Rev. Acc. Sci. Tech. 5, 227 (2012)

RAL FETS, IPAC2013/THPWO086

6 mA!

Clinical Comparison

- First two patients in cyclotron arm of trial imaged 12 Oct 2011.
 - Images were first presented at the Annual Congress of the European Association of Nuclear Medicine, Birmingham, UK, Oct 2011.
- Phase 1 trial; completed March 2012.
 - J Nucl Med, 53 (2012) S1: 1487

Share of Revenue

Fission Mo99 moving to Full Cost Recovery Accelerators have to achieve c.£10 per dose (~27 mCi)

How much might a cyclotron dose cost? (v. approx.)

•	1 Accelerator over 20y:	\$1,000,000
	- Construction: \$9,000,000	
	– Equipment: \$6,000,000	
•	Annual Licensing:	\$750,000
•	Consumables:	\$500,000
•	Staff	\$900,000
•	Operation and Maintenance	\$800,000
•	Total:	\$4,000,000
•	Assume 200,000 doses per year:	

\$20.00/Dose

Might be profitable...

Possible 99mTc Cyclotron Supply Chain

- Advantages of direct (cyclotron) model:
 - No use of uranium/LEU/HEU
 - No radioactive material crossing borders
 - No time sensitive material crossing borders
 - No fissile waste
 - Production on demand/local control of supply seen as particular advantage in UK
 - Co-production of other isotopes, e.g. PET PET in the morning, 99mTc at night

Summary

- Direct production of 99mTc is advantageous in number of ways
 - No fission/HEU/waste
 - Local control and distribution
 - but needs different model to conventional fission supply
- Cyclotron technology is well-established
 - New technologies must compete on price
- Choice must be based on commercial considerations
 - Uncertainty about future price/availability from reactor supply
 - Growth/decline in need for 99mTc

