Keyword: status
Paper Title Other Keywords Page
MOPME044 Upgrade of the Machine Interlock System for the ELBE Accelerator Facility PLC, vacuum, electron, controls 469
 
  • M. Justus, M. Freitag, B. Lange, P. Michel, W. Sorge, R. Steinbrück, H. Tietze
    HZDR, Dresden, Germany
 
  The ELBE facility with its 40 MeV C.W. LINAC has recently received an upgrade in terms of new secondary radiation sources and beam lines, while advancing the accelerator infrastructure towards 1.6 mA C.W. operation (1.0 mA before). Therefore, the machine interlock system (MIS) was redesigned in parts to meet the new timing requirements resulting from the increased overall beam power. It comprises fast beam loss detection and a PLC based beam line equipment protection system (EPS), both tripping the key components of the electron sources. The former tripping system using PLC interrupts was replaced by an in-house developed staggered CPLD based system with optical transmission and a PROFINET IO interface for control system integration. The EPS is distributed on several PLCs and has been improved in terms of M2M communication. Further, the vacuum inrush protection was completely renewed using brought-in equipment. This contribution depicts the technical features and performance of the MIS subsystems, as well as the actual status within the upgrade project.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPME044  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPME045 Overview on the Design of the Machine Protection System for ESS target, neutron, proton, beam-losses 472
 
  • A. Nordt
    ESS, Lund, Sweden
  • A. Apollonio, R. Schmidt
    CERN, Geneva, Switzerland
 
  Scope of the Machine Protection System (MPS) for the European Spallation Source (ESS) is to protect equipment located in the accelerator, target station, neutron instruments and conventional facilities, from damage induced by beam losses or malfunctioning equipment. The MPS design function is to inhibit beam production within a few microseconds for the fastest failures at a safety integrity level of SIL2 according to the IEC61508 standard. These requirements result from a hazard and risk analysis being performed for the all systems at ESS. In a next step the architecture and topology of the distributed machine interlock system has been developed and will be presented. At the same time as MPS seeks to protect equipment it must protect the beam by avoiding triggering false stops of beam production, leading to unnecessary downtime of the ESS facility.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPME045  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPME007 Status of CLIC Magnets Studies and R&D quadrupole, dipole, linear-collider, collider 1350
 
  • M. Modena, A.V. Aloev, E. Solodko, P.A. Thonet, A.S. Vorozhtsov
    CERN, Geneva, Switzerland
 
  Since 2009 the CERN Magnet Group (CERN-TE-MSC) started R&D activities in order to focalize the most challenging and interesting cases to be studied among the magnets needed for CLIC the Compact Linear Collider. In the last four years several theoretic studies, models and prototypes were realized mainly in two domains: magnets for the Modules, the modular elements that are composing the backbone of the two-beam linac structure of CLIC, and the Machine Detector Interface (MDI) including the Final Focus elements, and the anti-solenoid. In this paper we revise the status for the procured magnets. Among them the Drive Beam Quadrupoles, Main Beam Quadrupoles, Steering Correctors all challenging for the required compactness, performances and production size, and the QD0 final quadrupole and the close SD0 sextupole, challenging for the high performances required in terms of gradients and stability.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPME007  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRI078 Fast Orbit Feedback Application at MAX IV and SOLARIS Storage Rings storage-ring, controls, brilliance, feedback 1748
 
  • P. Leban, E. Janezic
    I-Tech, Solkan, Slovenia
  • M. Sjöström
    MAX-lab, Lund, Sweden
 
  A common Fast Orbit Feedback (FOFB) application is planned for the new storage rings at MAX IV laboratory and SOLARIS. The application will run in the Beam Position Monitor (BPM) electronics (Libera Brilliance+). Global orbit data concentration will be conducted inside the gigabit data exchange (GDX) modules with a Virtex6 field programmable gate array, which will be daisy-chained around the storage ring. The feedback calculation algorithm is based on the Singular Value Decomposition (SVD) – the PI controller will be applied in the modal space for individual eigenmodes. The calculations will be distributed over all GDX modules to reduce overall latency. Each GDX module will calculate setpoints for four correctors, horizontal or vertical. The new setpoints will be sent directly to the magnet power supply controllers over a serial point-to-point link. This article presents details on FOFB implementation and control topology.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI078  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRI098 The New PLC based Radiation Safety Interlock System at S-DALINAC electron, radiation, operation, linac 1802
 
  • M. Arnold, J. Birkhan, M. Brunken, J. Conrad, M. Hess, F. Hug, N. Pietralla, S.T. Sievers, P. von Neumann-Cosel
    TU Darmstadt, Darmstadt, Germany
 
  Funding: Supported by a HGS-HIRe travel grant
The Superconducting Darmstadt Linear Electron Accelerator S-DALINAC has been running since 1991. It consists of an injector linac, a main linac with two recirculations and is mainly used for in-house nuclear physics experiments as well as accelerator physics and technology. Radiation safety regulations demand an interlock system during operation of the accelerator. Amongst other major projects increasing the versatility and operation stability of the S-DALINAC, the existing, hardware based, interlock system is going to be replaced in the next shutdown period. The new interlock system is based on a PLC (Programmable Logic Controller) and will provide two subsystems, a personnel interlock system as well as a machine safety interlock system. Whereas the first subsystem is to protect staff and visitors from being harmed by ionizing radiation, the latter subsystem prohibits the S-DALINAC beam transport and vacuum elements from being damaged due to malfunctioning of any components during accelerator operation. This contribution will give an overview on this new system and will show the latest status.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI098  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRI100 Present Status of the Cherenkov Beam Loss Monitor at SACLA electron, undulator, detector, laser 1808
 
  • T. Itoga
    JASRI/SPring-8, Hyogo, Japan
  • Y. Asano
    RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo, Japan
 
  Since 2011, high power lasers have been delivered stably to the users at SACLA, the SPring-8 Angstrom compact free electron laser, and the upgrades have been performing to obtain the high quality of the laser continuously. Optical fiber based Cherenkov beam loss monitors have been successfully operated from the commissioning phase. This monitor covers the undulator section of beam lines and the electron beam transporting tunnel from SACLA to SPring-8. This monitor is made good use of not only beam transport but also detection of the small beam loss such as electron halos hitting the magnets of undulator. In this presentation, we will report the present status of the Cherenkov beam loss monitor and its usage experience.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI100  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO089 Latest Developments of a C-band 2MeV Accelerator experiment, operation, linac, detector 2165
 
  • W. Bai, M. Li, L.J. Shan, X.M. Shen, Z. Xu
    CAEP/IAE, Mianyang, Sichuan, People's Republic of China
 
  A C-band 2MeV accelerator is developped at CAEP in China. This research is aimmed at developing an compact accelerator used as X ray source for industrial useage. At present, the C-band accelerator has been developed successfully. we have carried out a lot of research work based on the accelerator, including test of X ray energy, focus and dose rate etc. This paper shows the latest experimental results and application research status on the C-band accelerator.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO089  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRI018 Status of the Fabrication of the XFEL 3.9 GHz Cavity Series cavity, linac, vacuum, gun 2512
 
  • C. Maiano, M. Bertucci, A. Bosotti, J.F. Chen, P. Michelato, L. Monaco, M. Moretti, C. Pagani, R. Paparella, P. Pierini, D. Sertore
    INFN/LASA, Segrate (MI), Italy
 
  The third harmonic system at 3.9 GHz of the European XFEL (E-XFEL) injector section will linearize the bunch RF curvature, induced by first accelerating module, before the first compression stage and it is a joint INFN and DESY contribution to the project. This paper presents the status of the fabrication of the 3.9 GHz cavity series in view of the XFEL injector commissioning in 2015.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRI018  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRI097 STATUS OF 11 T 2-IN-1 Nb3Sn DIPOLE DEVELOPMENT FOR LHC dipole, luminosity, magnet-design, lattice 2722
 
  • A.V. Zlobin, N. Andreev, G. Apollinari, E.Z. Barzi, R. Bossert, M. Buehler, G. Chlachidze, J. DiMarco, A. Nobrega, I. Novitski, D. Turrioni, G. Velev
    Fermilab, Batavia, Illinois, USA
  • B. Auchmann, M. Karppinen, L. Rossi, D. Smekens
    CERN, Geneva, Switzerland
 
  Funding: Work is supported by Fermi Research Alliance, LLC, under contract No. DE-AC02-07CH11359 with the U.S. Department of Energy and European Commission under FP7 project HiLumi LHC, GA no.284404
The LHC upgrade plans foresee installation of additional collimators in the LHC lattice. To provide the necessary longitudinal space for these collimators, shorter and stronger Nb3Sn dipoles compatible with the LHC lattice and main systems could be used. This paper describes the design and status of the twin-aperture Nb3Sn dipole being developed by FNAL and CERN for the LHC, and reports test results of two collared coils to be used in the first 1 m long twin-aperture dipole model.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRI097  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRI102 Conceptual Magnetic Design of the Large Aperture D2 Dipole for LHC Upgrade dipole, luminosity, insertion, interaction-region 2737
 
  • R.C. Gupta
    BNL, Upton, Long Island, New York, USA
 
  Funding: This work is supported by the U.S. Department of Energy under Contract No. DE¬AC02-98CH10886.
CERN has proposed the High Luminosity upgrade of the Large Hadron Collider (HL-LHC) as an upgrade to the Large Hadron Collider (LHC). As a part of this proposal, the aperture of twin aperture D2 dipole is increased from the present 80 mm to 105 mm without increasing the size of cryostat. This creates a significant challenge in managing saturation induced harmonics and the leakage field, particularly since the field in the two apertures is in the same direction. In addition, small spacing between the two apertures creates significant cross-talk harmonics as well. The expected harmonics based on an initial design were rather large and limited the beam dynamics performance of the machine. This paper will present a series of conceptual magnetic designs which reduce the values of key harmonics by a large amount with expected field errors now comparable to those in most superconducting accelerator magnets.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRI102  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRO006 Configuration Management in the Series Production of the XFEL Accelerator Modules cryomodule, controls, cavity, target 2863
 
  • L. Hagge, S. Barbanotti, S. Eucker, A. Frank, K. Jensch, J. Kreutzkamp, D. Käfer, A. Matheisen
    DESY, Hamburg, Germany
  • S. Berry, O. Napoly
    CEA/DSM/IRFU, France
  • C. Cloué, C. Madec, T. Trublet
    CEA/IRFU, Gif-sur-Yvette, France
 
  The series production of the superconducting accelerator modules for the European XFEL requires a production rate of one module per week. For this, assembly procedures have to be well-defined and repeatable, and the punctual supply of parts from the contributing institutes has to be assured. Configuration management (CM) has been introduced for clarification of responsibilities and establishing procedures. CM provides unique identification of parts, part status and location tracking, versioning of documentation, and procedures for change control, auditing and handling non-conformities. The configuration database, which is based on DESY’s Engineering Data Management System, contains the entire information which is necessary for assembling the accelerator modules. The content ranges from work instructions how to build a cryomodule up to individual records of all produced parts. Workflow and reports help tracking production progress and establishing production quality. The presentation gives an overview of the CM solution which is in place for the assembly of the XFEL accelerator modules, and reports experience and lessons learned from series production of the first modules.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRO006  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRO123 Control System of EPU48 in TPS controls, EPICS, hardware, interface 3180
 
  • C.Y. Wu, J. Chen, Y.-S. Cheng, K.T. Hsu, D. Lee, C.Y. Liao
    NSRRC, Hsinchu, Taiwan
 
  Insertion device (ID) is a crucial component in third-generation synchrotron light sources, which can produces highly-brilliant, forward-directed and quasi-monochromatic radiation over a broad energy range for various experiments. In the phase I of the Taiwan Photon Source (TPS) project, two EPU48s (Elliptically Polarized Undulator) will be installed. The control system for EPU48 is based on the EPICS architecture. All control functionality coordinate by the cPCI EPICS IOC. The main control components include the motor with encoder for gap adjustment and phase moving, trimming power supply for corrector magnets, temperature sensors for ID environmental monitoring , interlock system (limit switches, tilt sensor, emergency button) for safety and supporting of on-the-fly experiments for beamline. Features and benefits of EPU48 control system will be summarized in this report.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRO123  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRO126 Implementation of Machine Protection System for the Taiwan Photon Source PLC, EPICS, controls, vacuum 3189
 
  • C.Y. Liao, J. Chen, Y.-S. Cheng, K.T. Hsu, K.H. Hu, D. Lee, C.Y. Wu
    NSRRC, Hsinchu, Taiwan
 
  The Taiwan Photon Source (TPS) is being constructed at the campus of the NSRRC (National Synchrotron Radiation Research Center) and commissioning expected in 2014. In order to prevent damage to accelerator components induced by various events, a global machine protection system (MPS) was installed and implemented. The MPS collect interlocks and beam dump requests from various system (thermo/flow of magnets, front-end, vacuum system, and orbit excursion interlock), perform decision, transmit dump beam request to E-Gun or RF system. The PLC based system with embedded EPICS IOC was used as a slow MPS which can delivery less than 8 msec reaction time. The fast MPS was dependent on event based timing system to deliver response time less than 5 μs. Trigger signal for post-mortem will also be distributed by the fast MPS. To ensure alive of the system, several self-diagnostics mechanisms include heartbeat and transient capture were implemented and tested. The MPS architecture, installation, and validation test results were presented in this report.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRO126  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME117 First Tests with the Self-triggered Mode of the New MicroTCA-based Low-charge Electronics for Button and Stripline BPMs at FLASH timing, electronics, operation, interface 3509
 
  • F. Schmidt-Föhre, N. Baboi, G. Kuehn, B. Lorbeer, D. Nölle, K. Wittenburg
    DESY, Hamburg, Germany
 
  The FLASH facility at DESY is currently enhanced by a second beamline (FLASH2) to extend the capacity for user experiments. In addition, certain support systems like the timing system and the BPM system at the existing FLASH accelerator have been partly renewed and are now under commissioning. New button BPM electronics based on the MTCA.4 for physics standard is provided for the FLASH2 beamline and is foreseen as a replacement of the old BPM electronics at FLASH. Compared to the predecessor of the FLASH button BPM electronics, the new system has been specifically designed for low charge operation exceeding a wide dynamical charge range between 100pC and 3nC. Special provisions have been made to enable single bunch measurements in a self-triggered mode, enabling timing-system-independent measurements during commissioning and at fallback during normal operation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME117  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME193 GUI Development for the Drive Laser at Fermilab's ASTA Facility laser, controls, gun, interface 3735
 
  • D.R. Edstrom, E.R. Harms, T.R. Johnson, A.H. Lumpkin, J. Ruan, J.K. Santucci
    Fermilab, Batavia, Illinois, USA
 
  A comprehensive set of graphical user interfaces is being developed for the drive laser of the Advanced Superconducting Test Accelerator (ASTA) facility at Fermilab. These interfaces have been designed in Synoptic, a Java-based GUI development platform with credential-dependent access to the Fermilab accelerator controls network. Such implementation facilitates the user's ability to monitor and control many aspects of the drive laser system in an intuitive environment, as well as timely updates on the part of the developers made necessary by the evolving drive laser system. Furthermore, the current interface hierarchy readily allows integration into the larger pool of Synoptic applications being developed for other subsystems at ASTA.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME193  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME197 Power Saving Status in the NSRRC controls, operation, synchrotron, synchrotron-radiation 3744
 
  • J.-C. Chang, Y.C. Chang, Y.F. Chiu, Y.-C. Chung, C.W. Hsu, Y.-C. Lin, C.Y. Liu, Y.-H. Liu, Z.-D. Tsai, T.-S. Ueng
    NSRRC, Hsinchu, Taiwan
 
  National Synchrotron Radiation Research Center (NSRRC), Taiwan has completed the construction of the civil and utility system engineering of the Taiwan Photon Source (TPS) in 2013 and 2014, respectively. The contract power capacities of the Taiwan Light Source (TLS) and the TPS with the Taiwan Power Company (TPC) are 5.5MW and 3MW currently, respectively. The ultimate power consumption of the TPS is estimated about 12.5MW. To cope with increasing power requirement in the near future, we have been conducting several power saving schemes for years. They include power consumption control, optimization of chillers operation, air conditioning system improvement, power factor improvement, application of heat pump, and promotion for power saving.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME197  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRI109 Auto-alignment Status of the Taiwan Photon Source alignment, laser, controls, experiment 4034
 
  • M.H. Wu, J.-R. Chen, P.S.D. Chuang, H.C. Ho, K.H. Hsu, D.-G. Huang, W.Y. Lai, C.-S. Lin, C.J. Lin, H.C. Lin, H.M. Luo, S.Y. Perng, P.L. Sung, C.W. Tsai, T.C. Tseng, H.S. Wang
    NSRRC, Hsinchu, Taiwan
 
  Taiwan Photon Source (TPS) is a new 3-GeV ring under construction at NSRRC in Taiwan. There are hundreds of magnets placed on girders that must be aligned correctly to keep the electronic beam in the desire orbit. Due to the reasons of manpower, set up time, accuracy of adjustment, deformation of the floor, and limited space, an auto-alignment girder control system was designed to meet this requirement. The auto-alignment test was completed with one double-bend cell at NSRRC. The Auto-alignment process will be tested with some sections of magnet girders to confirm the control system and the algorithm in the TPS. The status and test results will be described in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRI109  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)