Breaking the 70 MeV Proton Energy Threshold in Laser Proton Acceleration and Guiding Beams to Applications

Markus Roth

Technische Universität Darmstadt

Requirements for ion acceleration

The requirements strongly depend on the application: a few examples

Requirements for ion acceleration

The requirements strongly depend on the application: a few examples

- Ion source as a new injector:
 - Rep rate matched to conventional accelerator structures (e.g. 50 Hz)
 - Ion energy a few tens of MeV
 - Radial beam shaping for divergence optimization
 - Ion species selectable
 - Energy matched to particle number acceptable to acc structure

Requirements for ion acceleration

The requirements strongly depend on the application: a few examples

- Ion source as a new injector:
 - Rep rate matched to conventional accelerator structures (e.g. 50 Hz)
 - Ion energy a few tens of MeV
 - Radial beam shaping for divergence optimization
 - Ion species selectable
 - Energy matched to particle number acceptable to acc structure
- Medical Application:
 - Ion energy >250 MeV for protons and >400 MeV/u for e.g. Carbon (prob. no TNSA)
 - High contrast
 - Rep rate 10 to 30 Hz
 - Energy stability better 3%
 - Relatively low particle numbers required (10¹¹ or 10⁹ per patient)
 - •Uniform ion beam --> Laser beam shaping

Requirements for ion acceleration (cont.)

Requirements for ion acceleration (cont.)

Fusion (FI)

- Tailored energy spectrum up to a few tens of MeV (TNSA might be ok)
- High conversion efficiency
- High particle numbers (high laser energy)
- Pulse length can be up to ps
- Beam overlay, beam synchronization
- 10 Hz rep rate

Requirements for ion acceleration (cont.)

Fusion (FI)

- Tailored energy spectrum up to a few tens of MeV (TNSA might be ok)
- High conversion efficiency
- High particle numbers (high laser energy)
- Pulse length can be up to ps
- Beam overlay, beam synchronization
- 10 Hz rep rate
- Security applications
 - relaxed rep rate
 - Ion energy up to GeV
 - High contrast
 - Mobile / compact

16

Requirements for ion acceleration (cont.)

- Accelerators (all optical)
 - High gradients
 - High Particle numbers
 - High Rep Rate
 - Staging
 - High Average Power
 - Many Beamlines (...100)

Proton acceleration with lasers : Static electric fields

Ion Acceleration Mechanisms

TECHNISCHE UNIVERSITÄT DARMSTADT

Ion acceleration mechanism	Acronym	Ion Accel. process
Target-Normal Sheath Acceleration S. Hatchett <i>et al.,</i> Phys. Plas. 7 , 2076 (2000)	TNSA	Charge separation GeV protons? X

1

Ion Acceleration Mechanisms

Ion acceleration mechanism	Acronym	Ion Accel. process	TNSA 140 foil 10um
Target-Normal Sheath Acceleration	TNSA	Charge separation	
S. Hatchett <i>et al.,</i> Phys. Plas. 7 , 2076 (2000)		GeV protons? X	40 20 5 10 15 20 25 30 35 40 45 50 55 60
Break out afterburner L. Yin <i>et al.,</i> Laser Part. Beams 24 , 291 (2006) ; Phys. Plasmas 14 , 056706 (2007)	BOA	Kinetic Process (Buneman): relative <i>e-i</i> drift GeV protons? ✓ Linear Polar.	$BOA n' t*\omega_{pe} = 5500.00$ $from proton$
			x (micron)

Ion Acceleration Mechanisms

lon acceleration mechanism	Acronym	Ion Accel. process	TNSA 140 foil 10 mm
Target-Normal Sheath Acceleration S. Hatchett <i>et al.,</i> Phys.	TNSA	Charge separation	
Plas. 7 , 2076 (2000)		GeV protons? X	
Break out afterburner L. Yin <i>et al.,</i> Laser Part. Beams 24, 291 (2006) ;	BOA	Kinetic Process (Buneman): relative <i>e-i</i> drift	$BOA n' t*\omega_{pe} = 5500.00$ proton $\int_{0}^{10} \left[aser carbon \right]$
Phys. Plasmas 14, 056706 (2007)		GeV protons? ✓ Linear Polar.	N -5 -10 3 4 5 6 7 8 9
Radiation Pressure Acceleration, Aka Plasma Piston	RPA	Charge separation	× (micron) 250 200 1.5
E.g., A.P.L. Robinson, <i>et al.</i> , New J. Phys. 10 , 013021 (2008)		GeV protons? ✓ Circular Polar.	

x (c/ω_L)

TNSA vs. BOA

Accessible with moderate contrast lasers Micrometer sized targets Spectrum limited to 70 MeV Surface acceleration

> High contrast lasers needed Sub-Micrometer sized targets Ion energies exceeding 120 MeV/u Volume acceleration Heavy ions (deuterons) at same speed as protons Lower EMP and less debris

a) Target Normal Sheath Acceleration (TNSA) phase

b) Intermediate phase

c) Laser Breakout Afterburner (BOA) phase

IPAC Dresden | 18.5.2014 | Markus Roth

a) Target Normal Sheath Acceleration (TNSA) phase

b) Intermediate phase

c) Laser Breakout Afterburner (BOA) phase

IPAC Dresden | 18.5.2014 | Markus Roth

- a) Target Normal Sheath Acceleration (TNSA) phase
- **b)** Intermediate phase
- c) Laser Breakout Afterburner (BOA) phase

- a) Target Normal Sheath Acceleration (TNSA) phase
- **b)** Intermediate phase
- c) Laser Breakout Afterburner (BOA) phase

a) Target Normal Sheath Acceleration (TNSA) phase

b) Intermediate phase

c) Laser Breakout Afterburner (BOA) phase

(MeV) 700 100 Energy (a 600 t₁: relativistic transparent 80 500 $n' > 1 \ge n'/\gamma$ ne/n_{cr} Kinetic lase laser 60 400 300 40 t_2 : classically underdense $\stackrel{\bullet}{\searrow}$ C⁺6 200 n' < 1Maximum 20 100 0 С 200 400 600 800 1000 200 400 600 800 1000 0 0 time (fs) time (fs) UNIVERSITAT

Break out Afterburner (BOA)

a) Target Normal Sheath Acceleration (TNSA) phase

b) Intermediate phase

target

preplasma

laser

c) Laser Breakout Afterburner (BOA) phase

accelerated

Ð

ions

critical density

hot electrons

TECHNISCHE

UNIVERSITÄT DARMSTADT

Break out Afterburner (BOA)

a) Target Normal Sheath Acceleration (TNSA) phase

b) Intermediate phase

c) Laser Breakout Afterburner (BOA) phase

accelerated

ions

a) Target Normal Sheath Acceleration (TNSA) phase

b

critical density

hot electrons

b) Intermediate phase

target

а

laser

preplasma

c) Laser Breakout Afterburner (BOA) phase

VPIC: 100nm CH2 target & Trident laser with 2x10²⁰W/cm²

С

	Max. energy	proton	carbon
	Ideal laser	132 MeV	450 MeV
2	Real laser	121 MeV	447 MeV

Break out Afterburner (BOA)

TECHNISCHE UNIVERSITÄT

Targets for BOA

CH₂ Targets

- Poly(4-methyl-1-pentene), trade name TPX (Mitsui, Inc.)
- Soluble in cyclohexane
- Full density films (800 mg/mL) dip- or spin-cast (<200 nm 1 um)
- Low density foams (5 50 mg/mL) produced by freeze-dip-casting, freeze drying (~50 um)

Full-density film

Low-density film

- Deuteropolyethylene(85% D content)
- Soluble in hot toluene/ xylenes
- Full density films (940 mg/mL) drop-cast onto warm Si wafers (300 nm- 1um)

High contrast Lasers (PHELIX)

IPAC Dresden | 18.5.2014 | Markus Roth

Nuclear activation imaging spectroscopy TECHNISCHE UNIVERSITÄT (NAIS) DARMSTADT M. Günther et al., Rev. Sci. Instr. 84, 073305 (2013) 10¹ PICF-data: N(E) per 1 MeV particular N(E) per lave Number of Protons per Energy in MeV 40 Ο 20 EXFOR database 10 $^{63}Cu(p,n)^{63}Zn$ 600 600 10 (mbarns) 103 Protons 400 400 Section 10 20 Energy (MeV) 10 30 $^{63}Cu(p,2n)^{62}Zn$ $Y = N_T \int_{S}^{T} \sigma \left(E_p \right) N_p \left(E_p \right) dE_p$ Cross 200 200 22.5 MeV 511 keV 20.5 MeV 0 / 63Zn 20 40 0 Counts in 7 minutes 18.3 MeV 62Zn Incident Energy (MeV) 15.9 MeV 13.0 MeV 10.8 MeV .9 MeV MeV 500 400 600 700 800 900 1000 1100 Energy (keV)

IPAC Dresden | 18.5.2014 | Markus Roth

Volume instead of surface acceleration

Using CD targets: No cleaning needed one order of magnitude more deuterons than protons when using BOA

TECHNISCHE UNIVERSITÄT DARMSTADT

Ultimate test of ion energies using NAIS

PROTONS

DEUTERONS

 63.8
 86.0
 109.6
 111.3
 113.0
 114.7
 116.3
 118.0
 114.7
 116.3
 118.0
 114.7
 116.3
 118.0
 114.7
 118.0
 114.7
 118.0
 114.7
 118.0
 114.7
 118.0
 114.7
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 1

IPAC Dresden | 18.5.2014 | Markus Roth

Ultimate test of ion energies using NAIS

83.6 86.0

TECHNISCHE UNIVERSITÄT DARMSTADT

Ultimate test of ion energies using NAIS

PROTONS

DEUTERONS

 63.8
 86.0
 109.6
 111.3
 113.0
 114.7
 116.3
 118.0
 114.7
 116.3
 118.0
 114.7
 116.3
 118.0
 114.7
 118.0
 114.7
 118.0
 114.7
 118.0
 114.7
 118.0
 114.7
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 118.0
 1

IPAC Dresden | 18.5.2014 | Markus Roth

IPAC Dresden | 18.5.2014 | Markus Roth

Demonstration of BOA at the PHELIX laser

Demonstration of BOA at the PHELIX laser

IPAc Bresgen 18.5.2014 | Markus Roth

Demonstration of BOA at the PHELIX laser

Laser Ion Generation Handling and Transport

Laser Ion Generation Handling and Transport

Coil design from HZDR

bunch characterization for cavity

cavity

phase rotation

S. Busold et al., PR-STAB 17, 031302 (2014)

Ingo Hofmann Helmholtz Institut Jena / GSI

Ingo Hofmann Helmholtz Institut Jena / GSI

Ingo Hofmann Helmholtz Institut Jena / GSI

Helmholtz Institut Jena / GSI

•Experimental proof that BOA, based on relativistic transparency of solids works

•Experimental proof that BOA, based on relativistic transparency of solids works

•more than 130 MeV protons @ trident and 70 MeV @ PHELIX (only 40 J on target)

•Experimental proof that BOA, based on relativistic transparency of solids works

•more than 130 MeV protons @ trident and 70 MeV @ PHELIX (only 40 J on target)

•Capture, transport and shaping of laser driven ion (proton) beams by the LIGHT collaboration

•Experimental proof that BOA, based on relativistic transparency of solids works

•more than 130 MeV protons @ trident and 70 MeV @ PHELIX (only 40 J on target)

•Capture, transport and shaping of laser driven ion (proton) beams by the LIGHT collaboration

•real, mono-energetic ion beams available for applications

•Experimental proof that BOA, based on relativistic transparency of solids works

•more than 130 MeV protons @ trident and 70 MeV @ PHELIX (only 40 J on target)

•Capture, transport and shaping of laser driven ion (proton) beams by the LIGHT collaboration

•real, mono-energetic ion beams available for applications

•Developed world's brightest laser driven neutron source based on BOA and demonstrated first laser driven neutron radiography

•Experimental proof that BOA, based on relativistic transparency of solids works

•more than 130 MeV protons @ trident and 70 MeV @ PHELIX (only 40 J on target)

•Capture, transport and shaping of laser driven ion (proton) beams by the LIGHT collaboration

•real, mono-energetic ion beams available for applications

•Developed world's brightest laser driven neutron source based on BOA and demonstrated first laser driven neutron radiography

•Using gated imager and gamma flash objects can be probed with x-rays and neutrons at different energies --> material identification

•Experimental proof that BOA, based on relativistic transparency of solids works

•more than 130 MeV protons @ trident and 70 MeV @ PHELIX (only 40 J on target)

•Capture, transport and shaping of laser driven ion (proton) beams by the LIGHT collaboration

•real, mono-energetic ion beams available for applications

•Developed world's brightest laser driven neutron source based on BOA and demonstrated first laser driven neutron radiography

•Using gated imager and gamma flash objects can be probed with x-rays and neutrons at different energies --> material identification

•Neutrons with more than 200 MeV observed

•Experimental proof that BOA, based on relativistic transparency of solids works

•more than 130 MeV protons @ trident and 70 MeV @ PHELIX (only 40 J on target)

•Capture, transport and shaping of laser driven ion (proton) beams by the LIGHT collaboration

•real, mono-energetic ion beams available for applications

•Developed world's brightest laser driven neutron source based on BOA and demonstrated first laser driven neutron radiography

•Using gated imager and gamma flash objects can be probed with x-rays and neutrons at different energies --> material identification

•Neutrons with more than 200 MeV observed

•Ion beams physics and neutron science becomes available to universities using short pulse lasers

Thanks to

TECHNISCHE UNIVERSITÄT DARMSTADT

Oliver Deppert¹, Matthew Devlin², Katerina Falk², Andrea Favalli², Juan Fernandez², Cort Gautier², Mattthias Geissel³, Nevzat Guler², Robert Haight², Chris Hamilton², Manuel Hegelich², Randall P Johnson², Daniel Jung², Frank Merrill², Gabriel Schaumann¹, Kurt Schoenberg², Marius Schollmeier³, Tsutomu Shimada², Joshua L. Tybo², Stephen A Wender², Carl, H Wilde², Glen Wurden² ¹Technische Universität Darmstadt, 64289 Darmstadt, Germany s Alamos National Laboratory, Los Alamos, New Mexico 87545, USA India National Laboratory, Albuquerque, New Mexico 87185, USA

The LANL for the Rosen Scholar award TUD for the sabbatical

Kick Off meeting 2010 @ GSI - Helmholtzzentrum für Schwerionenforschung