Keyword: luminosity
Paper Title Other Keywords Page
MOXAA01 Challenges for Highest Energy Circular Colliders collider, radiation, hadron, synchrotron 1
 
  • F. Zimmermann, M. Benedikt, D. Schulte, J. Wenninger
    CERN, Geneva, Switzerland
 
  A new tunnel of 80-100 km circumference could host a 100 TeV centre-of-mass energy-frontier proton collider (FCC-hh/VHE-LHC), with a circular lepton collider (FCC-ee/TLEP) as potential intermediate step, and a lepton-hadron collider (FCC-he) as additional option. FCC-ee, operating at four different energies for precision physics of the Z, W, and Higgs boson and the top quark, represents a significant push in terms of technology and design parameters. Pertinent R&D efforts include the RF system, top-up injection scheme, optics design for arcs and final focus, effects of beamstrahlung, beam polarization, energy calibration, and power consumption. FCC-hh faces other challenges, such as high-field magnet design, machine protection and effective handling of large synchrotron radiation power in a superconducting machine. All these issues are being addressed by a global FCC collaboration. A parallel design study in China prepares for a similar, but smaller collider, called CepC/SppC.  
slides icon Slides MOXAA01 [27.493 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOXAA01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRO007 GPU-Accelerated Long-Term Simulations of Beam-Beam Effects in Colliders GPU, simulation, collider, electron 77
 
  • B. Terzić, F. Lin, V.S. Morozov, Y. Roblin, H. Zhang
    JLab, Newport News, Virginia, USA
  • M. Aturban, D. Ranjan, M. Zubair
    ODU CS, Norfolk, Virginia, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
We present an update on the development of the new code for long-term simulation of beam-beam effects in particle colliders. The underlying physical model relies on a matrix-based arbitrary-order particle tracking (including a symplectic option) for beam transport and the generalized Bassetti-Erskine approximation for beam-beam interaction. The computations are accelerated through a parallel implementation on a hybrid GPU/CPU platform. With the new code, previously computationally prohibitive long-term simulations become tractable. The new code will be used to model the proposed Medium-energy Electron-Ion Collider (MEIC) at Jefferson Lab.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO007  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRO031 Abort Gap Cleaning for LHC Run 2 emittance, operation, extraction, quadrupole 138
 
  • J.A. Uythoven, A. Boccardi, E. Bravin, B. Goddard, G.H. Hemelsoet, W. Höfle, D. Jacquet, V. Kain, S. Mazzoni, M. Meddahi, D. Valuch
    CERN, Geneva, Switzerland
  • E. Gianfelice-Wendt
    Fermilab, Batavia, Illinois, USA
 
  To minimize the beam losses at the moment of an LHC beam dump the 3 μs long abort gap should contain as few particles as possible. Its population can be minimised by abort gap cleaning using the LHC transverse damper system. The LHC Run 1 experience is briefly recalled; changes foreseen for the LHC Run 2 are presented. They include improvements in the observation of the abort gap population and the mechanism to decide if cleaning is required, changes to the hardware of the transverse dampers to reduce the detrimental effect on the luminosity lifetime and proposed changes to the applied cleaning algorithms.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO031  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRO034 Studies on Nonlinear Post-linac Protection for CLIC sextupole, collimation, linac, octupole 148
 
  • J. Resta-López
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • S.T. Boogert, J. Snuverink
    JAI, Egham, Surrey, United Kingdom
  • A. Faus-Golfe, J. Resta-López
    IFIC, Valencia, Spain
 
  The post-linac energy collimation system of CLIC is designed to fulfill an essential function of protection of the Beam Delivery System (BDS) against miss-steered beams generated by failure modes in the main linac. Guaranteeing the collimator survivability in case of direct beam impact is very challenging, if we take into account the need to deal with an unprecedented transverse beam energy density per beam of the order of GJ/mm2. This translates into a high damage potential of uncontrolled beams. In this paper we present an alternative nonlinear energy collimation system as a potential solution to guarantee the survival of the collimators. The performance and error tolerances of this system are studied by means of beam tracking simulations, and compared with those of the conventional baseline CLIC energy collimation system.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO034  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRO037 Collimator Fast Failure Losses for Various HL-LHC Configurations optics, collimation, simulation, kicker 157
 
  • L. Lari, R. Bruce, S. Redaelli
    CERN, Geneva, Switzerland
  • L. Lari
    IFIC, Valencia, Spain
 
  Funding: Research supported by EU FP7 HiLumi LHC - Grant Agreement 284404
The upgrade of the Large Hadron Collider (LHC), in terms of beam intensity and energy, implies an increasing risk of severe damage in particular in case of fast failures losses. For this reason, efforts were put in developing simulation tools to allow studies of asynchronous dump accident, including realistic failure cases for collimator settings and machine parameters like orbit and optics. The scope of these studies is to understand realistic beam loads in different collimators, in order to improve the actual LHC collimator system design, to provide feedbacks on optic design and to evaluate different mitigation actions. Simulations were set up with a modified SixTrack collimation routine able to simulate erroneous firing of a single dump kicker or the simultaneous malfunction of all the 15 kickers. In such a context, results are evaluated from the whole LHC collimation system point of view.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO037  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRO041 Multi-turn Tracking of Collision Products at the LHC proton, simulation, betatron, optics 166
 
  • A. Marsili, R. Bruce, F. Cerutti, L.S. Esposito, S. Redaelli
    CERN, Geneva, Switzerland
 
  Funding: Research supported by EU FP7 HiLumi LHC - Grant Agreement 284404
The luminosity expected at the interaction points in LHC at 7 TeV will be unprecedented, up to 1034 cm−2 s−1 . Part of the debris produced by the collisions is lost locally im- mediately downstream the Interaction Point (IP), in the matching section and dispersion suppressor. In this paper, the dynamics of collision debris protons is discussed. First, the loss distributions close to the collision points, simulated with two codes – SixTrack and FLUKA – are compared for different layout configurations. Then, SixTrack is used to simulate the fraction of protons that have undergone inelastic interactions with smaller energy and and betatron offsets, which could travel for several turns around the ring and might be lost in other collimation insertions. A preliminary comparison is made between the resulting loss distribution and measurements.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO041  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRI096 The New Transfer Line Collimation System for the LHC High Luminosity Era optics, injection, collimation, extraction 839
 
  • V. Kain, C. Bracco, B. Goddard, F.L. Maciariello, M. Meddahi, A. Mereghetti, G.E. Steele, F.M. Velotti
    CERN, Geneva, Switzerland
  • E. Gianfelice-Wendt
    Fermilab, Batavia, Illinois, USA
 
  A set of passive absorbers is located at the end of each of the 3 km long injection lines to protect the LHC in case of failures during the extraction process from the LHC’s last pre-injector or the beam transfer itself. In case of an erroneous extraction, the absorbers have to attenuate the beam to a safe level and be robust enough themselves to survive the impact. These requirements are difficult to fulfil with the very bright and intense beams produced by the LHC injectors for the high luminosity era. This paper revisits the requirements for the SPS-to-LHC transfer line collimation system and the adapted strategy to fulfill these for the LHC high luminosity operation. A possible solution for the new transfer line collimation system is presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRI096  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRI098 Design Studies of the Upgraded Collimation System in the SPS-to-LHC Transfer Lines collimation, injection, simulation, optics 845
 
  • A. Mereghetti, C. Bracco, F. Cerutti, B. Goddard, J. Hrivnak, V. Kain, F.L. Maciariello, M. Meddahi, G.E. Steele
    CERN, Geneva, Switzerland
  • R. Appleby
    UMAN, Manchester, United Kingdom
 
  In the framework of the LHC Injectors Upgrade (LIU) Project, the collimators in the SPS-to-LHC transfer lines are presently under re-design, in order to cope with the unprecedented beam intensities and emittances required by the High Luminosity LHC (HL-LHC). Factors ruling the design phase are the robustness of the jaws on one side and, on the other side, the proton absorption and the emittance blow-up, essential for an effective protection of the equipment in the LHC injection regions and the LHC machine. In view of the new design, based on the one of the currently installed TCDI collimators and past investigations, the FLUKA Monte Carlo code is used to address these two factors. The present studies are intended to give essential feedback to the identification of viable solutions.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRI098  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUOBA03 Recent Beam-beam Effects and Luminosity at VEPP-2000 collider, positron, electron, detector 924
 
  • D.B. Shwartz, D.E. Berkaev, A.S. Kasaev, I. Koop, A.N. Kyrpotin, A.P. Lysenko, E. Perevedentsev, V.P. Prosvetov, Yu. A. Rogovsky, A.L. Romanov, A.I. Senchenko, P.Yu. Shatunov, Y.M. Shatunov, I.M. Zemlyansky, Yu.M. Zharinov
    BINP SB RAS, Novosibirsk, Russia
 
  Funding: Work is supported by the Ministry of Education and Science of the Russian Federation, grant N 14.518.11.7003
VEPP-2000's last season was dedicated to the energy range of 160-520 MeV per beam. The application of round colliding beams concept along with the accurate orbit and lattice correction yielded the high peak luminosity of 1.2*1031 cm-2s−1 at 500 MeV with average luminosity of 0.9*1031 cm-2s−1 per run. The total beam-beam tune shift up to 0.174 was achieved in the runs at 392.5 MeV. This corresponds to beam-beam parameter ksi = 0.125 per one interaction point. The injection system is currently being upgraded to allow for the injection at the top energy of VEPP-2000 collider and to eliminate the present lack of positrons.
 
slides icon Slides TUOBA03 [4.475 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUOBA03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUOCB02 High-field Magnet Development toward the High Luminosity LHC dipole, quadrupole, interaction-region, focusing 983
 
  • G. Apollinari
    Fermilab, Batavia, Illinois, USA
 
  The upcoming Luminosity upgrade of the LHC (HL-LHC) will rely on the use of Accelerator Quality Nb3Sn Magnets which have been the focus of an intense R&D effort in the last decade. This contribution will describe the R&D and results of Nb3Sn Accelerator Quality High Field Magnets development efforts, with emphasis on the activities considered for the HL-LHC upgrades.  
slides icon Slides TUOCB02 [5.103 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUOCB02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO001 Alternative High Luminosity LHC Matching Section Layout optics, injection, quadrupole, cavity 990
 
  • B. Dalena, A. Chancé
    CEA/IRFU, Gif-sur-Yvette, France
  • R. De Maria
    CERN, Geneva, Switzerland
  • J. Payet
    CEA/DSM/IRFU, France
 
  Funding: The research leading to these results has received funding from the European Commission under the FP7 project HiLumi LHC, GA no. 284404, co-funded by the DoE, USA and KEK, Japan.
In the framework of the HL-LHC Upgrade project possible variants for the layout of the LHC matching section located in the high luminosity insertions are investigated. This layout is optimized to reduce the demand on the voltage of the crab cavities, it also improves the optics squeeze-ability, both in ATS[1] and non-ATS mode. Moreover the injection and transitions to collision optics are also discussed. [1] S. Fartoukh, ‘’An Achromatic Telescopic Squeezing (ATS) Scheme for LHC Upgrade’’, in proceedings of IPAC11, p. 2088.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO001  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO002 Fringe Fields Modeling for the High Luminosity LHC Large Aperture Quadrupoles quadrupole, simulation, multipole, controls 993
 
  • B. Dalena, A. Chancé, O. Gabouev
    CEA/IRFU, Gif-sur-Yvette, France
  • R. Appleby, D.R. Brett
    UMAN, Manchester, United Kingdom
  • R. De Maria, M. Giovannozzi
    CERN, Geneva, Switzerland
  • J. Payet
    CEA/DSM/IRFU, France
 
  Funding: The research leading to these results has received funding from the European Commission under the FP7 project HiLumi LHC, GA no. 284404, co-funded by the DoE, USA and KEK, Japan.
The HL-LHC Upgrade project relies on large aperture magnets (mainly the inner Triplet and the separation dipole D1). The beam is much more sensitive to non-linear perturbations in this region, such as those induced by the fringe fields of the low-beta quadrupoles. Analytical evaluations of detuning with amplitude and chromatic effects show that the effect is small, but not negligible. Therefore, the effect on long-term beam dynamics is evaluated via tracking simulations. Different tracking models are compared in order to provide a numerical estimate of this effect due to the proposed inner triplet quadrupoles. The implementation of the fringe fields in SixTrack, to be used for dynamic apertures studies, is also discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO002  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO003 Fast Crab Cavity Failures in HL-LHC operation, simulation, optics, synchrotron 997
 
  • B. Yee-Rendón, R. Lopez-Fernandez
    CINVESTAV, Mexico City, Mexico
  • J. Barranco García
    EPFL, Lausanne, Switzerland
  • R. Calaga, R. Tomás, F. Zimmermann
    CERN, Geneva, Switzerland
 
  Crab cavities (CCs) are a key ingredient of the High-Luminosity Large Hadron Collider (HL-LHC)  to ensure head on collisions at the main experiments (ATLAS and CMS) and fully profit from the smaller β* provided by the ATS optics. At KEKB, CCs have exhibited abrupt changes of phase and voltage during a time period of few LHC turns and considering the large energy stored in the HL-LHC beam, CC failures represent a serious risk to the LHC machine protection. In this paper, we discuss the effect of CC voltage or phase changes on a time interval similar to, or longer than, necessary to dump the beam.  The simulations assume a realistic steady-state distribution to assess the beam losses for the HL-LHC.  Additionally, some strategies are studied to mitigate the damage caused by the failures.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO003  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO004 Polarized Protons and Deuterons at NICA@JINR proton, collider, polarization, ion 1000
 
  • A.D. Kovalenko, A.V. Butenko, V.D. Kekelidze, V.A. Mikhaylov
    JINR, Dubna, Moscow Region, Russia
  • Y. Filatov
    MIPT, Dolgoprudniy, Moscow Region, Russia
  • A.M. Kondratenko, M.A. Kondratenko
    Science and Technique Laboratory Zaryad, Novosibirsk, Russia
 
  Different aspects of the NICA facility operation in polarized proton and deuteron modes aimed at reaching the highest possible luminosity and polarization degree as well are analysed. The main aim is to provide average luminosity L ≥ 1•1032 cm-2 s−1 at √sNN ≥ 26-27 GeV for single-spin proton collisions. Optimal schemes of the Siberian Snake insertions to the Nuclotron and NICA collider rings were proposed. The results of simulations are presented and discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO004  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO006 Strong-strong Beam-beam Simulation for the LHC Upgrade emittance, simulation, cavity, resonance 1006
 
  • J. Qiang, S. Paret
    LBNL, Berkeley, California, USA
  • G. Arduini, T. Pieloni
    CERN, Geneva, Switzerland
  • J. Barranco García
    EPFL, Lausanne, Switzerland
 
  Funding: Work supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 using computing resources at the NERSC.
The LHC upgrade will significantly improve the performance of the current LHC operation with higher collision energy and luminosity. In the paper, we report on the progress in the strong-strong beam-beam simulation of the HL-LHC upgrade with crab cavity compensation. We will present the study of the effects of accelerator tune working points, dipole noise, and crab cavity noise on colliding beam emittance growth.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO006  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO009 Simple Models Describing the Time-evolution of Luminosity in Hadron Colliders collider, hadron, proton, operation 1017
 
  • M. Giovannozzi
    CERN, Geneva, Switzerland
 
  In recent years, several studies have been performed to describe the evolution of the losses in circular proton machines. Considerations based on single-particle, non-linear beam dynamics allowed building models that, albeit simple, proved to be in good agreement with measurements. These initial results have been generalised, thus opening the possibility to describe the luminosity evolution in a circular hadron collider. In this paper, the focus is on the derivation of scaling laws for the integrated luminosity, taking into account both burn off and additional pseudo-diffusive effects. The proposed models are applied to the analysis of the data collected during the LHC Run I and the outcome is discussed in detail.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO009  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO010 Origins of Transverse Emittance Blow-up during the LHC Energy Ramp emittance, injection, simulation, brightness 1021
 
  • M. Kuhn, G. Arduini, V. Kain, A. Langner, Y. Papaphilippou, M. Schaumann, R. Tomás
    CERN, Geneva, Switzerland
 
  During LHC Run 1 about 30 % of the potential peak performance was lost due to transverse emittance blow-up through the LHC cycle. Measurements indicated that the majority of the blow-up occurred during the energy ramp. Until the end of LHC Run 1 this emittance blow-up could not be eliminated. In this paper the measurements and observations of emittance growth through the ramp are summarized. Simulation results for growth due to Intra Beam Scattering will be shown and compared to measurements. A summary of investigations of other possible sources will be given and backed up with simulations where possible. Requirements for commissioning the LHC with beam in 2015 after Long Shutdown 1 to understand and control emittance blow-up will be listed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO010  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO013 Studies on Stochastic Cooling of Heavy Ions in the LHC kicker, cavity, ion, pick-up 1030
 
  • M. Schaumann, J.M. Jowett, B. Salvant, M. Wendt
    CERN, Geneva, Switzerland
  • M. Blaskiewicz, S. Verdú-Andrés
    BNL, Upton, Long Island, New York, USA
 
  Future high luminosity heavy-ion operation of the LHC will be dominated by very rapid luminosity decay due to the large collision cross-section and, to a lesser extent, emittance growth from intra-beam scattering (IBS) due to the high bunch intensities. A stochastic cooling system could reduce the emittance far below its initial value and reduce the losses from debunching during collisions, allowing more of the initial beam intensity to be converted into integrated luminosity before the beams are dumped. We review the status of this proposal, system and hardware properties and potential locations for the equipment in the tunnel.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO013  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO014 Semi-empirical Model for Optimising Future Heavy Ion Luminosity of the LHC injection, kicker, heavy-ion, simulation 1033
 
  • M. Schaumann
    CERN, Geneva, Switzerland
 
  The wide spectrum of intensities and emittances imprinted on the LHC Pb bunches during the accumulation of bunch trains in the injector chain result in a significant spread in the single bunch luminosities and lifetimes in collision. Based on the data collected in the 2011 Pb-Pb run, an empirical model is derived to predict the single-bunch peak luminosity depending on the bunch's position within the beam. In combination with this model, simulations of representative bunches are used to estimate the luminosity evolution for the complete ensemble of bunches. Several options are being considered to improve the injector performance and to increase the number of bunches in the LHC, leading to several potential injection scenarios, resulting in different peak and integrated luminosities. The most important options for after the long shutdown 1 and 2 are evaluated and compared.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO014  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO015 Update on Predictions for Yearly Integrated Luminosity for HL-LHC based on Expected Machine Availability operation, radiation, electronics, cryogenics 1036
 
  • A. Apollonio, M. Jonker, R. Schmidt, B. Todd, D. Wollmann, M. Zerlauth
    CERN, Geneva, Switzerland
 
  Machine availability is one of the key performance indicators to reach the ambitious goals for integrated luminosity in the post Long Shutdown 1 (LS1) era. Machine availability is even more important for the future High Luminosity LHC (HL-LHC) [1]. In this paper a Monte Carlo approach has been used to predict integrated luminosity as a function of LHC machine availability. The baseline model assumptions such as fault-time distributions and machine failure rate (number of fills with stable beams dumped after a failure / total number of fills with stable beams) were deduced from the observations during LHC operation in 2012. The predictions focus on operation after LS1 and its evolution towards HL-LHC. The extrapolation of relevant parameters impacting on machine availability is outlined and their corresponding impact on fault time distributions is discussed. Results for possible future operational scenarios are presented. Finally, a sensitivity analysis with relevant model parameters like fault time and machine failure rate is discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO015  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO016 Machine Protection Challenges for HL-LHC cavity, extraction, beam-losses, operation 1039
 
  • R. Schmidt, T. Bär, J. Wenninger, D. Wollmann, M. Zerlauth
    CERN, Geneva, Switzerland
 
  LHC operation requires the flawless functioning of the machine protection systems. The energy stored in the beam was progressively increased beyond the 140 MJ range at the end of 2012 at 4 TeV/c. The further increase to 364 MJ expected for 2015 at 6.5 TeV/c should be possible with the existing protection systems. For HL-LHC, additional failure modes are considered. The stored beam energy will increase by another factor of two with respect to nominal and a factor of five more than experienced so far. The maximum beta function will increase. It is planned to install crab cavities in the LHC. With crab cavities, sudden voltage decays within 100 us after e.g. cavity quenches lead to large beam oscillations. Tracking simulations predict trajectory distortions of up to 1.5 σ in the first turn after a sudden drop of the deflecting voltage in a single cavity within 3 turns. The energy of several MJ stored in halo protons that could hit the collimator in case of such events is far above damage level, even if the collimator jaws are made of robust material. In this paper we discuss the challenges for machine protection in the HL-LHC era and possible mitigation strategies.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO016  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO017 HL-LHC Performance with a 200 MHz RF System impedance, cavity, electron, simulation 1043
 
  • R. Tomás, C.O. Domínguez
    CERN, Geneva, Switzerland
  • S.M. White
    BNL, Upton, Long Island, New York, USA
 
  The HL-LHC performance could considerably benefit from having a 200 MHz RF system. This would allow to inject longer bunches with larger bunch intensity from the SPS and to perform bunch length leveling if required. We also consider the possibility of decreasing the crab cavity frequency to increase both virtual peak luminosity and luminous region. Performance estimates of various configurations are presented in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO020 Integration of a Neutral Absorber for the LHC Point 8 optics, dipole, operation, injection 1052
 
  • A. Santamaría García, R. Alemany-Fernández, H. Burkhardt, F. Cerutti, L.S. Esposito, N.V. Shetty
    CERN, Geneva, Switzerland
 
  The LHCb detector will be upgraded during the second long shutdown (LS2) of the LHC machine, in order to increase its statistical precision significantly. The upgraded LHCb foresees a peak luminosity of L = 1-2 . 1033 cm-2 s−1, with a pileup of 5. This represents ten times more luminosity and five times more pile up than in the present LHC. With these conditions, the pp-collisions and beam losses will produce a non-negligeable beam-induced energy deposition in the interaction region. More precisely, studies have shown that the energy deposition will especially increase on the D2 recombination dipole, which could bring them close to their safety thresholds. To avoid this, the placement of a minimal neutral absorber has been proposed. This absorber will have the same role as the TAN in the high luminosity Interaction Regions (IR) 1 and 5. This study shows the possible dimensions and location of this absorber, and how it would reduce both the peak power density and total heat load.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO021 Preliminary Study of Risks and Failure Scenarios for the High Luminosity Experiments in HL-LHC simulation, detector, cavity, experiment 1055
 
  • F. Bouly
    LPSC, Grenoble Cedex, France
  • R. Alemany-Fernández, H. Burkhardt, D. Wollmann
    CERN, Geneva, Switzerland
  • B. Yee-Rendón
    CINVESTAV, Mexico City, Mexico
 
  For the HL-LHC it is planned to basically double the diameter of the triplet quadruple magnets around the high luminosity insertions of the LHC. The high luminosity experiments ATLAS and CMS would like to keep a small central chamber radius close the interaction point. In the context of collider-experiment studies for the high-luminosity upgrade of the LHC, we present a first study of the possible consequences of these changes for the experimental running conditions based on detailed simulations with tracking. We have started to implement crab cavity failures and discuss first results from these simulations.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO022 Implementation of Luminosity Leveling by Betatron Function Adjustment at the LHC Interaction Points experiment, optics, operation, betatron 1058
 
  • J. Wenninger, A.A. Gorzawski
    CERN, Geneva, Switzerland
 
  Growing expectations for integrated luminosity during upcoming LHC runs introduce new challenges for LHC beam operation in the scope of online luminosity control. Because some LHC experiments are limited in the maximum event rates, their luminosity is leveled to a constant value. Various techniques may be used for luminosity leveling, changing the betatron function at the interaction point is one of them. This paper explains the main operational requirements of a betatron function leveling scheme for the upcoming LHC run. Issues concerning the beam optics, orbits and collimator settings are discussed. The proposed architecture for control system integration will be discussed. A few operational scenarios with different beam configurations foreseen for the next LHC run will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO022  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO023 Beam-beam Effects in Different Luminosity Levelling Scenarios for the LHC dynamic-aperture, experiment, beam-beam-effects, emittance 1061
 
  • X. Buffat, D. Banfi, G.R. Coombs
    EPFL, Lausanne, Switzerland
  • W. Herr, T. Pieloni
    CERN, Geneva, Switzerland
 
  Adjusting luminosity and optimizing the luminous region in each interaction point of the LHC according to the experiments needs has become a requirement to maximize the efficiency of the different detectors. Several techniques are envisaged, most importantly by varying β* or a transverse offset at the interaction point. Coherent and incoherent stability in the presence of beam-beam effects will be discussed in realistic luminosity levelling scenarios for the LHC.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO023  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO024 Benchmarking Studies of Intra Beam Scattering for HL-LHC lattice, optics, injection, scattering 1064
 
  • D. Angal-Kalinin
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • A. Wolski
    The University of Liverpool, Liverpool, United Kingdom
  • A. Wolski
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  Funding: Research supported by EU FP7 HiLumi LHC - Grant Agreement 284404
The effects of Intra Beam Scattering (IBS) in the High Luminosity upgrade of the LHC (HL-LHC) will be stronger compared to effects in the present LHC because of the high intensity of the proton bunches and the new proposed optics. We present benchmarking studies carried out for the present LHC at injection and collision energies as well as HL-LHC at collision energy with the Achromatic Telescopic Squeezing optics. The results of IBS growth-rate calculations using the full Bjorken-Mtingwa formulae* are compared with simplified formulae**, Bane’s high energy approximation***, and the completely integrated modified Piwinski approximation****. The results of calculations based on these methods carried out in Mathematica are compared with results from the codes MAD-X and ZAP.
* J. Broken and S. Mtingwa, Part. Accel. 13, 115 (1983)
** K. Kubo et al, PRST-AB, 8, 081001 (2005)
*** K. Bane, EPAC2002
**** S. Mtingwa and A. Tollestrup, Fermilab-Pub-89/224, 1987.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO024  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO025 Initial Estimate of Fringe Field Effects in HL-LHC using Frequency Map Analysis quadrupole, lattice, multipole, closed-orbit 1067
 
  • S. Jones, D. Newton, A. Wolski
    The University of Liverpool, Liverpool, United Kingdom
  • S. Jones, D. Newton, A. Wolski
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  Funding: Work supported by the Science and Technology Facilities Council, UK
The planned High Luminosity upgrade to the LHC will require stronger focusing of the beam in the interaction regions. To achieve this, the inner triplet quadrupoles will be replaced with new magnets having larger gradient and aperture. In this new focusing regime the quadrupole fringe fields are expected to have a greater effect on the beam dynamics, due to their large aperture, as compared to the nominal LHC. In this preliminary study, simplified models are used in a tracking code to assess the impact of the fringe fields on the dynamics using frequency map analysis.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO025  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO026 Possible Beam-beam and Levelling Scenarios for HL-LHC emittance, simulation, collider, hadron 1071
 
  • M.P. Crouch, R. Appleby
    UMAN, Manchester, United Kingdom
  • B.D. Muratori
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • T. Pieloni
    CERN, Geneva, Switzerland
 
  Funding: Research supported by EU FP7 HiLumi LHC - Grant Agreement 284404
The upgrade of the LHC from the current set-up to high luminosity performances will provide new challenges from the point of view of beam-beam as well as other collective effects and luminosity levelling. We present the current possibilities for doing luminosity levelling for HL-LHC. We explore the merits and drawbacks of each option and briefly discuss the operational implications. The simplest option being levelling with an offset between the two beams. In particular, we look at the possibility of using flat beams in the IPs for all the available options and investigate their benefits and drawbacks, using the code COMBI. Flat beams would allow an additional degree of freedom, with the levelling only required in one of the planes at any given IP. To this end, various scenarios are looked at, both with and without crab cavities.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO026  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO027 First Beam Background Simulation Studies at IR1 for High Luminosity LHC simulation, background, proton, detector 1074
 
  • R. Kwee-Hinzmann, S.M. Gibson
    JAI, Egham, Surrey, United Kingdom
  • G. Bregliozzi, R. Bruce, F. Cerutti, L.S. Esposito, R. Kersevan, A. Lechner, N.V. Shetty
    CERN, Geneva, Switzerland
  • S.M. Gibson
    Royal Holloway, University of London, Surrey, United Kingdom
 
  In the High-Luminosity Large Hadron Collider (HL-LHC) Project, the LHC will be significantly upgraded to attain a peak luminosity of up to 8.5 × 1034 cm-2s-1, thus almost an order of magnitude higher compared to the nominal machine configuration in ATLAS at IP1 and CMS at IP5. In the view of a successful machine setup as well as a successful physics programme, beam induced background studies at IP1 were performed to investigate sources of particle fluxes to the experimental area. In particular as a start of the study, two sources forming the major contributions were simulated in detail: the first one considers inelastic interactions from beam particles hitting tertiary collimators, the second one from beam interactions with residual gas-molecules in the vacuum pipe close by the experiment, referred to as beam-halo and local beam-gas, respectively. We will present these first HL-LHC background studies based on SixTrack and FLUKA simulations, highlighting the simulation setup for the design case in the HL-LHC scenario. Results of particle spectra entering the ATLAS detector region are presented for the latest study version of HL-LHC machine layout (2013).  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO027  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO028 Energy Deposition Studies for the Hi-Lumi LHC Inner Triplet Magnets quadrupole, radiation, dipole, neutron 1078
 
  • N.V. Mokhov, I.L. Rakhno, S.I. Striganov, I.S. Tropin
    Fermilab, Batavia, Illinois, USA
  • F. Cerutti, L.S. Esposito, A. Lechner
    CERN, Geneva, Switzerland
 
  Funding: Work supported by Fermi Research Alliance, LLC, under contract No. DE-AC02-07CH11359 with the U.S. Department of Energy through the US LARP Program, and by the High Luminosity LHC project.
After operation at the nominal luminosity, the LHC is planned to be upgraded to a 5-fold increased luminosity of 5×1034 cm-2s−1. The upgrade includes replacement of the IP1/IP5 inner triplet 70-mm NbTi quadrupoles with the 150-mm coil aperture Nb3Sn quadrupoles along with the new 150-mm coil aperture NbTi dipole magnet. A detailed model of the region with these new magnets, field maps, corrector packages, segmented tungsten inner absorbers was built and implemented into the FLUKA and MARS codes. Various aspects of the new design were studied: (i) thicknesses of tungsten absorbers; (ii) beam screen interruption in interconnects; (iii) crossing angle value and orientation, etc. In the optimized configuration, the peak power density averaged over the magnet inner cable width doesn’t exceed 2 mW/cm3, safely below the quench limit. For the integrated luminosity of 3000 fb-1, the highest peak dose of 35 MGy occurs in the corrector package CP, while for other magnets, the peak dose in the innermost insulators ranges from 20 to 30 MGy. Dynamic heat loads to the triplet magnet cold mass are calculated to be on a target 10 W/m level. FLUKA and MARS results agree within 10%.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO028  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO031 RHIC Performance during the 7.5 GeV Low Energy Run in FY 2014 experiment, ion, target, injection 1087
 
  • C. Montag, M. Bai, J. Beebe-Wang, M. Blaskiewicz, J.M. Brennan, K.A. Brown, D. Bruno, R. Connolly, T. D'Ottavio, K.A. Drees, W. Fischer, C.J. Gardner, X. Gu, M. Harvey, T. Hayes, H. Huang, R.L. Hulsart, J.S. Laster, C. Liu, Y. Luo, Y. Makdisi, G.J. Marr, A. Marusic, F. Méot, K. Mernick, R.J. Michnoff, M.G. Minty, J. Morris, S. Nemesure, J. Piacentino, P.H. Pile, V.H. Ranjbar, G. Robert-Demolaize, T. Roser, V. Schoefer, F. Severino, T.C. Shrey, K.S. Smith, S. Tepikian, P. Thieberger, J.E. Tuozzolo, M. Wilinski, K. Yip, A. Zaltsman, K. Zeno, W. Zhang
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
As the last missing step in phase 1 of the beam energy scan (BES-I), aimed at the search for the critical point in the QCD phase diagram, RHIC collided gold ions at a beam energy of 7.3 GeV/nucleon during the FY 2014 run. While this particular energy is close to the nominal RHIC injection energy of 9.8 GeV/nucleon, it is nevertheless challenging because it happens to be close to the AGS transition energy, which makes longitudinal beam dynamics during transfer from the AGS to RHIC difficult. We report on machine performance, obstacles and solutions during the FY 2014 low energy run.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO031  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO032 RHIC Performance for FY2014 Heavy Ion Run electron, kicker, cavity, ion 1090
 
  • G. Robert-Demolaize, J.G. Alessi, M. Bai, E.N. Beebe, J. Beebe-Wang, S.A. Belomestnykh, I. Blackler, M. Blaskiewicz, J.M. Brennan, K.A. Brown, D. Bruno, J.J. Butler, R. Connolly, T. D'Ottavio, K.A. Drees, A.V. Fedotov, W. Fischer, C.J. Gardner, D.M. Gassner, X. Gu, M. Harvey, T. Hayes, H. Huang, P.F. Ingrassia, J.P. Jamilkowski, N.A. Kling, J.S. Laster, C. Liu, Y. Luo, D. Maffei, Y. Makdisi, M. Mapes, G.J. Marr, A. Marusic, F. Méot, K. Mernick, R.J. Michnoff, M.G. Minty, C. Montag, J. Morris, C. Naylor, S. Nemesure, A.I. Pikin, P.H. Pile, V. Ptitsyn, D. Raparia, T. Roser, P. Sampson, J. Sandberg, V. Schoefer, C. Schultheiss, F. Severino, T.C. Shrey, K.S. Smith, S. Tepikian, P. Thieberger, D. Trbojevic, J.E. Tuozzolo, B. Van Kuik, M. Wilinski, Q. Wu, A. Zaltsman, K. Zeno, W. Zhang
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
After running uranium-uranium and copper-gold collisions in 2012, the high energy heavy ion run of the Relativistic Heavy Ion Collider (RHIC) for Fiscal Year 14 (Run14) is back to gold-gold (Au-Au) collisions at 100 GeV/nucleon. Following the level of performance achieved in Run12, RHIC is still looking to push both instantaneous and integrated luminosity goals. To that end, a new 56 MHz superconducting RF cavity was installed and commissioned, designed to keep ions in one RF bucket and improve luminosity by allowing a smaller beta function at the interaction point (IP) due to a reduced hourglass effect. The following presents an overview of these changes and reviews the performance of the collider.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO032  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO069 First Studies of Two-beam Tuning in the CLIC BDS sextupole, collider, linear-collider, simulation 1195
 
  • J. Snuverink
    JAI, Egham, Surrey, United Kingdom
  • A. Latina, R. Tomás
    CERN, Geneva, Switzerland
 
  Beam tuning in the beam delivery system (BDS) is one of the major challenges for the future linear colliders. Up to now single beam tuning has been performed, both in simulations and experiments at the Accelerator Test Facility (ATF). However, in future linear colliders, due to fast detuning of the final focus optics both beamlines will need to be tuned simultaneously. In this paper a first two-beam tuning study for the Compact Linear Collider (CLIC) BDS is presented applying the usual toolbox of beam-based alignment (BBA) and sextupole knobs.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO069  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO070 LHeC IR Optics Design Integrated into the HL-LHC Lattice quadrupole, electron, proton, lattice 1198
 
  • E. Cruz Alaniz, M. Korostelev, D. Newton
    The University of Liverpool, Liverpool, United Kingdom
  • E. Cruz Alaniz, M. Korostelev, D. Newton
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • R. Tomás
    CERN, Geneva, Switzerland
 
  Funding: OPAC fellowship funded by European Union under contract PITN-GA-2011-289485
The LHeC is a proposed upgrade to the LHC to provide electron-proton collisions and explore the new regime of energy and intensity for lepton-nucleon scattering. The work presented here investigates optics and layout solutions allowing simultaneous nucleon-nucleon and lepton-nucleon collisions at separate interaction points compatible with the proposed HL-LHC lattice. A first lattice design has been proposed that collides proton beam 2 with the electron beam. The nominal design calls for a β* (beta function in the interaction point ) of 10 cm using an extended version of the Achromatic Telescopic Squeezing (ATS) scheme, and a L* (distance to the inner triplet) of 10 m. Modifying these two parameters, β* and L*, can provide benefits to the current design since the values of these parameters have direct effects on the luminosity, the natural chromaticity and the synchrotron radiation of the electron beam. This work aims to explore the range over which these parameters can be varied in order to achieve the desired goal.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO070  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPME004 Lowering the CLIC IP Horizontal Beta Function sextupole, photon, synchrotron, radiation 1340
 
  • H. Garcia, D. Schulte, R. Tomás
    CERN, Geneva, Switzerland
  • H. Garcia
    UPC, Barcelona, Spain
 
  In order to alleviate the beamstrahlung photon emission, the beams at the CLIC Interaction Point must be flat. We propose to explore this limit reducing the horizontal beta function for CLIC at 500 GeV c.o.m. energy to half of its nominal value. This could increase the photon emission but it also increases luminosity and might allow reducing the bunch charge keeping the same luminosity. This configuration can also be considered for lower energies where beamstrahlung is less critical.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPME004  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPME006 Considerations for a QD0 with Hybrid Technology in ILC alignment, quadrupole, experiment, collider 1346
 
  • M. Modena, A.V. Aloev, H. Garcia, L. Gatignon, R. Tomás
    CERN, Geneva, Switzerland
 
  The baseline design of the QD0 magnet for ILC, the International Linear Collider, is a very compact superconducting quadrupole (coil-dominated magnet). A prototype of this quadrupole is under construction at Brookhaven National Laboratory (USA). In CLIC, the Compact Linear Collider under study at CERN, we are studying another conceptual solution for the QD0. This is due to two main reasons: all the magnets of the Beam Delivery System will need to be stabilized in the nano-meter range and extremely tight alignment tolerances are required. The proposed solution, now baseline for CLIC, is a room temperature hybrid quadrupole based on electromagnetic coils and permanent magnet blocks (iron-dominated magnet). In this paper we present a conceptual design for a hybrid solution studied and adapted also to the ILC project. A special super-ferric solution is proposed to make the cross section compatible with the experiments layout. This design matches the compactness requirement with the advantages of stability and alignment precision, aspects critical also for ILC in order to achieve the design luminosity. Final Focus optics design considerations for this solution are also presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPME006  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPME016 Status of the Complete Muon Cooling Channel Design and Simulations emittance, solenoid, collider, simulation 1379
 
  • C.Y. Yoshikawa, C.M. Ankenbrandt, R.P. Johnson, S.A. Kahn, F. Marhauser
    Muons, Inc, Illinois, USA
  • Y.I. Alexahin, D.V. Neuffer, K. Yonehara
    Fermilab, Batavia, Illinois, USA
  • Y.S. Derbenev, V.S. Morozov, A.V. Sy
    JLab, Newport News, Virginia, USA
 
  Funding: Work supported in part by DOE STTR grant DE-SC 0007634.
Muon colliders could provide the most sensitive measurement of the Higgs mass and return the US back to the Energy Frontier. Central to the capabilities of such muon colliders are the cooling channels that provide the extraordinary reduction in emittance required for the precise Higgs mass measurement and increased luminosity for enhanced discovery potential of an Energy Frontier Machine. We present the status of the design and simulation of a complete muon cooling channel that is based on the Helical Cooling Channel (HCC), which operates via continuous emittance exchange to enable the most efficient design.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPME016  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPME028 Flat Bunches in the LHC impedance, emittance, operation, synchrotron 1413
 
  • E.N. Shaposhnikova, T. Argyropoulos, P. Baudrenghien, J. F. Esteban Müller, T. Mastoridis, G. Papotti, B. Salvant, H. Timko
    CERN, Geneva, Switzerland
  • C.M. Bhat, A.V. Burov
    Fermilab, Batavia, Illinois, USA
 
  A high-harmonic RF system that could serve multiple purposes was proposed for the LHC. Possible applications of the second harmonic RF system include beam stabilisation in the longitudinal plane in the absence of wide-band longitudinal feedback and reduction of bunch peak line-density. Apart from other useful features, flat bunches are expected to produce less beam-induced heating at frequencies below 1 GHz, the frequency region critical for some LHC equipment. The latter, however, can also be achieved by de-populating the bunch centre. This was demonstrated during the dedicated machine development session in the LHC using RF phase modulation. In this paper the results of tests with single bunches and nominal LHC beams are presented and the possible use of this technique in LHC operation is discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPME028  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRI014 Modelling and Long Term Dynamics of Crab Cavities in the LHC cavity, multipole, hadron, experiment 1578
 
  • R. Appleby, D.R. Brett
    UMAN, Manchester, United Kingdom
  • J. Barranco García, R. De Maria, A. Grudiev, R. Tomás
    CERN, Geneva, Switzerland
 
  Funding: The research leading to these results has received funding from the European Commission under the FP7 project HiLumi LHC, GA no. 284404, co-funded by the DoE, USA and KEK, Japan.
The High Luminosity upgrade of the Large Hadron Collider (HL-LHC) aims to achieve an integrated luminosity of 250-300 fb-1 per year. This upgrade includes the use crab cavities to mitigate the geometric loss of luminosity arising from the beam crossing angle. The tight space constraints at the location of the cavities leads to cavity designs which are axially non-symmetric and have a potentially significant effect on the long term dynamics and dynamic aperture of the LHC. In this paper we present the current status of advanced modelling of crab cavities.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI014  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRI022 Beam-Beam Studies in LHC- Beam Loss and Bunch Shortening emittance, simulation, resonance, synchrotron 1603
 
  • K. Ohmi
    KEK, Ibaraki, Japan
 
  In Hadron colliders, luminosity degrade various mechanism. Beam-beam related emittance growth is caused by resonances induced by crossing angle. Tune spread due to chromaticity enhances the resonances effect. A bunch shortening phenomenon related to beam-beam interaction has been observed in LHC. The bunch length has an anti-correlation with transverse emittance. This phenomenon has been studied using a weak-strong beam-beam simulation (BBWS code).  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI022  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRI071 Transverse Impedance Measurement in RHIC and the AGS impedance, injection, betatron, proton 1730
 
  • N. Biancacci
    CERN, Geneva, Switzerland
  • M. Blaskiewicz, Y. Dutheil, C. Liu, K. Mernick, M.G. Minty, S.M. White
    BNL, Upton, Long Island, New York, USA
 
  The RHIC luminosity upgrade program aims for an increase of the polarized proton luminosity by a factor 2. To achieve this goal a significant increase in the beam intensity is foreseen. The beam coupling impedance represents a source of detrimental effects for beam quality and stability at high bunch intensities. In this paper, we evaluate a new global transverse impedance in both RHIC and the AGS with recent measurements of tune shift as a function of bunch intensity. The results are compared to past measurements and present impedance model.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI071  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRI088 Active Vibration Isolation System for CLIC Final Focus controls, collider, linear-collider, ground-motion 1775
 
  • G. Balik, N. Allemandou, J. Allibe, J.P. Baud, L. Brunetti, G. Deleglise, A. Jeremie, S. Vilalte
    IN2P3-LAPP, Annecy-le-Vieux, France
  • B. Caron, C. Hernandez
    SYMME, Annecy-le-Vieux, France
 
  With pinpoint accuracy, the next generation of Linear Collider such as CLIC will collide electron and positron beams at a centre of mass energy of 3 TeV with a desired peak luminosity of 2*1034 cm-2s−1. One of the many challenging features of CLIC is its ability to collide beams at the sub-nanometer scale at the Interaction Point (IP). Such a high level of accuracy could only be achieved by integrating Active Vibration Isolation system (AVI) upstream the collision to prevent the main source of vibration; Ground Motion (GM). Complementary control systems downstream the collision (Interaction Point FeedBack (IPFB), Orbit FeedBack(OFB)) allow low frequency vibration rejection. This paper focus on a dedicated AVI table designed for the last focusing quadrupole QD0 where the specifications are the most stringent. Combining FeedForward (FF) and FeedBack (FB) techniques, the prototype is able to reduce GM down to 0.6 nm RMS(4Hz) experimentally without load. These performances couldn’t be achieved without cutting edge-technology such as sub-nanometer piezo actuator, ultra-low noise accelerometer and seismometers and an accurate guidance system. The whole AVI system is described in detail.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI088  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEOCA03 DAΦNE Operation with the Upgraded KLOE-2 Detector detector, operation, collider, coupling 1883
 
  • C. Milardi, D. Alesini, M.E. Biagini, M. Boscolo, B. Buonomo, S. Cantarella, A. De Santis, G.O. Delle Monache, G. Di Pirro, A. Drago, L.G. Foggetta, O. Frasciello, A. Gallo, A. Ghigo, F. Guatieri, S. Guiducci, F. Iungo, C. Ligi, G. Mazzitelli, L. Pellegrino, R. Ricci, U. Rotundo, C. Sanelli, G. Sensolini, M. Serio, A. Stecchi, A. Stella, M. Zobov
    INFN/LNF, Frascati (Roma), Italy
  • R. Gargana, A. Michelotti
    Consorzio Laboratorio Nicola Cabibbo, Frascati, Italy
  • D.N. Shatilov
    BINP SB RAS, Novosibirsk, Russia
  • M. Tobiyama
    KEK, Ibaraki, Japan
  • A. Valishev
    Fermilab, Batavia, Illinois, USA
 
  The DAΦNE collider has been successfully commissioned after the experimental detector modification and a major upgrade and consolidation program involving a large part of the accelerator complex. This paper presents the Φ-Factory setup and the achieved performances in terms of beam currents, luminosity, detector background and related aspects.  
slides icon Slides WEOCA03 [2.424 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEOCA03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPME048 Preliminary Design of the HiLumi-LHC Triplet Area Beam Screen shielding, optics, cryogenics, vacuum 2378
 
  • R. Kersevan, C. Garion, N. Kos
    CERN, Geneva, Switzerland
 
  The so-called beam screen (BS) is a proven solution for intercepting the thermal loads caused by the circulating beams in the cryogenically-cooled sections of the LHC and minimizing dynamic vacuum effects. The new triplet area foreseen for the HiLumi-LHC machine upgrade has the additional feature of needing internal tungsten shields to reduce the amount of collision debris which is deflected by the high-gradient triplet magnets towards the superconducting magnets' cold masses and coils. The very aggressive optics design, based on large beam separations, calls for a maximum of physical space to remain available to the counter rotating beams in the common BS. This places severe constraints to the fabrication and installation tolerances of the BS itself, in addition to affecting the design and routing of the cryogenic lines in the area. The latest version of the BS design will be shown and discussed, together with future plans for testing materials, fabrication procedures, and installation.
* The HiLumi LHC Design Study is partly funded by the European Commission within the Framework Programme 7 Capacities Specific Programme, Grant Agreement 284404
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPME048  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRI037 Comparison of High Order Modes Damping Techniques for 800 MHz Single Cell Superconducting Cavities HOM, cavity, damping, dipole 2558
 
  • Ya.V. Shashkov, N.P. Sobenin
    MEPhI, Moscow, Russia
  • M. Zobov
    INFN/LNF, Frascati (Roma), Italy
 
  Currently, applications of 800 MHz harmonic cavities in both bunch lengthening and shortening regimes are under consideration and discussion in the framework of the High Luminosity LHC project. In this paper we study electromagnetic characteristics of high order modes (HOM) for a single cell 800 MHz superconducting cavity and arrays of such cavities connected by drifts tubes. Different techniques for the HOM damping such as beam pipe grooves, coaxial-notch loads, fluted beam pipes etc. are investigated and compared. The influence of the sizes and geometry of the drift tubes on the HOM damping is analyzed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRI037  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRI048 Testing and Dressed Cavity Design for the HL-LHC 4R Crab Cavity cavity, HOM, cryomodule, dipole 2589
 
  • B.D.S. Hall, G. Burt
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • R. Calaga, S. Calatroni, E. Jensen, A. Macpherson, M. Navarro-Tapia
    CERN, Geneva, Switzerland
  • T.J. Jones, N. Templeton
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
  • A.J. May, P.A. McIntosh, S.M. Pattalwar, A.E. Wheelhouse
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  The High luminosity upgrade to the LHC (HL-LHC) calls for crab cavities to reduce the luminosity loss due to the crossing angle and help provide luminosity levelling. The 4 Rod Crab Cavity (4RCC) is one of three proposed options under consideration. A bare cavity has been prototyped and has undergone recent vertical tests and the results are presented. The dressed cavity includes a power coupler, a lower order mode coupler and two HOM couplers will be presented and discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRI048  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRI087 Magnetic Field Measurement System for the SuperKEKB Final Focus Superconducting Magnets quadrupole, dipole, superconducting-magnet, factory 2693
 
  • N. Ohuchi, Y. Arimoto, M. Iwasaki, M.K. Kawai, Y. Kondo, Y. Makida, K. Tsuchiya, H. Yamaoka, Z.G. Zong
    KEK, Ibaraki, Japan
 
  SuperKEKB are now being constructed with a target luminosity of 8×1035 which is 40 times higher than KEKB. This luminosity can be achieved by the "Nano-Beam" scheme, in which both beams should be squeezed to about 50 nm at the beam interaction point, IP. The beam final focusing system consists of 8 superconducting quadrupole magnets, 4 superconducting solenoids and 43 superconducting corrector coils. The magnetic field measurement systems with the vertical cryostats were designed and constructed for performing the acceptance test of these magnets at 4 K. The field measurements are performed by the 6 different harmonic coils and a Hall probe. The higher order multi-pole field distributions along the magnet axes are very important for the beam operation, and then these distributions are measured with the 20 mm long harmonic coils. The integral fields of quadrupole magnets are measured with the 600 mm long harmonic coils. We will describe the magnetic field measurement system.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRI087  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRI094 Conceptual Design Study of the High Luminosity LHC Recombination Dipole dipole, target, operation, insertion 2712
 
  • G.L. Sabbi, X. Wang
    LBNL, Berkeley, California, USA
  • G. Arduini, M. Giovannozzi, E. Todesco
    CERN, Geneva, Switzerland
 
  Funding: Work supported by the U.S. DOE LHC Accelerator Research Program. The HiLumi LHC Design Study is partly funded by the European Commission within the Framework Programme 7.
The interaction region design of the High-Luminosity LHC requires replacing the recombination dipole magnets (D2) with new ones. The preliminary specifications include an aperture of 105 mm, with 186 mm separation between the twin-aperture axes, and an operating field in the range of 3.5 to 4.5 T. The main design challenge is to decouple the magnetic field in the two apertures and ensure good field quality. In this paper, we present a new approach to address these issues, and provide expected harmonics for geometric, saturation and persistent current effects. The feasibility of an operating field at the high end of the range considered is also discussed, to minimize the D2 magnet length and facilitate the space allocation for other components.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRI094  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRI097 STATUS OF 11 T 2-IN-1 Nb3Sn DIPOLE DEVELOPMENT FOR LHC dipole, status, magnet-design, lattice 2722
 
  • A.V. Zlobin, N. Andreev, G. Apollinari, E.Z. Barzi, R. Bossert, M. Buehler, G. Chlachidze, J. DiMarco, A. Nobrega, I. Novitski, D. Turrioni, G. Velev
    Fermilab, Batavia, Illinois, USA
  • B. Auchmann, M. Karppinen, L. Rossi, D. Smekens
    CERN, Geneva, Switzerland
 
  Funding: Work is supported by Fermi Research Alliance, LLC, under contract No. DE-AC02-07CH11359 with the U.S. Department of Energy and European Commission under FP7 project HiLumi LHC, GA no.284404
The LHC upgrade plans foresee installation of additional collimators in the LHC lattice. To provide the necessary longitudinal space for these collimators, shorter and stronger Nb3Sn dipoles compatible with the LHC lattice and main systems could be used. This paper describes the design and status of the twin-aperture Nb3Sn dipole being developed by FNAL and CERN for the LHC, and reports test results of two collared coils to be used in the first 1 m long twin-aperture dipole model.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRI097  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRI102 Conceptual Magnetic Design of the Large Aperture D2 Dipole for LHC Upgrade dipole, insertion, status, interaction-region 2737
 
  • R.C. Gupta
    BNL, Upton, Long Island, New York, USA
 
  Funding: This work is supported by the U.S. Department of Energy under Contract No. DE¬AC02-98CH10886.
CERN has proposed the High Luminosity upgrade of the Large Hadron Collider (HL-LHC) as an upgrade to the Large Hadron Collider (LHC). As a part of this proposal, the aperture of twin aperture D2 dipole is increased from the present 80 mm to 105 mm without increasing the size of cryostat. This creates a significant challenge in managing saturation induced harmonics and the leakage field, particularly since the field in the two apertures is in the same direction. In addition, small spacing between the two apertures creates significant cross-talk harmonics as well. The expected harmonics based on an initial design were rather large and limited the beam dynamics performance of the machine. This paper will present a series of conceptual magnetic designs which reduce the values of key harmonics by a large amount with expected field errors now comparable to those in most superconducting accelerator magnets.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRI102  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRO083 Weak-strong Beam-beam Simulations for HL-LHC optics, simulation, dynamic-aperture, beam-beam-effects 3079
 
  • D. Banfi, J. Barranco García
    EPFL, Lausanne, Switzerland
  • T. Pieloni
    CERN, Geneva, Switzerland
  • A. Valishev
    Fermilab, Batavia, Illinois, USA
 
  In this paper we present dynamic aperture studies for possible High Luminosity LHC optics in the presence of beam-beam interactions, crab crossing schemes and magnets multipolar errors. Possible operational scenarios of luminosity leveling by transverse offset and betatron function are also studied and the impact on the beams stability is discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRO083  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME070 Status of the LIU Project at CERN linac, injection, ion, extraction 3397
 
  • K. Hanke, H. Damerau, A. Deleu, A. Funken, R. Garoby, S.S. Gilardoni, N. Gilbert, B. Goddard, E.B. Holzer, A.M. Lombardi, D. Manglunki, M. Meddahi, B. Mikulec, E.N. Shaposhnikova, M. Vretenar
    CERN, Geneva, Switzerland
 
  CERN has put in place an ambitious improvement programme to make the injector chain of the LHC capable of supplying the high intensity and high brightness beams requested by the High-Luminosity LHC (HL-LHC) project. The LHC Injectors Upgrade (LIU) project comprises a new Linac (Linac4) as well as major upgrades and renovations of the PSB, PS and SPS synchrotrons. The heavy ion injector chain is also included, adding Linac3 and LEIR to the list of accelerators concerned. This paper reports on the work completed during the first long LHC shutdown, and outlines the further upgrade path.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME070  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME090 Fast Luminosity Monitoring using Diamond Sensors for the Super Flavor Factory SuperKEKB scattering, positron, photon, simulation 3442
 
  • D. El Khechen, P. Bambade, D. Jehanno, C. Rimbault
    LAL, Orsay, France
 
  Super luminous flavor factories, as SuperKEKB in Japan, aim to achieve very high luminosity thanks to a newly employed concept, the nano-beam scheme, where ultra-low emittance beams collide at very large crossing angle . Luminosity optimisation and dynamic imperfections require fast luminosity measurements. The aimed precision, 10-3 in 10 ms, can be achieved thanks to the very large cross-section of the radiative Bhabha process at zero-photon scattering angle. As a result of huge particle fluxes, diamond sensors are chosen to be placed just outside the beam-pipe, downstream of the interaction point, at locations with event rates consistent with the aimed precision and small enough contamination by backgrounds from single-beam particle losses . We will present the results concerning the investigation of the optimal positioning of our diamond sensors, taking into account the rate of Bhabha particles, their interactions with the beam pipe material.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME090  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME129 Application of Libera Brilliance+ to Special Purpose BPMs in SuperKEKB brilliance, instrumentation, positron, betatron 3544
 
  • S. Kanaeda, H. Fukuma, H. Ishii, K. Mori, M. Tobiyama
    KEK, Ibaraki, Japan
 
  The KEKB accelerator at KEK is being upgraded to SuperKEKB, and will be starting operation in 2015. SuperKEKB will have 444 Beam Position Monitors (BPMs) in the positron ring (LER), and 466 in the electron ring (HER). Two BPMs in each ring will be newly introduced for measuring fast beam orbit oscillations, and another two BPMs in each ring will be introduced for the fast beam orbit interlock at SuperKEKB. The required resolution is below several μm for fast beam orbit oscillation monitoring, and the requirement for the response time is less than 100 μs for the fast beam orbit interlock. We plan to use the Libera Brilliance+ from Instrumentation Technologies as signal processors for these special purpose BPMs. This paper discusses the application of the Libera Brilliance+ to these special purpose BPMs.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME129  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME155 Beam Phase Space Reconstruction for Monitoring the Luminosity in the VEPP-2000 Collider electron, positron, lattice, collider 3623
 
  • A.L. Romanov, I. Koop, E. Perevedentsev, D.B. Shwartz
    BINP SB RAS, Novosibirsk, Russia
 
  16 synchrotron light imaging monitors available in VEPP-2000 can be used for evaluation of dynamic betas and emittances at collision. Tomographic techniques are useful for reconstruction of non-gaussian beam phase space at the IPs at high intensities of colliding bunches. The output is applied for prompt luminosity monitoring.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME155  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME175 A Beam Gas Vertex Detector for Beam Size Measurement in the LHC detector, target, injection, simulation 3680
 
  • P. Hopchev, V. Baglin, C. Barschel, E. Bravin, G. Bregliozzi, N. Chritin, B. Dehning, M. Ferro-Luzzi, C. Gaspar, M. Giovannozzi, R. Jacobsson, L.K. Jensen, O.R. Jones, N.J. Jurado, V. Kain, M. Kuhn, B. Luthi, P. Magagnin, R. Matev, N. Neufeld, J. Panman, M.N. Rihl, V. Salustino Guimaraes, B. Salvant, R. Veness, E. van Herwijnen
    CERN, Geneva, Switzerland
  • A. Bay, F. Blanc, S. Gianì, G.J. Haefeli, T. Nakada, B. Rakotomiaramanana, O. Schneider, M. Tobin, Q.D. Veyrat, Z. Xu
    EPFL, Lausanne, Switzerland
  • R. Greim, W. Karpinski, T. Kirn, S. Schael, G. Schwering, M. Wlochal, A. von Dratzig
    RWTH, Aachen, Germany
  • R. Matev
    Sofia University St. Kliment Ohridski, Faculty of Physics, Sofia, Bulgaria
 
  The Beam Gas Vertex (BGV) detector is foreseen as a possible non-invasive beam size measurement instrument for the LHC and its luminosity upgrade. This technique is based on the reconstruction of beam gas interaction vertices, where the charged particles produced in inelastic beam gas interactions are measured with high-precision tracking detectors. The design studies and expected performance of the currently developed BGV prototype will be presented with an overview given of the associated vacuum, detector, and readout systems. A brief description will be given of the BGV Monte Carlo simulation application, which is based on the LHCb computing framework (Gaudi) and allows simulation studies to be performed and online event reconstruction algorithms to be developed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME175  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRI001 Design of a High Luminosity Tau/Charm Factory emittance, sextupole, injection, dipole 3757
 
  • M.E. Biagini, R. Boni, M. Boscolo, A. Chiarucci, R. Cimino, A. Clozza, E. Di Pasquale, A. Drago, S. Guiducci, C. Ligi, G. Mazzitelli, R. Ricci, C. Sanelli, M. Serio, A. Stella, S. Tomassini
    INFN/LNF, Frascati (Roma), Italy
  • S. Bini, F. Cioeta, D. Cittadino, M. D'Agostino, M. Del Franco, A. Delle Piane, G. Frascadore, R. Gargana, S. Gazzana, S. Incremona, A. Michelotti, L. Sabbatini
    Consorzio Laboratorio Nicola Cabibbo, Frascati, Italy
  • N. Carmignani, S.M. Liuzzo, P. Raimondi
    ESRF, Grenoble, France
  • R. Petronzio
    Università di Roma II Tor Vergata, Roma, Italy
  • M.T.F. Pivi
    IMS Nanofabrication AG, Vienna, Austria
  • G. Schillaci, M. Sedita
    INFN/LNS, Catania, Italy
 
  The design of a high luminosity Tau/Charm Factory has been accomplished by the INFN-LNF Laboratory in Frascati in collaboration with the Consortium Nicola Cabibbo Laboratory. The target luminosity is 1035 cm-2 ses−1 at 4.6 GeV in the center of mass. This design is a natural evolution of the SuperB B-Factory, that was aimed to be built in the Rome Tor Vergata University campus as an Italian Flagship Project. The Tau/Charm design keeps all the features that made SuperB a state-of-the art accelerator, such as the “large Piwinski angle and crab waist sextupoles” collision scheme, the super squeezed beams, and the polarized electron beam. As a plus, it will be possible to collect data at high luminosity in a large energy range (2 to 4.6 GeV c. m.), with a peak luminosity target of 1034 cm-2 ses−1 at 2 GeV. The possibility to extend the Linac for a SASE-FEL facility is also taken into account. A Conceptual Design Report* was published in September 2013. In this paper the design principles and the project features are reviewed.
* Tau/Charm Factory Accelerator Report, INFN Report INFN-13-13/LNF, September 2013, arXiv:1310.6944 [physics.acc-ph]
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRI001  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRI003 Beam-beam Simulation Study for CEPC simulation, collider, dynamic-aperture, damping 3763
 
  • Y. Zhang
    IHEP, Beijing, People's Republic of China
  • K. Ohmi, D. Zhou
    KEK, Ibaraki, Japan
  • D.N. Shatilov
    BINP SB RAS, Novosibirsk, Russia
 
  CEPC is an Circular Electron Positron Collider proposed to carry out high precision study on Higgs bosons. It is similar to TLEP project , the luminosity and beam lifetime may be determined by the beamstrahlung effect. We try to check the resonability of the machine parameters with weak-strong and strong-strong simulation. At the same time we also do some cross-check between different codes. We wish the work could help determine the beam parameters which could achieve design luminosity.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRI003  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRI004 FCC-ee/CepC Beam-beam Simulations with Beamstrahlung simulation, radiation, photon, collider 3766
 
  • K. Ohmi
    KEK, Ibaraki, Japan
  • F. Zimmermann
    CERN, Geneva, Switzerland
 
  Beamstrahlung, namely synchrotron radiation emitted during the beam-beam collision, can be an important effect for circular high-energy lepton colliders such as FCC-ee (TLEP). In this paper we study beam-beam effects in the presence of energy spreading and bunch lengthening due to beamstrahlung.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRI004  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRI007 Lattice Optimization of BEPCII Collider Rings lattice, simulation, sextupole, collider 3776
 
  • Y. Zhang, Q. Qin, C.H. Yu
    IHEP, Beijing, People's Republic of China
 
  BEPCII is a double ring e+e collider operating in the tau-charm region. In March 2013, the peak luminosity achieves 7.0·1032 cm-2s-1 with a new lower alphap lattice. The beam-beam parameter is also increased from 0.033 to 0.04 with the new lattice. In this paper we'll review the lattice optimization history briefly and focus on the optimization of the lower alphap lattice.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRI007  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRI008 Interaction Region Lattice for FCC-ee (TLEP) quadrupole, lattice, collider, dynamic-aperture 3779
 
  • A.V. Bogomyagkov, E.B. Levichev, P.A. Piminov
    BINP SB RAS, Novosibirsk, Russia
 
  Funding: The work is supported by the Ministry of Education and Science of the Russian Federation.
FCC-ee (TLEP)* project is a high-luminosity e+e- collider and is an essential part of the Future Circular Collider (FCC) design study at CERN . FCC-ee is being designed to reach center-of-mass energy from 90 to 350 GeV with circumference of 80-100 km to study Higgs boson properties and perform precise measurements at the electroweak scale. It is also an intermediate step towards 100 TeV proton-proton collider built in the same tunnel. Some of the limiting factors of the new collider are total energy loss due to synchrotron radiation, beam lifetime degradation owing to beamstrahlung, geometry of the tunnel required to accommodate the successor. The present paper describes linear lattice of interaction region and results of nonlinear beam dynamics study.
* M.~Koratzinos et al., ‘‘TLEP: A HIGH-PERFORMANCE CIRCULAR e+e COLLIDER TO STUDY THE HIGGS BOSON'', IPAC2013, Shanghai, China, TUPME040 (2013)
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRI008  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRI012 Tuning of the Compact Linear Collider Beam Delivery System simulation, collider, linear-collider, multipole 3788
 
  • Y.I. Levinsen, G. Giambelli, A. Latina, R. Tomás
    CERN, Geneva, Switzerland
  • H. Garcia
    UPC, Barcelona, Spain
  • J. Snuverink
    JAI, Egham, Surrey, United Kingdom
 
  Tuning the CLIC Beam Delivery System (BDS), and in particular the final focus, is a challenging task. In simulations without misalignments, the goal is to reach 120~\% of the nominal luminosity target, in order to allow for 10~\% loss due to static imperfections, and another 10~\% loss from dynamic imperfections. Various approaches have been considered to correct the magnet misalignments, including 1-1 correction, dispersion free steering (DFS), and several minimization methods utilizing multipole movers. In this paper we report on the recent advancements towards a feasible tuning approach that reach the required luminosity target in a reasonable time frame.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRI012  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRI102 Energy Effciency of Particle Accelerators - A Networking Effort within the EUCARD² Program operation, network, quadrupole, focusing 4016
 
  • J. Stadlmann, P.J. Spiller
    GSI, Darmstadt, Germany
  • R. Gehring
    KIT, Karlsruhe, Germany
  • E. Jensen
    CERN, Geneva, Switzerland
  • T.I. Parker
    ESS, Lund, Sweden
  • M. Seidel
    PSI, Villigen PSI, Switzerland
 
  Funding: EuCARD² is co-funded by the partners and the European Commission under Capacities 7th Framework Programme, Grant Agreement 312453
EuCARD² is an Integrating Activity Project for coordinated Research and Development on Particle Accelerators, co-funded by the European Commission under the FP7 Capacities Programme. Within the network EnEfficient we address topics around energy efficiency of research accelerators. The ambitious scientific research goals of modern accelerator facilities lead to high requirements in beam power and beam quality for those research accelerators. In conjunction with the user’s needs the power consumption and environmental impact of the research facilities becomes a major factor in the perception of both funding agencies and the general public. In this Network we combine and focus the R&D done individually at different research centers into a series of workshops. We cover the topics “Energy recovery from cooling circuits “, “Higher electronic efficiency RF power generation“, “Short term energy storage systems”, “Virtual power plants” and “Beam transfer channels with low power consumption”. Our network activities are naturally open to external participants. With this work we will introduce our energy efficiency topics to interested participants and contributors from the whole community.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRI102  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRYCA01 Options and Prospects for the Future of Accelerator-based High-energy Physics collider, coupling, detector, proton 4079
 
  • F. Gianotti
    CERN, Geneva, Switzerland
 
  Recent results from the LHC and other facilities have significantly impacted the landscape of particle physics. This talk summarises the main outstanding questions in high-energy physics and the strategy to address them. Options for future accelerator facilities and their motivations are discussed.  
slides icon Slides FRYCA01 [16.139 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-FRYCA01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)