Keyword: synchrotron
Paper Title Other Keywords Page
MOXAA01 Challenges for Highest Energy Circular Colliders collider, luminosity, radiation, hadron 1
 
  • F. Zimmermann, M. Benedikt, D. Schulte, J. Wenninger
    CERN, Geneva, Switzerland
 
  A new tunnel of 80-100 km circumference could host a 100 TeV centre-of-mass energy-frontier proton collider (FCC-hh/VHE-LHC), with a circular lepton collider (FCC-ee/TLEP) as potential intermediate step, and a lepton-hadron collider (FCC-he) as additional option. FCC-ee, operating at four different energies for precision physics of the Z, W, and Higgs boson and the top quark, represents a significant push in terms of technology and design parameters. Pertinent R&D efforts include the RF system, top-up injection scheme, optics design for arcs and final focus, effects of beamstrahlung, beam polarization, energy calibration, and power consumption. FCC-hh faces other challenges, such as high-field magnet design, machine protection and effective handling of large synchrotron radiation power in a superconducting machine. All these issues are being addressed by a global FCC collaboration. A parallel design study in China prepares for a similar, but smaller collider, called CepC/SppC.  
slides icon Slides MOXAA01 [27.493 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOXAA01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRO016 NANOPERM® Broad Band Magnetic Alloy Cores for Synchrotron RF Systems target, damping, acceleration, background 95
 
  • T. Trupp
    MAGNETEC GmbH, Langenselbold, Germany
 
  Recent developments in synchrotron acceleration systems show a demand for broadband MA (Magnetic Alloy) magnetic core loaded cavities with a high field gradient. For many facilities e.g. GSI, CoSY, J-Parc limited installation lengths requires high gradients in the region of 40kV/m. Both requirements rule out ferrite materials due to the lower maximum excitation levels and high Q-value. This request can solely be met by Finemet type cores like NANOPERM® produced by MAGNETEC. In this paper, the statistics of 22 huge cores made of NANOPERM® and measured high frequency properties are shown under free-space (FS) condition and compared with the theoretical expectation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO016  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRO025 Electron Beam Injection System for SuperKEKB Main Ring injection, septum, betatron, emittance 122
 
  • T. Mori, N. Iida, M. Kikuchi, T. Mimashi, Y. Sakamoto, S. Takasaki, M. Tawada
    KEK, Ibaraki, Japan
 
  The SuperKEKB project is in progress toward the initial physics run in the year 2015. It assumes the nano-beam scheme, in which the emittance of the colliding beams is ε=4.6\mbox{nm}. The emittance of the injected beam is ε=1.46\mbox{nm}. To acheave such a low emittance, it is vitally important to preserve the emittance during the transport of the beam from the linac to the main ring. One of the most difficult sections is the injection system. It has been pointed out that the injected beam has possibility of leading to blowup in the ring, which is caused by a beam-beam interaction with the stored positron beam. To avoid the beam blowup, the synchrotron injection is adopted as a backup option. The orbit of the electron injection beam has been designed and the septum magnet prototype has been constructed. The optics study for electron injection and the current R&D status for the septum magnet will be reported in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO025  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRO054 Commissioning progress of the Femto-slicing Project at SOLEIL laser, electron, wiggler, radiation 206
 
  • M. Labat, H.B. Abualrob, P. Betinelli-Deck, A. Buteau, N. Béchu, L. Cassinari, M.-E. Couprie, F. Dohou, C. Herbeaux, Ph. Hollander, J.-F. Lamarre, C. Laulhé, A. Lestrade, J. Lüning, O. Marcouillé, J.L. Marlats, T. Moreno, P. Morin, A. Nadji, L.S. Nadolski, D. Pédeau, P. Prigent, S. Ravy, J.P. Ricaud, M. Ros, P. Roy, M.G. Silly, F. Sirotti, K. Tavakoli, M.-A. Tordeux, D. Zerbib
    SOLEIL, Gif-sur-Yvette, France
 
  The femtoslicing project at SOLEIL is currently under commissioning. It will enable to serve several beamlines with 100 fs FWHM long pulses of soft and hard X-rays with reasonable flux and with a 1 kHz repetition rate. It is based on the interaction of a femtosecond Ti:Sa laser with electrons circulating in the magnetic field of a modulator wiggler, that provides the electron beam energy modulation on the length scale of the laser pulse. The optimization of the interaction is performed using two dedicated diagnostics stations. The first one, operating in the Infra-Red (IR) is installed in the tunnel and allows the adjustment of the temporal, spectral and spatial overlap between the laser and the electron beam. The second one, located in the IR-THz AILES beamline, measures the intensity of the terahertz (THz) radiation emitted by the local dip structure produced in the core electron beam after interaction. This second setup provides refined optimization of the interaction. This paper describes the layout of these diagnostics and gives first results and characterization of the slicing experiment at SOLEIL.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO054  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRO059 Fluka Calculations of Gamma Spectra at BESSY injection, radiation, operation, vacuum 219
 
  • K. Ott, Y. Bergmann
    HZB, Berlin, Germany
 
  Funding: Funded by the Bundesministerium für Bildung und Forschung and by the Land Berlin
Since 22nd October 2012 BESSY is operated in top-up mode. Losses of electrons during injection cause an electromagnetic cascade, that consists of high energetic photons of the bremsstrahlung, and secondary electrons and positrons from the pair creations. The bremsstrahlung spectrum has a maximum at 1.022 MeV owing to pair creations. The spectrum has a high energetic tail, that reaches up to the electron energy of 1.7 GeV at BESSY. The low energy part of the electromagnetic cascade is produced by compton scattering or the photo - effect. Due to the opened beamshutters during top-up injections, the low energetic part of the bremsstrahlung spectrum can reach the experimental hall. We used the particle interaction and transport code FLUKA for the calculations of both the fluence and the dose distribution. We calculated the gamma spectra of the radiation through the shielding walls and through the front-ends. We discuss the question whether additional safety measures are necessary for top-up operation due to the low energy part of the spectrum. From our calculations we determined the correction factors for our ionisation chambers of the ambient dose measurement system.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO059  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRO061 Study of the Beam Lifetime at the Synchrotron Light Source DELTA scattering, electron, vacuum, simulation 222
 
  • M.A. Jebramcik, H. Huck, S. Khan, R. Molo
    DELTA, Dortmund, Germany
 
  DELTA is a 1.5-GeV synchrotron light source operated by the TU Dortmund University. The beam lifetime, which is a critical issue for user operation of a light source, was studied experimentally and by simulation for different operation modes, i.e. single-bunch and multibunch fill patterns and for different beam currents. The electron loss rate is dominated by residual-gas scattering (Coulomb scattering and Bremsstrahlung) and by electron-electron scattering (Touschek effect). Since these processes depend in different ways on the momentum acceptance of the storage ring, a variation of the RF cavity voltage allows to disentangle their respective contributions to the total loss rate. The experimental results lead to a consistent picture for different operation modes with a characteristic dependence of the residual-gas pressure on the beam current.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO061  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRO062 Investigating Polarisation and Shape of Beam Microwave Signals at the ANKA Storage Ring radiation, detector, synchrotron-radiation, polarization 4090
 
  • J. Schwarzkopf, M. Brosi, C. Chang, E. Hertle, V. Judin, B. Kehrer, A.-S. Müller, A.-S. Müller, A.-S. Müller, M. Schuh, M. Schwarz, P. Schönfeldt, P. Schütze, J.L. Steinmann
    KIT, Karlsruhe, Germany
  • F. Caspers
    CERN, Geneva, Switzerland
 
  At the ANKA synchrotron radiation facility measurements in the microwave range (~10 to 12 GHz) employing a LNB (Low Noise Block), which is the receiving part of a Satellite-TV system, have been carried out. Experiments showed that the observed signal depends on the length of the electron bunches. Furthermore the temporal shape of the microwave signal depends on the detector's position along the accelerator. Due the LNB antenna's sensitivity to polarisation it was also possible to measure the polarisation along the several ns long signal, revealing polarised and non-polarised regions. This paper describes the experimental setup and summarises the observations of the systematic studies performed with the LNB system.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO062  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRO063 Studies of Bursting CSR in Multi-bunch Operation at the ANKA Storage Ring radiation, storage-ring, operation, detector 225
 
  • V. Judin, M. Brosi, C.M. Caselle, E. Hertle, N. Hiller, A. Kopmann, A.-S. Müller, M. Schuh, N.J. Smale, J.L. Steinmann, M. Weber
    KIT, Karlsruhe, Germany
 
  The ANKA storage ring can generate brilliant coherent synchrotron radiation (CSR) in the THz range due to a dedi- cated low-αc -optics with reduced bunch lengths. At higher electron currents the radiation is not stable, but occurs in powerful bursts caused by micro-bunching instabilities. This intense THz radiation is very attractive for users. However, the reproducibility of the experimental conditions is very low due to those power fluctuations. Systematic studies of bursting CSR in multi-bunch operation were performed with fast THz detectors at ANKA using a dedicated, ultra-fast DAQ-FPGA board. The technique and preliminary results of these studies are presented in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO063  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRO064 An Ultra-low Emittance Model for the ANKA Synchrotron Radiation Source Including Non-linear Effects emittance, sextupole, lattice, quadrupole 228
 
  • A.I. Papash, A.-S. Müller
    KIT, Eggenstein-Leopoldshafen, Germany
  • E.B. Levichev, P.A. Piminov, S.V. Sinyatkin, K. Zolotarev
    BINP SB RAS, Novosibirsk, Russia
 
  An ultra-low emittance lattice based on the ANKA ring geometry is under investigation in framework of the feasibility studies for a compact low emittance synchrotron light source at the Karlsruhe Institute of Technology (Germany). An attempt to apply the concept of split bending magnets cells and to reduce the natural emittance of the bare ANKA DBA lattice from 90 nm×rad down to 2.5 nm×rad with not-vanishing dynamic aperture is described in this paper. The TME cell with split bends and a quadrupole lens in-between as well as a pair of non-interleaved sextupole lenses separated by “—I ” unit transfer matrix of betatron oscillations allows to decrease the theoretical minimum emittance of ANKA ring down to approximately 6 nm×rad. Further reduction of the phase space volume requires to brake “—I ” symmetry and add extra families of sextupoles, locate an additional high order field elements inside the quadrupoles, optimize the phase advance between sextupole families, shift the betatron tune point, enlarge the sextupole strength and other measures. Results of simulations are reported.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO064  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRO067 Analytic Calculation of Electric Fields of Coherent THz Pulses radiation, electron, synchrotron-radiation, shielding 234
 
  • M. Schwarz, P. Basler, M. Guenther, A.-S. Müller, M. von Borstel
    KIT, Karlsruhe, Germany
  • M.T. Schmelling
    MPI-K, Heidelberg, Germany
 
  The coherently emitted electric field pulse of a short electron bunch is obtained by summing the fields of the individual electrons, taking phase differences due to different longitudinal positions into account. For an electron density, this sum becomes an integral over the charge density and frequency spectrum of the emitted radiation, which, however, is difficult to evaluate numerically. In this paper, we present a fast analytic method valid for arbitrary bunch shapes. We also include shielding effects of the beam pipe and consider ultra-short bunches, where the high frequency part of the coherent synchrotron spectrum is cut-off not by the inverse bunch length but by the critical frequency of synchrotron radiation. Our technique is applied to bunches, simulated simulated for the linac-based FLUTE accelerator test facility at KIT.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO067  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRO068 Fluctuation of Bunch Length in Bursting CSR: Measurement and Simulation simulation, storage-ring, operation, optics 237
 
  • P. Schönfeldt, A. Borysenko, E. Hertle, N. Hiller, V. Judin, A.-S. Müller, S. Naknaimueang, M. Schuh, M. Schwarz, J.L. Steinmann
    KIT, Karlsruhe, Germany
 
  The ANKA electron storage ring of the Karlsruher Institute of Technology (KIT, Germany) is regularly operated in low-alpha mode to produce short bunches for the generation of coherent synchrotron radiation (CSR). This paper evaluates systematic bunch length measurements taken in low-alpha operation of the ANKA storage ring. Above the bursting threshold not only the emission of CSR occurs in bursts, but also a continuous fluctuation of the bunch's length is observed. The measurements were carried out using concurrent multi turn (using a streak camera) as well as single shot (using electro-optical spectral decoding) methods. Furthermore, we compare information obtained on the fluctuation to simulations.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO068  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRO069 Progress Status of the Iranian Light Source Facility Laboratory booster, cavity, storage-ring, dipole 240
 
  • J. Rahighi, E. Ahmadi, H. Ajam, M. Akbari, S. Amiri, J. Dehghani, R. Eghbali, S. Fatehi, M. Fereidani, A. Gholampour, A. Iraji, M. Jafarzadeh, B. Kamkari, S. Kashani, P. Khodadoost, H. Khosroabadi, M. Lamehi, M. Moradi, H. Oveisi, S. Pirani, M. Rahimi, N. Ranjbar, R. Rasoli, M. Razazian, A. Sadeghipanah, F. Saeidi, R. Safian, E. Salimi, Kh.S. Sarhadi, O. Seify, M.Sh. Shafiee, A. Shahveh, Z. Shahveh, A. Shahverdi, D. Shirangi, E.H. Yousefi
    ILSF, Tehran, Iran
  • D. Einfeld
    CELLS-ALBA Synchrotron, Cerdanyola del Vallès, Spain
  • H. Ghasem
    IPM, Tehran, Iran
 
  The Iranian Light Source Facility Project (ILSF) is a 3 GeV third generation light source with a current of 400 mA which will be built on a land of 50 hectares area in the city of Qazvin, located 150 km West of Tehran. ILSF conceptual design report, CDR, was published in October 2012. To have a competitive leading position in the future, 489.6 m storage ring of ILSF is designed to emphasize on small emittance electron beam( 0.93 nm-rad), high photon flux density, brightness, stability and reliability. Moreover, 40% of 489.6 m ring circumference is straight sections (14×8 m+ 14×6 m) which are long enough for the commonly used insertion devices. Some prototype accelerator components such as high power solid state radio frequency amplifiers, LLRF system, thermionic RF gun, Storage ring H-type dipole and quadruple magnets, Hall probe system for magnetic measurement and highly stable magnet power supplies have been constructed in ILSF R&D laboratory.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO069  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRO070 Study on Ground Vibration Characteristics of Iranian Light Source Facility site, ground-motion, operation, data-analysis 243
 
  • A. Iraji, B. Kamkari, J. Rahighi, M. Rahimi, N. Ranjbar, F. Saeidi
    ILSF, Tehran, Iran
 
  In this study the results of ground vibration measurement for the site of Iranian Light Source Facility (ILSF) has been investigated. Light source buildings are very sensitive to the ground weak motions. Sources for the ground vibrations could be Cultural noise from human activities like traffic and industrial works. In order to satisfy requirements for level of the ground vibrations, a perfect ground vibration survey has been conducted and compared with other same projects. Two broad-band seismometers were utilized for surveying the ground vibration at ILSF site. The raw data were pre-processed as well as analyzed in term of seismology and engineering aspects. Spectrum amplitudes along with powers of the vibration amplitudes were calculated at the time domain. The power spectral density of vibration displacements were extracted from the measurements and were compared with results of other synchrotron projects. The results show that the dedicated site for ILSF is in the appropriate condition in the point view of ground vibration issues.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO070  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRO072 Lattice Design History of the Iranian Light Source Facility Storage Ring lattice, storage-ring, dipole, radiation 249
 
  • H. Ghasem
    IPM, Tehran, Iran
  • E. Ahmadi, F. Saeidi
    ILSF, Tehran, Iran
 
  Several lattice alternatives have been designed for the 3 GeV storage ring of Iranian Light Source Facility (ILSF). Design of the ILSF storage ring emphasizes an ultra low electron beam emittance, great brightness, stability and reliability which make it competitive in the operation years. In this paper, we give a brief review of the main designed lattice candidates for the ILSF storage ring.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO072  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRO097 Status of the Turkish Synchrotron Radiation Source Machine Design radiation, storage-ring, emittance, synchrotron-radiation 313
 
  • Z. Nergiz, H. Aksakal
    Nigde University, Nigde University Science & Art Faculty, Nigde, Turkey
  • A.A. Aksoy, C. Kaya
    Ankara University, Accelerator Technologies Institute, Golbasi / Ankara, Turkey
  • Ö.K. Öztürk
    Dogus University, Istanbul, Turkey
 
  Funding: Work is supported by Ministry of Development of Turkey with Grand No: DPT2006K-120470
Turkish synchrotron radiation source named TURKAY, is a part of the TAC (Turkish Accelerator Center) Project , is at conceptual design process. The radiation properties of a SR sources are strongly depends on the magnetic lattice of the storage ring. The storage ring is designed to obtain low emittance electron beam at 3 GeV energy. Optimization of the lattice properties, including the non-linear dynamics, is described in detail. Radiation properties are calculated by the example of some existing undulators from the other SR facilities.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO097  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRO102 Engineering Solutions for the Diamond Double Double Bend Achromat Project vacuum, dipole, lattice, multipole 328
 
  • J. Kay, M.P. Cox, A.G. Day, N.P. Hammond, R. Holdsworth, H.C. Huang, P.J. Vivian
    DLS, Oxfordshire, United Kingdom
 
  The project to install a Double Double Bend Achromat (DDBA) providing an additional Insertion Device (ID) source for a new beamline at the Diamond Light Source is proceeding. This DDBA cell employs many of the technologies required for Diffraction Limited Storage Rings (DLSRs) and this paper describes the vacuum vessel, magnet and girder solutions in manufacture for the DDBA.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO102  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPME010 A MAD-X Model of the HIT Accelerator simulation, ion, dipole, controls 397
 
  • R. Cee, M. Galonska, T. Gläßle, Th. Haberer, K. Höppner, A. Peters, S. Scheloske
    HIT, Heidelberg, Germany
 
  For a medical accelerator facility like the Heidelberg Ion-Beam Therapy Centre (HIT) an online simulation tool with read and write access to the control system and the database is essential for effective beam alignment and beam spot size adjustment at the patient position. Since the commissioning of HIT the simulation programme Mirko from GSI Darmstadt has been in use for the simulation of the beamlines and the synchrotron. While Mirko fully complies with the demands and is still in regular use, the long-term support of the HIT-Mirko derivate cannot be guaranteed. We have therefore started to set up a new simulation environment based on the MAD-X programme from CERN. In a first step we built a MAD-X model of the HIT accelerator using the MAD-X export function of Mirko. The resulting sequences were transformed and extended into executable MAD-X files. The simulation results were validated against Mirko and a good agreement of the calculated beam envelopes could be achieved. Works on the graphical user interface (GUI) for visualisation of and interaction with the beam envelopes and the link to the control system are in progress.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPME010  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRI006 Possible Uses of Gamma-rays at Future Intense Positron Sources undulator, positron, software, electron 586
 
  • A.O. Alrashdi, I.R. Bailey
    Lancaster University, Lancaster, United Kingdom
  • A.O. Alrashdi, I.R. Bailey, D. Newton
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • A.O. Alrashdi
    KACST, Riyadh, Kingdom of Saudi Arabia
  • D. Newton
    The University of Liverpool, Liverpool, United Kingdom
 
  Funding: This research is funded in part by STFC grant ST/G008248/1
The baseline design of the ILC (International Linear Collider) positron source requires the production of an intense flux of gamma rays. In this paper we present an investigation of using the gamma ray beam of the ILC for additional applications, including nuclear physics. As a result of changing the collimator shape, as well as the parameters of the undulator magnets, we obtained spectra from numerical simulations using the HUSR/GSR software package. We present results from simulations and a discussion of possible future investigations in this paper.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRI006  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRI018 Influence of Growth Method on K3Sb Photocathode Structure and Performance cathode, experiment, scattering, emittance 624
 
  • S.G. Schubert, T. Kamps, M. Schmeißer
    HZB, Berlin, Germany
  • K. Attenkofer, J. Smedley
    BNL, Upton, Long Island, New York, USA
  • E.M. Muller
    SBU, Stony Brook, New York, USA
  • H.A. Padmore, J.J. Wong
    LBNL, Berkeley, California, USA
  • M. Ruiz-Osés
    Stony Brook University, Stony Brook, USA
  • J. Xie
    ANL, Argonne, Illinois, USA
 
  Funding: Supported by Director, OoS., OBES of US DOE, Contract DE-AC02-05CH11231, DE-AC02-98CH10886, KC0407-ALSJNTI0013, DE-SC0005713, germ. BMBF, Land Berlin, Helmholtz Assoc.. Use of CHESS by NSF, DMR-0936384.
Future high brightness photoelectron sources delivering >100 mA average current call for a new generation of photocathodes. Materials which qualify for this purpose should exhibit low intrinsic emittance, long lifetime and high quantum efficiency at photon energies in the visible range of the spectrum to relax drive laser requirements. A combination of material science techniques are used to determine the influence of the growth parameters on structure and performance of photocathode materials . In-situ XRR, XRD and GiSAXS measurements were performed at the synchrotron radiation sources, NSLS and CHESS. The growth of K3Sb, a precursor material of one of the prime candidates CsK2Sb, was studied intensively to optimize this intermediate growth step in terms of quantum efficiency and roughness. Three methods, a “layer by layer” type and a “super-lattice type” were examined. K3Sb exists in two crystallographic phases, namely cubic and hexagonal. The cubic phase exhibits a higher quantum efficiency at 532 nm than the hexagonal phase and transforms more easily into CsK2Sb, tuning this phase is believed to be one of the key parameters in the CsK2Sb growth.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRI018  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRI091 Resonant Slow Extraction in Synchrotrons by Using Anti-symmetric Sextupole Fields sextupole, resonance, extraction, simulation 827
 
  • Y. Zou, J.Y. Tang
    IHEP, Beijing, People's Republic of China
 
  This paper proposes a novel method for non-resonant slow extraction by using special anti-symmetric sextupole field in synchrotrons. The method has the potential in applications asking for stable slow extraction and in the halo collimation of very large machine such as LHC. Our studies show that the slow extraction by using anti-symmetric sextupole field has some advantages compared to the normal sextupole field which is the normal extraction method. One of them is that it can work at almost arbitrary tune, so that it can avoid the problem of the intensity variation caused by the ripples of magnet supplies. Studies by Hamiltonian theory and simulations which meet well show that the stable region only depends on the anti-symmetric sextupole field strength and the particles outside will be driven out in two directions which are similar to the second-order resonant extraction but with spiral steps as in the third-order resonance extraction. The beam can be extracted with a very stable intensity by gradually increasing the field strength. The multi-particle simulations by a self-made program have been carried out with a proton lattice designed for proton therapy.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRI091  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRI109 High-Power Proton-Synchrotron Collimation Studies collimation, proton, quadrupole, target 879
 
  • A. Alekou, Y. Papaphilippou
    CERN, Geneva, Switzerland
  • D. Spitzbart
    TU Vienna, Wien, Austria
 
  The High-Power Proton-Synchrotron (HP-PS) will be delivering a 2 MW proton beam to a fixed target in order to produce neutrinos within the LAGUNA-LBNO project. A mechanical collimation system is essential to prevent lost particles from hitting the super-feric dipoles of the HP-PS ring and to also limit the equipment irradiation close to the beam. This paper presents how the efficiency of the HP-PS collimator system is optimised with respect to the change of the collimators’ thickness, material and beam halo size.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRI109  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRI115 Activation Models of the ISIS Collectors simulation, controls, operation, scattering 893
 
  • H. V. Smith, D.J. Adams, B. Jones, C.M. Warsop
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
 
  The ISIS facility at the Rutherford Appleton Laboratory is a pulsed neutron and muon source, for materials and life science research. The 163 m circumference, 800 MeV, 50 Hz rapid cycling synchrotron accelerates up to 3·1013 protons per pulse. The maximum operating intensity of the synchrotron is limited by loss during acceleration, mainly due to the non-adiabatic longitudinal trapping process between 0 and 3 ms, corresponding to energies between 70 and 200 MeV. In order to minimise global machine activation and prevent component damage a beam collimation, or collector, system is installed in a five metre drift section in super-period one, to localise loss to this region. This paper summarises new results from modelling of the beam collectors using the FLUKA code [1, 2]. Understanding the current performance of the collectors is important for high intensity beam optimisation and may influence future injection upgrade plans. Residual dose rates are compared to film badge measurements, predicted energy deposition results are compared to the measured heat load on the collector cooling systems and an assessment is made of the distribution of particles exiting the collector straight.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRI115  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO003 Fast Crab Cavity Failures in HL-LHC operation, simulation, optics, luminosity 997
 
  • B. Yee-Rendón, R. Lopez-Fernandez
    CINVESTAV, Mexico City, Mexico
  • J. Barranco García
    EPFL, Lausanne, Switzerland
  • R. Calaga, R. Tomás, F. Zimmermann
    CERN, Geneva, Switzerland
 
  Crab cavities (CCs) are a key ingredient of the High-Luminosity Large Hadron Collider (HL-LHC)  to ensure head on collisions at the main experiments (ATLAS and CMS) and fully profit from the smaller β* provided by the ATS optics. At KEKB, CCs have exhibited abrupt changes of phase and voltage during a time period of few LHC turns and considering the large energy stored in the HL-LHC beam, CC failures represent a serious risk to the LHC machine protection. In this paper, we discuss the effect of CC voltage or phase changes on a time interval similar to, or longer than, necessary to dump the beam.  The simulations assume a realistic steady-state distribution to assess the beam losses for the HL-LHC.  Additionally, some strategies are studied to mitigate the damage caused by the failures.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO003  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO037 Suppression Techniques of CSR Induced Emittance Growth in ERL Arcs emittance, electron, simulation, betatron 1102
 
  • A.V. Bondarenko, T. Atkinson, A.N. Matveenko
    HZB, Berlin, Germany
 
  The Energy Recovery Linac (ERL) conception is a promising way of creating diffraction limited synchrotron light source. The high ERL beam quality (low emittance, short bunch and low energy spread) gives an opportunity to generate high brightness photon beams. One of the main requirements for the optic in such machines is the suppression of emittance growth. An important reason for beam degradation is the impact of Coherent Synchrotron Radiation (CSR) in bending magnets. CSR induced emittance dilution and methods of preservation both with and without compression are discussed in this article.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO037  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO059 Beam Energy Measurements using Resonant Spin Depolarization at ALBA polarization, resonance, beam-losses, feedback 1168
 
  • Z. Martí, U. Iriso, F. Pérez
    CELLS-ALBA Synchrotron, Cerdanyola del Vallès, Spain
 
  Energy measurements with precision down to 10-5 are inferred from the lifetime evolution when the beam is depolarized using AC kicks with the Transverse Fast Feedback system. Lifetime measurements are carried out using the DCCT, the BPM sum signals, pin-diode BLMs, and a scintillator based Beam Loss Detector. Results obtained with this instrumentation are reported.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO059  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO080 Experience with a NdFeB based 1 Tm Dipole permanent-magnet, radiation, injection, dipole 1226
 
  • F. Bødker, L.O. Baandrup, A. Baurichter, N. Hauge, K.F. Laurberg, B.R. Nielsen, G. Nielsen
    Danfysik A/S, Taastrup, Denmark
  • O. Balling
    Aarhus University, Aarhus, Denmark
  • F.B. Bendixen, P. Kjeldsteen, P. Valler
    Sintex A/S, Hobro, Denmark
  • N. Hertel, S.P. Møller, J.S. Nielsen, H.D. Thomsen
    ISA, Aarhus, Denmark
 
  Funding: *Work supported by The Danish National Advanced Technology Foundation
A 30° Green Magnet based on permanent NdFeB magnets has been developed and installed in the injection line at the ASTRID2 synchrotron light source. The cost efficient design is optimized for a 1 T field at a length of 1 m using shaped iron poles to surpass the required field homogeneity. The inherent temperature dependence of NdFeB has been passively compensated to below 30 ppm/°C. A study of potential demagnetization effects has been performed by irradiation of NdFeB samples placed directly in a 100 MeV e-beam. A high permanent magnet work point was found to result in enhanced robustness, and the risk of demagnetization was found to be negligible for typical synchrotron applications. The magnet has successfully been in operation at ASTRID2 since autumn 2013.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO080  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO093 Numerical Study of Intrinsic Ripples in J-PARC Main-ring Magnets simulation, damping, operation, acceleration 1256
 
  • Y. Shirakabe, A.Y. Molodozhentsev, M. Muto
    KEK, Tsukuba, Japan
 
  Beam ripples are one of the critical problems in high power proton synchrotrons. Magnet field ripples are considered as a main origin of the beam ripples among various possible sources. Although magnet power supply ripples are generally treated as the dominating ripple source, the load circuit parameters of the magnets and their interconnections are also playing critical roles in defining the ripple amplitudes and frequencies. In this viewpoint, the magnet power supplies are treated as simplified current sources, and the ripples generated in the circuit systems are investigated both in analytical and numerical ways. One of the findings in this direction of investigation is the existence of intrinsic ripples. The intrinsic ripples occur inevitably in the synchrotron magnets, no matter how the power supplies are producing idealistic current ramp patterns. Their amplitudes are defined by the circuit parameters such as inductance and capacitance, and the ramp parameters such as ramp rates. Some of the analytical mechanisms in generating the magnet field ripples are presented as well as the studied examples.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO093  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO095 Using One-dimensional Hall Probe to Measure the Solenoid Magnet for CSNS/RCS solenoid, linac, collimation, insertion 1262
 
  • Z. Zhang, S. Li, F. Long, X.J. Sun
    IHEP, Beijing, People's Republic of China
 
  Abstract CSNS(China Spallation Neutron Source) construction is expected to start in 2010 and will last 6.5 years. A long beam transport line is followed with the DTL linac to send the beam a rapid cycling synchrotron (RCS) accelerator. The beam will be focused by the solenoid magnet. This magnet will be located in LEBT system. It has been used with one-dimensional Hall probe to measurement by Institute of High Energy Physics, China. After the measurement, the measurement results meet the design requirements.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO095  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO107 Prediction of the Field Distribution in CERN-PS Magnets simulation, resonance, vacuum, injection 1298
 
  • D. Schoerling
    CERN, Geneva, Switzerland
 
  The CERN Proton Synchrotron (PS) has a circumference of 628 m and operates at an energy of up to 26 GeV. It uses one hundred combined function magnets, with pole shapes designed to create a dipolar and a quadrupolar field component. Each magnet is equipped with a main current circuit and five auxiliary current-circuits, which allows controlling the linear and non-linear magnetic fields. These magnets were installed in the 1950s, and part of the compensating circuits have been added or modified since then, resulting in the fact that detailed measurements of the field distribution in each individual magnet as a function of the six currents are not available. This study is performed to estimate, through deterministic and stochastic calculations, the expected mean value and standard deviation of the field harmonics of the installed magnets as input for beam dynamics simulations. The relevant results can be used to design correction schemes to minimise beam losses in the PS and to enable the acceleration of higher brightness beams required to reach the foreseen Large Hadron Collider (LHC) luminosity targets.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO107  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO109 Calculation of Heat Load on Double Mini-beta Y Undulators undulator, radiation, synchrotron-radiation, vacuum 1304
 
  • J.C. Huang, T.Y. Chung, C.-S. Hwang, Y.T. Yu
    NSRRC, Hsinchu, Taiwan
 
  Two collinear in-vacuum undulators (IU22) are adopted for light source of X-ray coherence beamline in Taiwan photon source. Each undulator is 3 meter and the drift space between two undulator is 3.991m. The synchrotron radiation is propagating in the longitudinal direction and will result in a serious heat load problem for undualtor downstream. The magnet array of undualtor downstream will received the synchrotron radiation of 142W from upstream bending magnet and undualtor. Heat load is a critical challenge for in-vacuum undulator in double mini-beta Y lattice and therefore details analysis in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO109  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO115 Progress on the Dipole Magnet for a Rapid Cycling Synchrotron dipole, simulation, magnet-design, feedback 1322
 
  • H. Witte, J.S. Berg
    BNL, Upton, Long Island, New York, USA
  • M.L. Lopes
    Fermilab, Batavia, Illinois, USA
 
  Funding: Work supported by Brookhaven Science Associates, LC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
A rapid cycling hybrid synchrotron has been proposed for the acceleration of muons from 375 to 750 GeV. The bending in a hybrid synchrotron is created with interleaved cold and warm dipoles; the warm dipoles modulate the average bending field for the different particle momenta. A key challenge for the warm dipole magnets is the ramp rate, which is equivalent to frequencies of 400-1000 Hz. Recently a design has been suggested which employs 6.5 Si steel for the return yoke and FeCo for the poles. In simulations the design has shown a good performance (up to 2T) due to the FeCo and acceptable power losses by employing SiFe with a high Si content. The paper discusses the effect of eddy currents induced in the laminations and hysteresis effects on the field quality.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO115  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPME003 Effect of CSR Shielding in the Compact Linear Collider shielding, radiation, electron, simulation 1337
 
  • J. Esberg, R. Apsimon, A. Latina, D. Schulte
    CERN, Geneva, Switzerland
 
  The Drive Beam complex of the Compact LInear Collider must use short bunches with a large charge making beam transport susceptible to unwanted effects of Coherent Synchrotron Radiation emitted in the dipole magnets. We here present the effects of transporting the beam within a limited aperture which decreases the magnitude of the CSR wake. The effect, known as CSR shielding, eases the design of key components of the facility.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPME003  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPME004 Lowering the CLIC IP Horizontal Beta Function luminosity, sextupole, photon, radiation 1340
 
  • H. Garcia, D. Schulte, R. Tomás
    CERN, Geneva, Switzerland
  • H. Garcia
    UPC, Barcelona, Spain
 
  In order to alleviate the beamstrahlung photon emission, the beams at the CLIC Interaction Point must be flat. We propose to explore this limit reducing the horizontal beta function for CLIC at 500 GeV c.o.m. energy to half of its nominal value. This could increase the photon emission but it also increases luminosity and might allow reducing the bunch charge keeping the same luminosity. This configuration can also be considered for lower energies where beamstrahlung is less critical.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPME004  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPME028 Flat Bunches in the LHC impedance, emittance, operation, luminosity 1413
 
  • E.N. Shaposhnikova, T. Argyropoulos, P. Baudrenghien, J. F. Esteban Müller, T. Mastoridis, G. Papotti, B. Salvant, H. Timko
    CERN, Geneva, Switzerland
  • C.M. Bhat, A.V. Burov
    Fermilab, Batavia, Illinois, USA
 
  A high-harmonic RF system that could serve multiple purposes was proposed for the LHC. Possible applications of the second harmonic RF system include beam stabilisation in the longitudinal plane in the absence of wide-band longitudinal feedback and reduction of bunch peak line-density. Apart from other useful features, flat bunches are expected to produce less beam-induced heating at frequencies below 1 GHz, the frequency region critical for some LHC equipment. The latter, however, can also be achieved by de-populating the bunch centre. This was demonstrated during the dedicated machine development session in the LHC using RF phase modulation. In this paper the results of tests with single bunches and nominal LHC beams are presented and the possible use of this technique in LHC operation is discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPME028  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRI016 First Studies on Ion Effects in the Accelerator ELSA ion, electron, feedback, quadrupole 1585
 
  • D. Sauerland, W. Hillert, M.T. Switka
    ELSA, Bonn, Germany
  • A. Markoviḱ, U. van Rienen
    Rostock University, Faculty of Computer Science and Electrical Engineering, Rostock, Germany
  • A. Meseck
    HZB, Berlin, Germany
 
  Funding: BMBF (Federal Ministry of Education and Research)
In the ELSA stretcher ring electrons are accelerated by a fast energy ramp of 6 GeV/s to a beam energy of 3.2 GeV. The high energetic electrons ionize the residual gas molecules in the beam pipe by collisions or synchrotron radiation. The generated ions in turn accumulate inside the beam potential, causing several undesired effects such as tune shifts and beam instabilities. These effects are studied experimentally at ELSA using its full diagnostic capabilities. Both tune shifts due to beam neutralization and transversal beam-ion instabilities can be determined from the beam spectrum. Additionally the beam's transfer function can be measured using a broadband transversal kicker. In the stretcher ring at a beam energy of 1.2 GeV, a periodic beam blow-up was detected in the horizontal plane. Additional measurements of the transversal beam spectrum and ns-time resolution observations with a streak camera identified this blow-up as a coherent dipole oscillation of the beam. This horizontal instability is presumably caused by trapped ions, as there is a strong correlation with the high voltage-bias of the clearing electrodes.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI016  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRI018 Transition Energy Crossing in the Future FAIR SIS-100 for Proton Operation space-charge, proton, quadrupole, feedback 1591
 
  • S. Aumon, D. Ondreka, S. Sorge
    GSI, Darmstadt, Germany
  • K. Groß
    TEMF, TU Darmstadt, Darmstadt, Germany
 
  The FAIR project foresees to deliver an intense single bunch beam with 2·1013 protons of 50ns duration to the experiments. Besides the original γt-shift scenario, an alternative RF proton cycle has been recently studied: the transition energy is crossed with possibly a gamma transition jump. The flexibility of the lattice allowing to change the value of γt, a transition crossing has been considered for two possible energies. This challenging scenario is limited by several constraints such as space charge, a small momentum acceptance and by the required RF manipulations aiming to produce the final single bunch beam in the future SIS-100. This paper focuses on how the high intensity beam would suffer of the mismatch in bunch length at transition and new sets of beam parameter are defined for the proton beam. The jump quadrupole system is also presented. The applicability of the foreseen longitudinal feedback system to cure quadrupolar oscillations is also discussed in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI018  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRI022 Beam-Beam Studies in LHC- Beam Loss and Bunch Shortening emittance, simulation, resonance, luminosity 1603
 
  • K. Ohmi
    KEK, Ibaraki, Japan
 
  In Hadron colliders, luminosity degrade various mechanism. Beam-beam related emittance growth is caused by resonances induced by crossing angle. Tune spread due to chromaticity enhances the resonances effect. A bunch shortening phenomenon related to beam-beam interaction has been observed in LHC. The bunch length has an anti-correlation with transverse emittance. This phenomenon has been studied using a weak-strong beam-beam simulation (BBWS code).  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI022  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRI042 Numerical Study of the Microbunching Instability at UVSOR-III: Influence of the Resistive and Inductive Impedances electron, impedance, wakefield, simulation 1656
 
  • E. Roussel, S. Bielawski, C. Evain, C. Szwaj
    PhLAM/CERCLA, Villeneuve d'Ascq Cedex, France
  • M. Adachi, M. Katoh, S.I. Kimura, T. Konomi
    UVSOR, Okazaki, Japan
  • M. Hosaka, Y. Takashima, N. Yamamoto
    Nagoya University, Nagoya, Japan
  • K.S. Ilin, J. Raasch, A. Scheuring, M. Siegel, P. Thoma
    KIT, Karlsruhe, Germany
  • H. Zen
    Kyoto University, Kyoto, Japan
 
  At high charge, relativistic electron bunches circulating in storage rings undergo an instability, the so-called microbunching or the CSR (Coherent Synchrotron Radiation) instability. This instability is due to the interaction of the electrons with their own radiation and leads to the formation of microstructures (at millimeter scale) in the longitudinal phase space. Thanks to a new type of detector, based on superconducting thin film YBCO, it is now possible to observe directly these microstructures and follow their temporal evolution*. These experimental observations open a new way to make severe comparisons with theory. Here we present results of the modeling of the dynamics at UVSOR-III using a one dimensional Vlasov-Fokker-Planck equation. We show that to obtain a relatively good agreement between numerical simulations and experiments, we have to take into account several types of impedance such as the shielded CSR impedance but also the resistive and inductive impedances.
* First Direct, Real Time, Recording of the CSR Pulses Emitted During the Microbunching Instability, using Thin Film YBCO Detectors at UVSOR-III, IPAC2014
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI042  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRI045 Beam Coupling Impedance Simulation in the Frequency Domain for the SIS100 Synchrotron impedance, coupling, space-charge, dipole 1665
 
  • U. Niedermayer, O. Boine-Frankenheim
    TEMF, TU Darmstadt, Darmstadt, Germany
  • O. Boine-Frankenheim
    GSI, Darmstadt, Germany
 
  For the quantification of intensity thresholds due to coherent instabilities and beam induced heating in the FAIR synchrotron SIS100 a detailed knowledge of transverse and longitudinal beam coupling impedance is required. Due to the rather long proton and heavy-ion bunches, the relevant spectrum is below 100MHz. For the computation of beam coupling impedances in the low frequency regime, frequency domain methods are more advantageous than (explicit) time domain methods. We show the setup of a 2D finite element code that allows to compute the impedance for arbitrary longituninally homogeneous beam and structure shapes. Perfectly conducting pipes, a dispersive ferrite tube, and thin resistive beam pipe serve as test cases. The influence of the beam velocity on the coupling impedance is studied.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI045  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRI047 Electromagnetic Modeling of Open Cell Conductive Foams for High Synchrotron Radiation Rings impedance, coupling, synchrotron-radiation, radiation 1671
 
  • S. Petracca, A. Stabile
    U. Sannio, Benevento, Italy
  • A. Stabile
    INFN-Salerno, Baronissi, Salerno, Italy
 
  Open cell conductive foams (OCMF) have been recently suggested as an alternative to perforated metal patches for efficiently handling gas desorption from the beam pipe wall due to intense synchrotron radiation, yielding superior performance in terms of residual gas concentration and beam shielding. Experimental work is ongoing to assess their properties, including secondary emission yields and beam coupling impedances. In this communication we attempt a review of the Literature about electromagnetic modeling of OCMF, and outline a general framework for computing the surface impedance of OCMF walls and deriving the longitudinal and transverse beam coupling impedances thereof, based on effective medium theory and electromagnetic reciprocity. A critical analysis of the relevant modeling approximations is included.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI047  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRI052 Analysis of Single Bunch Measurements at the ALBA Storage Ring impedance, vacuum, undulator, simulation 1686
 
  • T.F.G. Günzel, U. Iriso, F. Pérez
    CELLS-ALBA Synchrotron, Cerdanyola del Vallès, Spain
  • E. Koukovini-Platia, G. Rumolo
    CERN, Geneva, Switzerland
 
  Measurements of the vertical single bunch mode detuning and the TMCI threshold at zero chromaticity were carried out and their results were compared to the theoretical expectation. Around 65% of the found mode detuning can be explained by a developed transverse impedance model. A good bunch length parametrisation with current contributed essentially to this result. The analysis of single bunch measurements at non-zero chromaticity will also be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI052  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRI056 Beam Measurements of the LHC Impedance and Validation of the Impedance Model impedance, emittance, damping, simulation 1698
 
  • J.F. Esteban Müller, T. Argyropoulos, T. Bohl, N. Mounet, E.N. Shaposhnikova, H. Timko
    CERN, Geneva, Switzerland
 
  Different measurements of the longitudinal impedance of the LHC done with single bunches with various intensities and longitudinal emittances during measurement sessions in 2011-2012 are compared with particle simulations based on the existing LHC impedance model. The very low reactive impedance of the LHC, with Im(Z/n) around 0.1 Ohm, is not easy to measure. The most sensitive observation is the loss of Landau damping during acceleration, which shows at which energy bunches become unstable depending on their parameters. In addition, the synchrotron frequency shift due to the reactive impedance was estimated following two methods. Firstly, it was obtained from the peak-detected Schottky spectrum. Secondly, a sine modulation in the RF phase was applied to the bunches with different intensities and the modulation frequency was scanned. In both cases, the synchrotron frequency shift was of the order of the measurement precision.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI056  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRI058 Impedance Studies of the Dummy Septum for CERN PS Multi-turn Extraction impedance, extraction, septum, simulation 1704
 
  • S. Persichelli, O.E. Berrig, M. Giovannozzi, J. Herbst, J. Kuczerowski, M. Migliorati, B. Salvant
    CERN, Geneva, Switzerland
 
  A protection septum has been installed in the CERN PS section 15 in order to mitigate irradiation of the magnetic septum 16 for fast extractions towards the SPS. Impedance studies have been performed, showing that beams circulating in the septum during extraction generate sharp resonances in the coupling impedance. Impedance measurements with the wire technique have been performed, showing a good agreement with simulations. Instability rise times of trapped modes have been evaluated and compared to extraction duration. Solutions for reducing the impact on the stability of the beam have been considered.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI058  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRI060 Impedance Studies for the PS Finemet® Loaded Longitudinal Damper impedance, simulation, cavity, kicker 1708
 
  • S. Persichelli, M. Migliorati, M.M. Paoluzzi, B. Salvant
    CERN, Geneva, Switzerland
 
  The impedance of the Finemet® loaded longitudinal damper cavity, installed in the CERN Proton Synchrotron straight section 02 during the Long Shutdown 2013-2014, has been evaluated. Time domain simulations with CST Particle Studio have been performed in order to get the longitudinal and transverse impedance of the device and make a comparison with the longitudinal impedance that was measured for a single cell prototype.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI060  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRI069 NSLS-II Commissioning with 500 MHZ 7-CELL PETRA-III Cavity storage-ring, cavity, feedback, accumulation 1724
 
  • A. Blednykh, G. Bassi, W.X. Cheng, J. Choi, Y. Hidaka, S.L. Kramer, Y. Li, B. Podobedov, J. Rose, T.V. Shaftan, G.M. Wang, F.J. Willeke, L.-H. Yu
    BNL, Upton, Long Island, New York, USA
 
  The NSLS-II storage ring has been commissioned during Phase 1 with 500 MHz 7-cell PETRA-III RF cavity. In this paper we present our first beam-measured data on instabilities and collective effects with a normal conducting RF system.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI069  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRI072 Status and Performance of Bunch-by-bunch Feedback at BESSY II and MLS feedback, operation, diagnostics, beam-loading 1733
 
  • A. Schälicke, P. Goslawski, M. Ries, M. Ruprecht
    HZB, Berlin, Germany
 
  Funding: Work supported by German Bundesministerium für Bildung und Forschung and Land Berlin.
Bunch-by-bunch feedback systems provide an important component in the reliable operation of electron storage rings. Modern digital bunch-by-bunch feedback systems allow efficient mitigation of multi-bunch instabilities, and at the same time offer valuable beam diagnostics. In this contribution, setup and performance of the bunch-by-bunch feedback systems at BESSY II and the MLS are presented. Longitudinal and transverse instabilities are studied under different machine conditions. The developed data analysis techniques and experimental measurements are discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI072  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRI073 Impact of Simplified Stationary Cavity Beam Loading on the Longitudinal Feedback System for SIS100 feedback, cavity, beam-loading, controls 1736
 
  • K. Groß, H. Klingbeil, D.E.M. Lens
    TEMF, TU Darmstadt, Darmstadt, Germany
  • H. Klingbeil
    GSI, Darmstadt, Germany
  • D.E.M. Lens
    TU Darmstadt, RTR, Darmstadt, Germany
 
  Funding: Work supported by the German Federal Ministry of Education and Research (BMBF) under the project 05P12RDRBF.
The main synchrotron SIS100 of the Facility for Antiproton and Ion Research (FAIR) will be equipped with a bunch-by-bunch feedback system to damp longitudinal beam oscillations. In the basic layout, one three-tap finite impulse response (FIR) filter will be used for each single bunch and oscillation mode. The detected oscillations are used to generate a correction voltage in dedicated broadband radio frequency (RF) cavities. The digital filter is completely described by two parameters, the feedback gain and the passband center frequency, which have to be defined depending on the longitudinal beam dynamics. In earlier works*, the performance of the closed loop control with such an FIR-filter was analyzed and compared to simulations and measurements with respect to the damping of coherent dipole and quadrupole modes, the first modes of oscillation. This contribution analyzes the influence of cavity beam loading on the closed loop performance and the choice of the feedback gain and passband center frequency to verify future high current operation at FAIR.
* H. Klingbeil et al., IEEE Trans. Nuc. Sci., Vol. 54, No. 6, 2007 and D. Lens et al., Phys. Rev. STAB 16, 032801, 2013.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI073  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRI114 Performance of the TPS RF Reference Distribution Links timing, booster, distributed, network 1836
 
  • K.T. Hsu, Y.-S. Cheng, K.H. Hu, C.Y. Liao, C.Y. Wu
    NSRRC, Hsinchu, Taiwan
 
  A fibre based 500 MHz RF reference distribution system with femtosecond jitter and temperature drift compensation will deploy for the Taiwan Photon Source (TPS) project. The system consists of several pair’s commercial available continue wave RF fibre links. Installation is performed in the 1st quarter of 2014. Characterize the performance of the install system are in proceeding. Jitter of the transfer RF reference and drift due to ambient temperature effects are investigated systematically. Instrumentation to support the measurement are also addressed. Follow up plans to revise the system configuration and work out to transfer low jitter RF reference to time-resolved experimental stations are in considered. Measurement results will be summarized in this report.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI114  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEOAB02 Wide-band Induction Acceleration in the KEK Digital Accelerator acceleration, induction, ion, experiment 1893
 
  • T. Yoshimoto, X. Liu, K. Takayama
    TIT, Yokohama, Japan
  • T. Adachi, K. Takayama
    Sokendai, Ibaraki, Japan
  • T. Adachi, T. Arai, E. Kadokura, T. Kawakubo, X. Liu, K. Okamura, S. Takano, K. Takayama, T. Yoshimoto
    KEK, Ibaraki, Japan
  • H. Asao, Y. Okada
    NETS, Fuchu-shi, Japan
  • M. Hirose, H. Kobayashi
    Tokyo City University, Tokyo, Japan
 
  Induction synchrotron can accelerate any ion species directly to higher energy without a large pre-accelerator, due to its intrinsic nature that there is no frequency band-width limitation below 1 MHz. KEK digital accelerator (DA) is a small scale prototype of fast cycling induction synchrotron. Recently it has been confirmed that heavy ion beams of mass to charge ratio A/Q = 4 are stably accelerated from 200 keV to a few tens of MeV in this accelerator ring*, where the revolution frequency changes from82 kHz to 1 MHz. Acceleration and beam confinement are separately realized by pulse voltages generated in induction cells (1 to 1 pulse transformers) driven by the switching power supply (SPS)**. Everything is simply maneuvered by controlling of gate signals of solid-state switching elements employed in the SPS. For this purpose, the fully programmed acceleration control system based on the FPGA has been developed. In this paper, the wide-band induction acceleration is presented with experimental results. Further possibilities of beam handling in the induction synchrotron, such as super bunch and novel beam handling techniques, are discussed.
* K.Takayama et al., to be submitted to Phys. Rev. Lett. (2013).
** T.Iwashita et al., Phys. Rev. ST-AB 14, 071301(2011).
 
slides icon Slides WEOAB02 [8.935 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEOAB02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO001 Effect of Beam Dynamics Processes in the Low Energy Ring ThomX simulation, photon, scattering, synchrotron-radiation 1933
 
  • N. Delerue, C. Bruni, I. Chaikovska, I.V. Drebot, M. Jacquet, A. Variola, Z.F. Zomer
    LAL, Orsay, France
  • A. Loulergue
    SOLEIL, Gif-sur-Yvette, France
 
  Funding: This work is supported by the French "Agence Nationale de la Recherche" as part of the program "investing in the future" under reference ANR-10-EQPX-51 and by grants from Région Ile-de-France.
As part of the R&D for the 50 MeV ThomX Compton source project, we have studied the effect of several beam dynamics processes on the evolution of the beam in the ring. The processes studied include among others Compton scattering, intrabeam scattering, coherent synchrotron radiation. We have performed extensive simulations of a full injection/extraction cycle (400000 turns). We show how each of these processes degrades the flux of photons produced and how a feedback system contributes to recovering most of the flux.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO001  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO028 A Robinson Wiggler Proposal for the Metrology Light Source emittance, wiggler, damping, radiation 2001
 
  • T. Goetsch, J. Feikes, M. Ries, G. Wüstefeld
    HZB, Berlin, Germany
 
  Funding: Work supported by German Bundesministerium für Bildung und Forschung and Land Berlin.
The Metrology Light Source (MLS), situated in Berlin (Germany) is owned by the Physikalisch-Technische Bundesanstalt and was built / is operated by the Helmholtz-Zentrum Berlin. It is an electron storage ring operating from 105 MeV to 630 MeV. The MLS serves as the national primary source standard from the near infrared to the extreme ultraviolet spectral region *. Users of synchrotron radiation demand an improved lifetime which is Touschek dominated at the MLS. A possible solution to meet this demand is to lengthen the electron bunches. By installing a Robinson Wiggler (RW), damping effects can be transferred from the longitudinal to the horizontal plane **,***, thereby increasing the energy spread and reducing the horizontal emittance. By varying the energy spread, the bunch length can be increased and thus the scattering rate decreased, resulting in an improved lifetime. According to preliminary estimations a considerable increase in lifetime seems achievable, while preserving the source size.
* R. Klein et al., Phys. Rev. ST-AB 11, 110701, 2008
** K. W. Robinson, Radiation effects in circular electron accelerators, 1958.
*** H. Abualrob et al., MOPPP062, IPAC2012, New Orleans, 2012
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO028  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO033 Design and Magnetic Measurements on Bi-harmonic Undulators undulator, laser, free-electron-laser, electron 2013
 
  • G. Sharma, G. Mishra
    Devi Ahilya University, Indore, India
  • S. Tripathi
    DESY, Hamburg, Germany
 
  In recent years there exists interests in harmonic lasing of free electron lasers for short wavelength operation with low energy electron beams. In a planar undulator , the electron radiates at odd harmonics on axis however the harmonic gain of the FEL is much less than that of fundamental. It has been shown in earlier works that it is possible to enhance the harmonic radiation by increasing the harmonic wiggler field to the fundamental by putting high permeability shims inside the undulator. The common material is the vanadium permendur (μ ~800) , which has been used effectively to design the harmonic undulator. In this paper, we report the design and fabrication of seventh and ninth harmonic undulator for free electron laser applications. We use CRGO shims with μ ~ 2-3. The permanent magnet undulator is a four block per period design. The undulator is a variable gap type and consists of NdFeB magnets with six periods, each period is of 5cm length. The undulator has been measured in hall probe and pulsed wire bench. It is shown that the pulsed wire magnetic measurements yields results in close agreement with hall probe results.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO033  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO038 Possibility for Quasi-periodic Knot-APPLE Undulator undulator, radiation, polarization, synchrotron-radiation 2026
 
  • S. Sasaki, A. Miyamoto
    HSRC, Higashi-Hiroshima, Japan
  • N. Kawata, T. Mitsuyasu
    Hiroshima University, Graduate School of Science, Higashi-Hiroshima, Japan
  • S. Qiao
    SIMIT, Shanghai, People's Republic of China
 
  An intense on-axis radiation power from an undulator is a serious problem especially for a low-photon-energy beamline in a facility with high or medium energy storage ring. This problem may be solved by using a Figure-8, a Pera, or a Knot undulator configuration*,**. However, these schemes are useless for variably polarizing undulators such as an APPLE undulator and other similar variations since such devices are not capable for reducing on-axis power density in the linear mode. In these circumstances, we have completed a conceptual magnet design of Knot-APPLE udulator which is capable to generate elliptically polarized radiation as well as linearly polarized radiation. This pure permanent magnet device is equipped with a motion mechanism of APPLE undulator. In this paper, we present detailed magnet design feature, magnetic field distributions, and radiation properties including variations of polarization in comparisons with other exotic devices. In addition, a possibility to introduce a quasi-periodicity in this type of undulator is considered in order to achieve further reduction of second and third harmonic radiation intensities.
*S. Sasaki, "Undulators, wigglers and their applications," p.237-243 (Ed. by H. Onuki and P. Elleaume, Taylor & Francis Inc, New York, 2003).
**S. Qiao, et. al, Rev. Sci. Instrum., 80, 085108 (2009).
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO038  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO052 The ThomX Project Status laser, cavity, framework, gun 2062
 
  • A. Variola, D. Auguste, A. Blin, J. Bonis, S. Bouaziz, C. Bruni, K. Cassou, I. Chaikovska, S. Chancé, V. Chaumat, R. Chiche, P. Cornebise, O. Dalifard, N. Delerue, T. Demma, I.V. Drebot, K. Dupraz, N. El Kamchi, M. El Khaldi, P. Gauron, A. Gonnin, E. Guerard, J. Haissinski, M. Jacquet, D. Jehanno, M. Jouvin, E. Jules, F. Labaye, M. Lacroix, M. Langlet, D. Le Guidec, P. Lepercq, R. Marie, J.C. Marrucho, A. Martens, B. Mercier, E. Mistretta, H. Monard, Y. Peinaud, A. Pérus, B. Pieyre, E. Plaige, C. Prevost, T. Roulet, R. Roux, V. Soskov, A. Stocchi, C. Vallerand, A. Vermes, F. Wicek, Y. Yan, J.F. Zhang, Z.F. Zomer
    LAL, Orsay, France
  • P. Alexandre, C. Benabderrahmane, F. Bouvet, L. Cassinari, M.-E. Couprie, P. Deblay, Y. Dietrich, M. Diop, M.E. El Ajjouri, M.P. Gacoin, C. Herbeaux, N. Hubert, M. Labat, P. Lebasque, A. Lestrade, R. Lopes, A. Loulergue, P. Marchand, F. Marteau, D. Muller, A. Nadji, R. Nagaoka, J.-P. Pollina, F. Ribeiro, M. Ros, R. Sreedharan
    SOLEIL, Gif-sur-Yvette, France
  • A. Bravin, G. Le Duc, J. Susini
    ESRF, Grenoble, France
  • C. Bruyère, A. Cobessi, W. Del Net, J.L. Hazemann, J.L. Hodeau, P. Jeantet, J. Lacipière, O. Proux
    Institut NEEL, Grenoble, France
  • E. Cormier, J. Lhermite
    CELIA, Talence, France
  • L. De Viguerie, H. Rousselière, P. Walter
    LAMS, Universite Pierre et Marie Curie, Ivry Sur Seine, France
  • H. Elleaume, F. Esteve
    INSERM, Grenoble Institut des Neurosciences, La Tronche, France
  • J.M. Horodinsky, N. Pauwels, P. Robert
    CNRS (IRSD), Orsay, France
  • S. Sierra
    TED, Velizy, France
 
  Funding: Work supported by the French Agence Nationale de la Recherche as part of the program EQUIPEX under reference ANR-10-EQPX-51, the Ile de France region, CNRS-IN2P3 and Université Paris Sud XI
A collaboration of seven research institutes and an industry has been set up for the ThomX project, a compact Compton Backscattering Source (CBS) based in Orsay – France. After a period of study and definition of the machine performances a complete description of all the systems has been provided. The infrastructures work is started and the main systems are in the call for tender phase. In this paper we will illustrate the definitive machine parameters and components characteristics. We will also update the results of the different ongoing R&D on optical resonators, fast power supplies for the injection kickers and on the electron gun.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO052  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO060 Status of the FAIR Accelerator Facility ion, antiproton, dipole, target 2084
 
  • O.K. Kester, W.A. Barth, A. Dolinskyy, F. Hagenbuck, K. Knie, H. Reich-Sprenger, H. Simon, P.J. Spiller, U. Weinrich, M. Winkler
    GSI, Darmstadt, Germany
  • R. Maier, D. Prasuhn
    FZJ, Jülich, Germany
 
  Funding: Supported by the BMBF and state of Hessen
The accelerators of the facility for Antiproton and Ion Research – FAIR are designed to deliver stable and rare isotope beams covering a huge range of intensities and beam energies. The ion and antiproton beams for the experiments will have highest beam quality for cutting edge physics to be conducted within the four research pillars CBM, NuSTAR, APPA and PANDA. The challenges of the accelerator facility to be established are related to the systems comprising magnets, cryo technology, rf-technology, vacuum etc. FAIR will employ heavy ion synchrotrons for highest intensities, antiproton and rare isotope production stations, high resolution separators and several storage rings where beam cooling can be applied. Intense work on test infrastructure for the huge number of superconducting magnets of the FAIR machines is ongoing at GSI and several partner labs. In addition, the GSI accelerator facility is being prepared to serve as injector for the FAIR accelerators. As the construction of the FAIR facility and procurement has started, an overview of the designs, procurements status and infrastructure preparation will be provided.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO060  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO062 Reacceleration of Ion Beams for Particle Therapy ion, extraction, operation, acceleration 2091
 
  • C. Schömers, R. Cee, E. Feldmeier, M. Galonska, Th. Haberer, A. Peters, S. Scheloske
    HIT, Heidelberg, Germany
 
  At the Heidelberg Ion-Beam Therapy Centre (HIT) cancer patients are treated using the raster-scanning method. A synchrotron provides pencil beams in therapy quality for 255 energy steps per ion type allowing to vary the penetration depth and thus to irradiate tumors slice-by-slice. So far, changing the beam energy necessitates a new synchrotron cycle, including all phases without beam extraction. As the no. of ions that can be accelerated in the synchrotron usually exceeds the required no. of ions for one energy slice, treatment time could be significantly reduced by reaccelerating or decelerating the remaining ions to the next energy level. By alternating acceleration and extraction phases several slices could be irradiated with only short interruptions. Therefore the reacceleration of a transversally blown up beam – due to RF-knockout extraction – must be investigated, beam losses have to be minimized. To estimate the benefit of this operation mode, treatment time has been simulated and compared to the time achieved in the past. A reduction of up to 65% is possible and more patients can be treated! Simulations and first tests of a reaccelerated and extracted beam are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO062  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO081 Status of MedAustron – The Austrian Ion Therapy and Research Centre injection, extraction, proton, ion 2146
 
  • F. Osmić, A. Koschik, P. Urschütz
    EBG MedAustron, Wr. Neustadt, Austria
  • M. Benedikt
    CERN, Geneva, Switzerland
 
  MedAustron is the Austrian centre for hadron therapy and non-clinical research. The accelerator design is based on the PIMMS study * and features proton beams of up to 800 MeV and carbon ion beams of up to 400 MeV/n. The accelerator is currently being installed and the beam commissioning has started early 2013. The injector comprising three ECR sources, an RFQ and an IH-mode structure has already been qualified; the synchrotron commissioning shall start in March 2014. Certification of the therapy accelerator following the European Medical Device Directive (MDD) is well under way with strong partners from industry involved in the process. The status of the overall facility including an overview of the recent commissioning results will be presented in this paper.
* P. J. Bryant et al., “Proton-Ion Medical Machine Study (PIMMS), 2,” Aug 2000.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO081  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO091 Development of Acceleration Technique for Hadron Therapy in JINR ion, cyclotron, extraction, proton 2171
 
  • E. Syresin
    JINR, Dubna, Moscow Region, Russia
 
  Development of accelerators for hadron therapy is one of JINR activities in the field of acceleration technique. The JINR-IBA collaboration has developed and constructed the C235-V3 cyclotron for Dimitrovgrad hospital center of the proton therapy. Proton transmission in C235-V3 from radius 0.3m to 1.03 m is 72% without beam cutting diaphragms, the extraction efficiency is 62%. The cyclotron was delivered in this center in 2012. The project of the medical carbon synchrotron together with superconducting gantry was developed in JINR. Carbon ion beams are effectively used for cancer treatment. The PET is the most effective way of tumor diagnostics. The radioactive carbon ion beam could allow both these advantages to be combined. JINR-NIRS collaboration develops formation of a primary radioactive ion beam for the scanning radiation and on line PET diagnostic. A superconducting cyclotron C400 was designed by the IBA-JINR collaboration. This cyclotron will be used for therapy with proton, helium and carbon ions.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO091  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO092 Comparisons and Simulations of Superconducting Dipole Magnets for JINR Carbon Ion Gantry dipole, ion, vacuum, simulation 2174
 
  • E. Syresin, N.A. Morozov, D. Shvidkiy
    JINR, Dubna, Moscow Region, Russia
 
  A medical complex for carbon ion therapy has been developed in the JINR based on the own technology of the superconducting ion synchrotron - Nuclotron. One important feature of this project is related to the application of superconducting gantry. In the project, two schemes of superconducting gantries have been considered. In the first scheme, the last gantry element is supposed to be represented by a superconducting magnet with a scan region in it of 20 × 20 cm. In the second scheme the gantry consists of four 45°bending sections, each including two similar dipole magnets of a low aperture (about 120 mm). Such gantries are intended for multiple raster scanning with a wide carbon beam and the technique of layer wise irradiation with a spread out Bragg peak of several mm. The comparison and simulation of superconducting dipole magnet for JINR carbon ion gantry is under discussion.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO092  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO095 Development of Beam Line for Medical Application at ITEP-TWAC Complex proton, ion, target, extraction 2183
 
  • M.M. Kats
    ITEP, Moscow, Russia
 
  Possibilities of beam lines improvement for medical application at ITEP Accelerator Complex were observed. Existing beam lines were constructed for transport fast extracted proton beam with energy <230MeV from synchrotron U10 to three treatment rooms with fixed horizontal direction of targets irradiation. Scattering and collimation were used to distribute irradiation dose to the target volume. New beam lines are developed for transport of slow extracted proton (E<230MeV) or carbon (E<400MeV/n) beams from synchrotron UK to the same three treatment rooms and to experimental building. They will be equipped with scanning magnets. The fixed horizontal directions will be used in two rooms for treatment of special localizations in eye or head. To treat any targets from different directions compact “planar system” is developed covering irradiation directions of ±45 degrees to horizontal plane. Planar system can be used in two rooms. Main features of proposed beam lines are compared with existing and planned centers of therapy by proton and ion beams.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO095  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPME010 Implementation of Single Klystron Working Mode at the ALBA Linac klystron, linac, booster, operation 2276
 
  • R. Muñoz Horta, J.M. Gómez Cordero, F. Pérez
    CELLS-ALBA Synchrotron, Cerdanyola del Vallès, Spain
 
  ALBA is a third generation synchrotron light source whose injector consists of a 100 MeV Linac and a Booster that accelerates the beam up to the full energy, 3 GeV. Two pulsed klystrons are used to feed the Linac cavities. Klystron 1 feeds the bunching section and also the first accelerating structure. Klystron 2 feeds exclusively the second accelerating structure. Recently, a S-band switching system installed in the waveguide system allows us to use also Klystron 2 to power the low-energy section and operate the Linac at lower energy, around 65 MeV. So that injection into the Booster is still possible while, in the meantime, Klystron 1 can be connected to a dummy load for reparation. Therefore, the time response after a klystron failure is improved. Details of the waveguide upgrade and the results of the ALBA Linac operated with only one klystron are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPME010  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPME034 Soft X-ray Reflectivity and Photoelectron Yield of Technical Materials: Experimental Input for Instability Simulations in High Intensity Accelerators photon, electron, optics, radiation 2335
 
  • R. Cimino
    INFN/LNF, Frascati (Roma), Italy
  • R. Cimino
    CERN, Geneva, Switzerland
  • F. Schäfers
    HZB, Berlin, Germany
 
  High luminosity particle accelerators can suffer from serious performance drop or limitations due to interaction of the synchrotron radiation produced by the accelerator itself with the accelerator walls. Such interaction may produce a number of photoelectrons, that can either seed electron cloud related instabilities and/or interact anyway with the beam itself, potentially causing its deterioration. To correctly take these effects into account simulation codes depends on the realistic knowledge of Reflectivity and Photoelectron Yield of technical material. In this work we present relevant experimental data for some of the mostly used technical surfaces in accelerators.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPME034  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPME035 Beam Loss Suppression by Improvement of Vacuum System in J-PARC RCS injection, vacuum, ion, linac 2338
 
  • J. Kamiya, M. Kinsho, S. Noshiroya, K. Yamamoto
    JAEA/J-PARC, Tokai-mura, Japan
 
  In high power beam accelerators, pressure of the beam line directly affects the amount of the beam loss. For example, in the early 1970’s in CERN’s Intersecting Storage Ring (ISR), the ion-induced pressure bump produced the fall-off of the beam current. 3GeV synchrotron (RCS) in J-PARC is no exception. RCS is one of the most high power beam accelerators in the world. It aims the 1 MW beam power, which corresponds to the average and peak beam current of 333 uA and about 10 A, respectively. In the present stage, the injection line called L3BT line (Linac to 3GeV Beam Transport line), is the section, where the pressure notably produces the beam loss. In this line, H beam from Linac was converted to H0 by charge stripping due to the interaction between H beam and the residual gas molecules. Such H0 was not bended by the injection septum magnets and directly hit the vacuum wall. We decided to add the vacuum pumps in this line to reduce the residual gas molecules. We will present the effectivity of the additional pumps on the basis of the measured results of the pressure improvement and the beam loss suppression.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPME035  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPME037 Monte Carlo Simulations of Synchrotron Radiation and Vacuum Performance of the Max IV Light Source photon, vacuum, simulation, radiation 2344
 
  • M. Ady, R. Kersevan
    CERN, Geneva, Switzerland
  • M.J. Grabski
    MAX-lab, Lund, Sweden
 
  In the MAX IV light-source in Lund, Sweden, the intense synchrotron radiation (SR) distributed along the ring generates important thermal and vacuum effects. By means of a Monte Carlo simulation package, which is currently developed at CERN, both thermal and vacuum effects are quantitatively analysed, in particular near the crotch absorbers and the surrounding NEG-coated vacuum chambers. Using SynRad+, the beam trajectory of the upstream bending magnet is calculated; SR photons are generated and traced through the geometry until their absorption. This allows an analysis of the incident power density on the absorber, and to calculate the photon induced outgassing. The results are imported to Molflow+, a Monte Carlo vacuum simulator that works in the molecular flow regime, and the pressure in the vacuum system and the saturation length of the NEG coating are determined using iterations.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPME037  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPME052 The Installation of TPS Booster Vacuum System vacuum, booster, dipole, ion 2390
 
  • C.M. Cheng, B.Y. Chen, J.-R. Chen, G.-Y. Hsiung, S-N. Hsu, T.Y. Lee, Y.C. Yang
    NSRRC, Hsinchu, Taiwan
  • J.-R. Chen
    National Tsing Hua University, Hsinchu, Taiwan
 
  The booster of Taiwan Photon Source (TPS) is designed for 3GeV full energy injection ramped up from 150MeV. It is a synchrotron accelerator of 496.8m. The major vacuum system is elliptical tube made of 304 stainless steel. The inner cross section is 35*20 mm with 0.7 mm thickness. The elliptical tubes were chemical cleaned and ozonated water cleaned before installation. The bending tube was assembled and aligned into dipole magnet at laboratory. The BPM support and pumping chamber support was aligned with 0.3 mm deviation. The BPM chamber and pumping chamber was assembled firstly. The elliptical tube and bellows was installed to connect BPM, pumping chamber and bending chamber. The cold cathode gauge and TMP was mounted on pumping chamber. The pressure data and residual gas analysis will be described in the paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPME052  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPME059 Conceptual Design of a Storage Ring Vacuum System Compatible with Implementation of a Seven Bend Achromat Lattice at the APS vacuum, radiation, storage-ring, photon 2409
 
  • B.K. Stillwell, B. Brajuskovic, H. Cease, D.L. Fallin, J. R. Noonan, M.M. O'Neill
    ANL, Argonne, Ilinois, USA
 
  A conceptual design is presented for a storage ring vacuum system at the Advanced Photon Source (APS) which is compatible with a multi-bend achromat (MBA) lattice under development for the APS Upgrade (APS-U) project [1]. Together, the interface with the magnets, required quantity and stability of beam position monitors, synchrotron radiation loading, and beam physics requirements place a demanding set of constraints on the vacuum system design. However, the requirements can be satisfied with a hybrid system which combines conventional extruded aluminum chambers incorporating “antechambers” with a variety of simpler tubular chambers made variously of copper-plated stainless steel, NEG-coated copper, and bare aluminum. This hybrid system has advantages over an all NEG-coated copper system with regard to overall project risk, required installation time, and maintainability.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPME059  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRI089 Facility for Assembling and Serial Test of Superconducting Magnets booster, collider, quadrupole, dipole 2700
 
  • S.A. Kostromin, N.N. Agapov, V.V. Borisov, A.R. Galimov, V. Karpinsky, H.G. Khodzhibagiyan, V.S. Korolev, D. Nikiforov, N.V. Semin, A.Y. Starikov, G.V. Trubnikov
    JINR, Dubna, Moscow Region, Russia
 
  The NICA/MPD project has been started at the Joint Institute for Nuclear Research (JINR) in Dubna in 2007. The NICA accelerator complex will consist of two injector chains, the new 600 MeV/u superconducting (SC) booster synchrotron, the existing SC synchrotron Nuclotron, and the new SC collider having two rings each of 503 m in circumference. The building construction of the new test facility for simultaneous cryogenic testing of the SC magnets on 6 benches is completed at the Laboratory of High Energy Physics. Premises with an area of 2600 m2 were prepared to install the equipment. The 15 kA, 25 V pulse power supply, the helium satellite refrigerator with capacity of 100 W were commissioned first bench for magnets testing is now under assembling. First magnets cryogenic tests are planned on July. Start of the serial production of the SC magnets for the booster synchrotron is planned for the end of 2014.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRI089  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRI091 Superconducting Multipole Wigglers: State of the Art wiggler, radiation, synchrotron-radiation, vacuum 4103
 
  • N.A. Mezentsev, S.V. Khrushchev, V.K. Lev, V.A. Shkaruba, V.M. Syrovatin, V.M. Tsukanov
    BINP SB RAS, Novosibirsk, Russia
 
  Superconducting multipole wigglers installed on synchrotron radiation sources are the powerful tools for researches in various areas of science and technics. SuperConducting Multipole Wigglers (SCMWs) represent sign-alternating sequence of magnets with lateral magnetic field. Relativistic electrons, passing through such set of magnetic elements, create radiation with properties of synchrotron radiations depending on maximum field its period and poles number. The first superconducting wiggler has been made and installed on the VEPP-3 electron storage ring as generator of synchrotron radiation in 1979. Nowadays tens of wigglers are successfully working in the various synchrotron radiation centers and more than 10 of them were developed and made in Budker INP. These wigglers may be divided into 3 groups: 1- Short period 3-3.5 cm with field ~2-2.5 Tesla 2- Medium period 4.8-6 cm with field ~ 3.5-4.5 Tesla 3- Long period 14.5-20 cm with field 7-7.5Tesla. The description of magnetic properties of the wigglers, parameters of both cryogenic and vacuum systems and their technical decisions are presenteded in the report.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRI091  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRI113 Operation of SLRI Cryogenic System for a 6.5 T Superconducting Wavelength Shifter cryogenics, operation, insertion, controls 2765
 
  • S. Srichan, Ch. Dhammatong, P. Klysubun, V. Sooksrimuang, K. Takkrathoke, A. Tong-on
    SLRI, Nakhon Ratchasima, Thailand
 
  The cryogenic plant at Synchrotron Light Research Institute was designed to be used as the main liquid helium supply for a superconducting wavelength shifter, in order to generate high-energy X-rays from the relatively low-energy 1.2 GeV Siam Photon Source storage ring. The plant was installed and successfully commissioned in the year 2009. During the past three years since commissioning, the cryogenic system had been in operation to perform helium liquefaction without a superconducting magnet. Since the installation of a 6.5 T SWLS in September 2013, the cryogenic system has begun its operation with a full-time load. In this work, the first operation of the cryogenic system with a superconducting insertion device is presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRI113  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THOAA03 Transverse Intra-bunch Feedback in the J-PARC MR feedback, kicker, injection, betatron 2786
 
  • K. Nakamura
    Kyoto University, Kyoto, Japan
  • Y.H. Chin, T. Obina, M. Okada, M. Tobiyama
    KEK, Ibaraki, Japan
  • T. Koseki, T. Toyama
    J-PARC, KEK & JAEA, Ibaraki-ken, Japan
  • Y. Shobuda
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken, Japan
 
  We will report the development of a new broadband (bandwidth of around 100MHz) feedback system for suppression of intra-bunch oscillations and reduction of particle losses at the J-PARC Main Ring (MR). A new BPM has been designed based on the exponential coupler stripline type (the diameter of 134 mm and the length of 300 mm) and it is now under fabrication. In this BPM system, the frequency characteristics are corrected using the equalizer as bunch signals are differentiated. The design detail and the performance of the new BPM as well as preparation of newly installed exciter and power amplifiers will be presented. We will also report beam test results of head-tail mode suppression at 3 GeV with the bunch length of 150-250 ns.  
slides icon Slides THOAA03 [1.149 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THOAA03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THOBA01 A New Scheme for Electro-optic Sampling at Record Repetition Rates : Principle and Application to the First (turn-by-turn) Recordings of THz CSR Bursts at SOLEIL laser, real-time, storage-ring, detector 2794
 
  • E. Roussel, S. Bielawski, C. Evain, M. Le Parquier, C. Szwaj
    PhLAM/CERCLA, Villeneuve d'Ascq Cedex, France
  • J.B. Brubach, L. Cassinari, M.-E. Couprie, M. Labat, L. Manceron, J.P. Ricaud, P. Roy, M.-A. Tordeux
    SOLEIL, Gif-sur-Yvette, France
 
  The microbunching instability is an ubiquitous problem in storage rings at high current density. However, the involved fast time-scales hampered the possibility to make direct real-time recordings of theses structures. When the structures occur at a cm scale, recent works at UVSOR*, revealed that direct recording of the CSR electric field with ultra-high speed electronics (17 ps) provides extremely precious informations on the microbunching dynamics. However, when CSR occurs at THz frequencies (and is thus out of reach of electronics), the problem remained largely open. Here we present a new opto-electronic strategy that enabled to record series of successive electric field pulses shapes with picosecond resolution (including carrier and envelope), every 12 ns, over a total duration of several milliseconds. We also present the first experimental results obtained with this method at Synchrotron SOLEIL, above the microbunching instability threshold, and we present direct tests of Vlasov-Fokker-Planck and macroparticle models. The method can be applied to the detection of ps electric fields in other situations where high repetition rate is also an issue.
* First Direct, Real Time, Recording of the CSR Pulses Emitted During the
Microbunching Instability, using Thin Film YBCO Detectors at UVSOR-III, IPAC2014
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THOBA01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THOAB01 Recent Progress and Future Plan of Heavy-ion Radiotherapy Facility, HIMAC ion, operation, heavy-ion, flattop 2812
 
  • K. Noda, T. Furukawa, Y. Hara, Y. Iwata, N. Kanematsu, K. Katagiri, A. Kitagawa, K. Mizushima, S. Mori, T. Murakami, M. Muramatsu, M. Nakao, A. Noda, S. Sato, T. Shirai, E. Takada, Y. Takei
    NIRS, Chiba-shi, Japan
 
  The first clinical trial with a carbon-ion beam generated from HIMAC was conducted in June 1994. Based on more than ten years of experience with HIMAC, a pilot facility of a standard carbon-ion radiotherapy facility in Japan, was constructed at Gunma University. Owing to the successfully operation of the pilot facility, Saga-HIMAT and i-ROCK in Kanagawa have been progressed. In addition, NIRS has developed the new treatment research project for the further development of radiotherapy with, based on the pencil-beam 3D scanning for both the static and moving targets. This treatment procedure has been successfully carried out with a pencil-beam 3D scanning since May 2011. Owing to the development of NIRS 3D scanning, the i-ROCK project decided to employ the NIRS 3D scanning. As a future plan, further, NIRS has developed a superconducting rotating gantry, and we are going to just start a study of a superconducting accelerator for the ion radiotherapy. The recent progress and the future plan of HIMAC for the heavy-ion cancer radiotherapy will be reported.  
slides icon Slides THOAB01 [10.523 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THOAB01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THYB01 Status and Trends in Magnet Power Converter Technology for Accelerators controls, power-supply, booster, FPGA 2822
 
  • F. Long
    IHEP, Beijing, People's Republic of China
 
  Power converters (PC) is one of the key technologies for accelerators. During recent years with the development of power semiconductor devices, optimization of topologies, and improvement of manufacturing, the voltage and current ratings and power densities have greatly increased for PCs. Various PCs are required for various magnets in accelerators, but in principle the design for main topologies and the methodology for stabilizing the output are similar. Main topologies, digital control systems,and considerations for the future about the magnet PC are briefly discussed in this presentation.  
slides icon Slides THYB01 [2.477 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THYB01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPPA00 EPS-AG Prize d) Presentation cryogenics, electron, operation, simulation 2837
 
  • J.F. Esteban Müller
    EPFL, Lausanne, Switzerland
  • J.F. Esteban Müller
    CERN, Geneva, Switzerland
 
  EPS-AG Prize d) Presentation. The Prize d) winner will present the work for which the prize is awarded, on the basis of the judging by the EPS-AG Prizes Selectin Committee.  
slides icon Slides THPPA00 [3.432 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPPA00  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPPA03 The MAX-lab Story; From Microtron to MAX IV microtron, electron, storage-ring, synchrotron-radiation 2852
 
  • M. Eriksson
    MAX-lab, Lund, Sweden
 
  The MAX story started with the design and construction of a small Race-Track Microtron 1973-1979. This microtron was later followed by the synchrotron radiation storage rings MAX I, MAX II, MAX III and the MAX IV facility, the latter consisting of two storage rings operated at 1.5 and 3 Gev respectively and also including a full energy injector linac. It was quite clear from the very beginning that conventional accelerator technology not was matching the boundary conditions in terms of the staff size and limited economical resources at MAX. We had to find new technical solutions based on mass-produced industrial components and an extensive usage of CNC machining to match the turbulent development of synchrotron radiation sources. This article describes some of the most important features of the accelerators developed at MAX-lab and covers also the design philosophy behind the early ideas for designing a close to Diffraction Limited Storage Ring. Finally, the author and MAX staff wants to thank the prize committee for the prestigious Wideröe prize and thank all our international colleagues world-wide.  
slides icon Slides THPPA03 [3.396 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPPA03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRO041 Position of Maximum in Quantum Spectrum of Synchrotron Radiation radiation, electron, polarization, synchrotron-radiation 2952
 
  • A.N. Burimova, D.M. Gitman
    IFUSP, Sao Paulo, Brazil
  • V.G. Bagrov
    Institute of High Current Electronics, Tomsk, Russia
 
  Funding: FAPESP
In the framework of quantum theory, we consider the condition for radiation maximum shift between harmonics of SR spectrum for scalar and spinor particles. Since quantum spectrum is discrete and finite, one can find values of radiation parameters such that the maximum in radiation spectrum stays at highest harmonic. It turns out that there exists a "quantization" of magnetic field associated with shift of maximum from one harmonic to another.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRO041  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRO058 Study of the “Particle-in-Cell” Induced Noise on High Intensity Beams emittance, space-charge, simulation, resonance 3005
 
  • F. Kesting, G. Franchetti
    GSI, Darmstadt, Germany
  • U. Ratzinger
    IAP, Frankfurt am Main, Germany
 
  Numerical noise in PIC codes produces artifacts which affects long term beam simulations needed for accelerator as the SIS100. A detailed study on the effect of numerical noise occurring in multi-particle tracking codes is presented. The influence of the granularity of particle distributions and the fineness of the meshes of Poisson solvers on the particle dynamics was studied. These results are used to discuss the effect of the PIC numerical noise in a long term space charge benchmarking study.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRO058  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRO059 Simulation Study on Beam Loss in the Alpha Bucket Regime during SIS-100 Proton Operation closed-orbit, proton, extraction, simulation 3008
 
  • S. Sorge
    GSI, Darmstadt, Germany
 
  Besides heavy ion operation, the heavy ion synchrotron SIS-100 will accelerate a single proton bunch of N=2*1013 particles up to the energy E=29 GeV. For the present standard scenario, optics settings have been developed which provide a transition energy according to gammatr=45.5 in order to avoid transition crossing during acceleration. At extraction energy the corresponding nonlinear momentum compaction and phase slip factors cause the formation of a so called alpha bucket. In this contribution we present the results of transverse beam loss tracking studies in the alpha bucket regime. The effects of momentum spread, magnet errors and residual closed orbit distortion are analyzed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRO059  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRO062 Spin Tune Decoherence in Multipole Fields sextupole, multipole, betatron, quadrupole 3017
 
  • Y. Senichev, A.N. Ivanov, A. Lehrach, R. Maier, D. Zyuzin
    FZJ, Jülich, Germany
  • S.N. Andrianov
    St. Petersburg State University, St. Petersburg, Russia
 
  This article analyzes possible limitations in the method to search for the electric dipole moment (EDM) using polarized particles in a storage ring. It is well known that for detection of the electric dipole moment one needs to create such conditions where the particle's spin oscillations can be caused only by the EDM. Really, there are two possible methods for EDM search using a storage ring: resonant spin buildup in a magnetostatic ring and “frozen” spin method in an electrostatic ring with “magic” energy. Both methods have common limitations caused by spin decoherence. In the frame of self consistent theory the reasons of the spin decoherence are classified independently on method and discussed taking into consideration multipole components of external fields, as well as the nonlinearities of RF fields.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRO062  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRO063 Spin Tune Parametric Resonance Investigation resonance, SRF, experiment, dipole 3020
 
  • Y. Senichev, A.N. Ivanov, A. Lehrach, R. Maier, D. Zyuzin
    FZJ, Jülich, Germany
  • S.N. Andrianov
    St. Petersburg State University, St. Petersburg, Russia
 
  The idea of resonant spin oscillation method was modernized and improved in Forschungszentrum Julich in the proposed experiment at the COSY ring. The resonant method is based on spin tune parameterization using transverse RF magnetic or/and electric field. The spin orientation smearing due to the finite spin coherence time (SCT) plays a crucial in the proposed experiment to search for the electric dipole moment. Our analysis is based on the T-BMT differential equations for spin together with shorten motion equations. Using well developed theory of Mathieu's differential equations we have got simplified analytic solution for prediction of spin behavior. In this paper we have numerically evaluated all effects having fundamental contributions from our point of view.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRO063  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRO065 De-coherence Study of Betatron Oscillation for the Beam Shape Manipulation betatron, lattice, target, radiation 3026
 
  • Y. Shoji
    LASTI, Hyogo, Japan
 
  In electron storage ring a temporal perturbation to the beam makes spatial structure in a bunch, which emit short X-ray or coherent THz radiation. For this technique of bunch shape manipulation, it is important to reduce unwanted de-coherence of betatron motion, which would break the intended spatial structure. At NewSUBARU, 1.5 GeV storage ring, we kicked the beam using a vertical fast kicker and investigated the de-coherence of betetron oscillation using mainly a dual-sweep streak camera. The largest is the Landau damping by a well-known chromatic tune spread, although the phase spread comes back to zero at after a synchrotron oscillation period. On the other hand, there exists several non-linear effects, which makes accumulation of the oscillation phase spread. These are, horizontal betatron amplitude dependent vertical tune shift, synchrotron oscillation amplitude dependent synchrotron tune shift, non-linear chromaticity, synchrotron oscillation chromaticity (non-symmetry of rf bucket), longitudinal radiation excitation process, and others. The tuning knobs we had was some sets of non-linear magnets up to octupole and the rf voltage.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRO065  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRO076 Frequency Maps Analysis of Tracking and Experimental Data for the SLS Storage Ring resonance, dynamic-aperture, damping, optics 3056
 
  • P. Zisopoulos, F. Antoniou, Y. Papaphilippou
    CERN, Geneva, Switzerland
  • A. Streun
    PSI, Villigen PSI, Switzerland
  • V.G. Ziemann
    Uppsala University, Uppsala, Sweden
 
  Frequency Maps Analysis (FMA) has been widely used in beam dynamics in order to study dynamical aspects of the particles linear and non-linear motion, such as optics functions distortion, coupling, tune-shift and resonances. In this paper, FMA is employed to explore the dynamics of models of the Swiss Light Source (SLS) storage ring and compare them with measured turn by turn (TxT) position data. In particular, a method is proposed for estimating the momentum spread using synchrotron sidebands of the Fourier spectrum of the TxT data.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRO076  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRO079 Quantitative Analysis of Trapping Probability for Quasi-integrable Two-degree of Freedom Maps resonance, simulation, extraction, coupling 3065
 
  • M. Giovannozzi, C. Hernalsteens, J. Williams
    CERN, Geneva, Switzerland
  • A. Bazzani
    Bologna University, Bologna, Italy
  • C. Hernalsteens
    EPFL, Lausanne, Switzerland
 
  A key ingredient for the Multi-Turn Extraction (MTE) at the CERN Proton Synchrotron is the beam trapping in stable islands of transverse phase space. In a previous paper a method allowing analytical estimation of the fraction of beam trapped into resonance islands as a function of the Hamiltonian parameters has been presented. Such a method applies to one-degree of freedom models of betatronic motion. In this paper, the analysis is extended to the more realistic and challenging case of two-degree of freedom systems, in which the interplay between the horizontal and vertical motion is fully included. Numerical simulations are presented and the results are discussed in detail.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRO079  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRO084 Beam Dynamics Observations of Slow Integer Tune Crossing in EMMA simulation, lattice, acceleration, injection 3082
 
  • J.M. Garland, H.L. Owen
    UMAN, Manchester, United Kingdom
  • D.J. Kelliher, S. Machida
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon, United Kingdom
  • B.D. Muratori
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  When the betatron tune is an integer in a cyclical accelerator, dipole-field errors can drive the coherent addition of betatron amplitude to the bunch eventually causing particle loss. Transverse integer tune crossing in a linear non-scaling FFAG is inevitable due to finite chromaticity. In EMMA (Electron Machine with Many Applications), as many as 6 integers may be crossed is as little as 6 turns at maximum acceleration over the 10 – 20 MeV energy range. This fast integer tune crossing, of the order 1 integer per turn, was shown to have little effect on the coherent amplitude growth and charge loss rate. Slower acceleration inside an RF bucket in EMMA allowed the experimental exploration of slower integer tune crossing speeds, of the order of a factor ten slower. The effect on the coherent oscillation amplitude was observed and the charge loss at integer tune crossings indicated resonant effects on the bunch. Simulations in Zgoubi allowed a more detailed analysis and the mechanism of slower resonance crossing in a non-scaling FFAG is discussed, including the importance of coupled longitudinal-transverse decoherence on the effective emittance.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRO084  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME058 Risk Analysis and Machine Protection of SIS100 ion, extraction, proton, septum 3364
 
  • C. Omet, M.S. Mandakovic, D. Ondreka, P.J. Spiller, J. Stadlmann
    GSI, Darmstadt, Germany
 
  To ensure safe functionality and reduce unneccessary shutdowns, a risk analysis of the main driver accelerator for the FAIR project SIS100, has been done. The analysis includes all major technical systems and was done accordingly to EN 61508. Results of the analysis and appropriate countermeasures for detection and/or mitigation of the failures are presented. Furthermore, an estimation of the accelerator‘s availability is given.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME058  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME063 Residual Dose with 400 MeV Injection Energy at J-PARC Rapid Cycling Synchrotron injection, operation, vacuum, linac 3379
 
  • K. Yamamoto, N. Hayashi, M. Kinsho
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken, Japan
 
  Last summer shutdown J-PARC RCS injection energy was upgraded from 181 MeV to 400 MeV. We report the effect of the injection energy upgrade on the residual dose in the RCS.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME063  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME080 Reflective Streak Camera Bunch Length Measurements at the Australian Synchrotron cavity, optics, storage-ring, impedance 3421
 
  • M.J. Boland, Y.E. Tan
    SLSA, Clayton, Australia
  • T.M. Mitsuhashi
    KEK, Ibaraki, Japan
 
  The bunch length of the 3 GeV electron storage ring at the Australian Synchrotron has been measured using reflective input optics feeding a streak camera. An Offner optical design was employed to reduce the chromatic broadening of the input optics of the streak camera. Using the reflective input optics the bunch length is measured to be 15% shorter than with the refractive input optics. The measured bunch length is now in good agreement with the model of the storage ring and the values are being used for calibration, monitoring and optimisation of the machine. The results of studies to characterise the streak camera shall also be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME080  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME081 Plans for an Australian XFEL Using a CLIC X-band Linac storage-ring, linac, emittance, FEL 3424
 
  • M.J. Boland, T.K. Charles, R.T. Dowd, G. LeBlanc, Y.E. Tan, K.P. Wootton, D. Zhu
    SLSA, Clayton, Australia
  • R. Corsini, A. Grudiev, A. Latina, D. Schulte, S. Stapnes, I. Syratchev, W. Wuensch
    CERN, Geneva, Switzerland
 
  Preliminary plans are presented for a sub-Angstrom wavelength XFEL at the Australian Synchrotron light source site. The design is based around a 6 GeV x-band linac from the CLIC Project. One of the motivations for the design is to have an XFEL co-located on the site with existing storage ring based synchrotron light source. The desire and ability of the Australian photon science community to win beamtime on existing XFELs has lead to this design study to plan for a future machine in Australia. The technology choice is also driven by the Australian participation in the CLIC Collaboration and the local HEP community.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME081  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME082 Sirius Diagnostic Beamlines dipole, emittance, radiation, diagnostics 3427
 
  • N. Milas, L. Liu, A.R.D. Rodrigues
    LNLS, Campinas, Brazil
 
  Sirius is a 3 GeV synchrotron light source that is being built by the Brazilian Synchrotron Light Laboratory (LNLS). It will be part of a novel class of light sources with emittances in the sub-nm level. Both horizontal and vertical beam sizes at the dipoles will be of the order of or below 10μm, creating difficulties for measuring them using conventional techniques. This paper proposes a series of beamlines using different techniques that, combined, will be able not only to resolve beam sizes, but also measure energy spread and local transverse coupling in the storage ring.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME082  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME083 BPM Data Correction at SOLEIL electronics, vacuum, storage-ring, experiment 3430
 
  • N. Hubert, B. Béranger, L.S. Nadolski
    SOLEIL, Gif-sur-Yvette, France
 
  In a synchrotron light source like SOLEIL, Beam Position Monitors (BPM) are optimized to have the highest sensitivity for an electron beam passing nearby their mechanical center. Nevertheless, this optimization is done to the detriment of the response linearity when the beam is off-centered for dedicated machine physic studies. To correct for the geometric non-linearity of the BPM, we have applied an algorithm using boundary element method. Moreover the BPM electronics is able to provide position data at a turn-by-turn rate. Unfortunately the filtering process in this electronics mixes the information from one turn to the neighboring turns. An additional demixing algorithm has been set-up to correct for this artefact. The paper reports on performance and limitations of those two algorithms that are used at SOLEIL to correct the BPM data.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME083  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME097 Schottky Diode Detectors for Monitoring Coherent THz Synchrotron Radiation Pulses detector, radiation, electron, synchrotron-radiation 3465
 
  • A. Semenov, H.-W. Hübers, A. Pohl
    DLR, Berlin, Germany
  • O. Cojocari, M. Sobornytskyy
    ACST GmbH, Hanau, Germany
  • A. Hoehl, R. Müller
    PTB, Berlin, Germany
  • M. Ries, G. Wüstefeld
    HZB, Berlin, Germany
 
  Coherent synchrotron radiation (CSR) in the terahertz frequency range is a powerful tool for the diagnostics of the electron-beam relying on the fact that the emission spectrum of THz CSR depends on the shape of the electron bunch from which the radiation is emitted. Among available direct THz detectors only superconducting microbolometers and Schottky diodes are capable to resolve single CSR pulses. Here we present recent photoresponse measurements of CSR with a quasioptical zero-bias Schottky diode detector which was produced at ACST GmbH. The rise-time of the recorded real-time transient was limited to approximately 20 ps by the 18-GHz bandwidth of interconnecting cables. Non-saturated responsivity of the detector, that is the amplitude of the voltage transient referred to the total CSR pulse energy in the detector quasioptical mode, was approximately 1.5 mV/fJ. The dynamic range of the detector spans almost three orders of magnitude from 3 fJ to 1 pJ. The intrinsic jitter of the detector was less than 2 ps thus not affecting the effective time resolution and allowing us to measure the arrival-time jitter of CSR pulses for different settings of the storage ring parameters.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME097  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME098 Set up of a Synchrotron Light Monitor at the 2.5 GeV Booster Synchrotron at ELSA vacuum, radiation, diagnostics, injection 3468
 
  • T. Schiffer
    Uni Bonn, Bonn, Germany
  • P. Hänisch, W. Hillert, M.T. Switka
    ELSA, Bonn, Germany
 
  For the upgrade of the accelerator facility ELSA towards higher stored beam currents, a non-destructive beam analysis is being implemented at the 2.5 GeV booster synchrotron. It is a fast ramping combined function synchrotron with an extraction repetition rate of 50 Hz. Typically, beam currents of 10 mA are accelerated from 20 MeV to the extraction energy of 1.2 GeV within 8.6 ms, hence the magnetic field is increased by up to 85 T/s. A synchrotron light monitor as the primary diagnostic tool will be utilized for measuring the transversal position and intensity distribution of the beam. Its dynamics on the fast energy ramp is of distinct interest. The proposed set-up of the synchrotron light monitor and the current development are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME098  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME099 Synchrotron Radiation Diagnostics Performance at ELSA diagnostics, feedback, synchrotron-radiation, radiation 3471
 
  • M.T. Switka, F. Frommberger, P. Hänisch, W. Hillert, D. Proft, M. Schedler, S. Zander
    ELSA, Bonn, Germany
 
  Funding: Work funded by the DFG within SFB/TRR16.
The pulse stretcher ring ELSA delivers polarized and non-polarized electrons with an adjustable beam energy of 0.5 - 3.5 GeV to external experimental stations. To meet the growing demands of the user community regarding beam intensity and quality, the upgrade of vital accelerator components is an ongoing process. This includes the improvement of the beam diagnostics in order to resolve and monitor intensity and quality limiting effects. ELSA has recently been equipped with a diagnostic synchrotron radiation beamline housing a streak camera as main beam imaging device. It extends the diagnostics capabilities into the picosecond temporal resolution regime and captures fast longitudinal and transverse beam dynamics. The obtained measurements provide crucial feedback for further machine optimization. The overall performance of the streak camera system and machine relevant measurements are presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME099  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME103 Beam Current Monitors for FAIR ion, operation, proton, cryogenics 3483
 
  • M. Schwickert, H. Bräuning, F. Kurian, H. Reeg, A. Reiter
    GSI, Darmstadt, Germany
  • R. Geithner, W. Vodel
    HIJ, Jena, Germany
  • R. Neubert
    FSU Jena, Jena, Germany
 
  The FAIR (Facility for Antiproton and Ion Research) accelerator facility presently under construction at GSI will supply a wide range of beam intensities for physics experiments. Design beam intensities range from 2.5·1013 protons/cycle to be delivered to the pBar-target and separator for production of antiprotons, to beams of e.g. 109 ions/s in the case of slowly extracted beams. The large intensity range demands for dedicated beam current monitors for precise, non-destructive beam intensity measurements in the synchrotrons, transport lines and storage rings of the FAIR facility. This report describes GSI developments of purpose-built beam current monitors for the SIS100 synchrotron and high-energy beam transport lines (HEBT) of FAIR. Prototype measurements with a SQUID-based Cryogenic Current Comparator and a resonant beam charge transformer are presented, and possibilities for further upgrades are discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME103  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME104 Investigation of Beam Instabilities at DELTA using Bunch-by-bunch Feedback Systems feedback, damping, storage-ring, booster 3486
 
  • M. Höner, S. Hilbrich, H. Huck, M. Huck, S. Khan, C. Mai, A. Meyer auf der Heide, R. Molo, H. Rast, M. Sommer, P. Ungelenk
    DELTA, Dortmund, Germany
 
  Funding: Work supported by the BMBF (05K13PEC).
At the 1.5-GeV electron storage ring DELTA operated by the TU Dortmund University as a synchrotron radiation user facility, bunch-by-bunch feedback systems are in use for electron beam diagnostics and for the suppression of multibunch instabilities. An automatic readout of bunch position data allows a real-time modal analysis during machine operation. An excitation of particular multibunch modes enables the determination of growth and damping times for all modes independently. Further investigations of beam stability and natural damping times of all modes even below the instability threshold have been performed. In addition, first bunch-by-bunch data taken from the booster synchrotron are shown.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME104  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME106 Compact Integrated THz Spectrometer in GaAs Technology for Electron Bunch Compression Monitor Applications detector, electron, radiation, diagnostics 3489
 
  • N. Neumann, M. Laabs, D. Plettemeier, M. Schiselski
    TU Dresden, Dresden, Germany
  • M. Gensch, B.W. Green, S. Kovalev
    HZDR, Dresden, Germany
 
  Funding: BMBF 05K13ODB
Bunch compression monitors are essential for the efficient operation of linear accelerators. The spectral distribution of coherently generated THz radiation is a favorable measure for the shape of the electron bunches. Today, THz spectrometers are bulky and costly. Here, the concept of an integrated on-chip semiconductor spectrometer being developed in a joint effort by HZDR and TU Dresden within the scope of the BMBF project InSEl is presented. This potentially low-cost and compact solution based on Schottky diode detectors, integrated on-chip THz antennas and filters fabricated in a commercial GaAs process will not exceed 5 mm in size replacing current single element THz detectors in the bunch compression monitors in the ELBE accelerator at HZDR. Covering the frequency range from 0.1 to 1.5 THz (and more in the future) with a resolution of 5 to 20 points, it could also be of interest for the longitudinal electron bunch diagnostic at other electron linacs such as FLUTE, BERLinPro, FLASH or the European X-FEL. Furthermore, the detector bandwidth in the GHz range supports the high repetition rates of superconducting radio frequency accelerators.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME106  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME113 Commissioning of an Ultra-fast Data Acquisition System for Coherent Synchrotron Radiation Detection detector, radiation, real-time, synchrotron-radiation 3497
 
  • C.M. Caselle, M. Brosi, S.A. Chilingaryan, T. Dritschler, E. Hertle, V. Judin, A. Kopmann, A.-S. Müller, J. Raasch, M. Schleicher, M. Siegel, N.J. Smale, J.L. Steinmann, M. Vogelgesang, M. Weber, S. Wuensch
    KIT, Eggenstein-Leopoldshafen, Germany
 
  The commissioning of a new real-time and high-accuracy data acquisition system suitable for recording individual ultra-short coherent pulses detected by fast terahertz detectors will be presented. The system is able to monitor turn-by-turn all buckets in streaming mode. The main board consists of a direct sampling board operating with a minimum sampling time of 3 psec and a time jitter less than 1.7 psec. The very low noise layout design combined with a wide dynamic range and bandwidth of the analog front-end allows to sample pulse signals generated by various GHz/THz detectors, like NbN and YBCO superconductor film detectors or zero biased Schottky Diode detectors. The digitized data is transmitted to the DAQ system by an FPGA readout board with a data transfer rate of 4 GByte/s. The setup is accomplished by a real-time data processing unit based on high-end graphics processors (GPUs) for on-line analysis of the frequency behaviour of the coherent synchrotron emissions. The system has been successfully used to study the beam properties of the ANKA synchrotron radiation source located at the Karlsruhe Institute of Technology and operating in the energy range between 0.5-2.5 GeV  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME113  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME124 Spectral Analysis of Micro-Bunching Instabilities using Fast THz Detectors detector, radiation, bunching, operation 3530
 
  • J.L. Steinmann, E. Hertle, N. Hiller, V. Judin, A.-S. Müller, M. Schuh, P. Schönfeldt, P. Schütze
    KIT, Karlsruhe, Germany
  • E. Bründermann
    Ruhr-Universität Bochum, Bochum, Germany
 
  Micro-bunching instabilities occur at synchrotron light sources when the particle density rises due to compression of the electron bunches. They lead to powerful bursts of coherent synchrotron radiation (CSR) in the THz range at the cost of very unstable intensity and spectral properties, highly fluctuating on a millisecond time scale. For interferometry this changing source demands a long averaging time to achieve a reasonably high signal-to-noise ratio or balancing by the use of an additional reference detector. In this study we present measurements taken by a Martin-Puplett-interferometer in the bursting regime with ultra-fast THz-detectors.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME124  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME125 Electrical Field Sensitive High-Tc YBCO Detector for Real-time Observation of CSR detector, real-time, electron, operation 3533
 
  • J. Raasch, K.S. Ilin, Y.-L. Mathis, A.-S. Müller, A. Scheuring, M. Siegel, N.J. Smale, P. Thoma
    KIT, Karlsruhe, Germany
  • S. Bielawski, C. Evain, E. Roussel, C. Szwaj
    PhLAM/CERCLA, Villeneuve d'Ascq Cedex, France
  • B. Holzapfel
    Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
  • M. Hosaka, N. Yamamoto
    Nagoya University, Nagoya, Japan
  • K. Iida
    Leibniz Institute for Solid State and Materials Research Dresden, Dresden, Germany
  • M. Katoh, S.I. Kimura, T. Konomi
    UVSOR, Okazaki, Japan
  • H. Zen
    Kyoto University, Kyoto, Japan
 
  Funding: We thank Agilent Technologies & Tektronix for supplying oscilloscopes. The work was supported by BMBF (05K2010), ANR (2010 blanc 042301), MEXT (Quantum Beam Tech. Prog.), IMS (Int. Collab. Prog.).
High-Tc thin-film YBa2Cu3O7-x (YBCO) detectors were deployed for the real-time observation of Coherent Synchrotron Radiation (CSR). Due to enhanced fabrication techniques enabling the patterning of sub-μm sized detector areas responsivity values as high as 1V/pJ for pulsed THz excitations have been achieved at the ANKA synchrotron facility at the Karlsruhe Institute of Technology (KIT). Response of the detectors is linear over the whole dynamic range of the IR1 beamline. Combining the picosecond scaled response mechanism of the high-temperature superconductor YBa2Cu3O7-x (YBCO) to THz excitations with broad-band readout a temporal resolution of 15 ps full width at half maximum (FWHM) was reached. Real-time resolution of CSR single shots was observed at ANKA and UVSOR-III, the synchrotron facility of the Institute of Molecular Science in Okazaki, Japan.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME125  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME126 General Consideration for Button-BPM Design vacuum, booster, storage-ring, GUI 3537
 
  • A.R. Molaee, M.Sh. Shafiee
    ILSF, Tehran, Iran
  • M. Mohammadzadeh
    Shahid Beheshti University, Evin, Tehran, Iran
  • M. Samadfam
    Sharif University of Technology (SUT), Tehran, Iran
 
  In order to design Button Beam Position Monitors (BPMs) for synchrotron facilities, one algorithm by C# have been developed which can calculate all required parameters to analyze optimal design based on vacuum chamber and button dimensions. Beam position monitors are required to get beam stabilities on submicron levels. For this purpose, different parameters such as capacitance, sensitivity versus bandwidth, intrinsic resolution, induced charge and voltage on buttons are calculated. Less intrinsic resolution and high sensitivity and capacitance are desired. To calculate induced charge and voltage on each button, Poisson's equation has been solved by Green method. For sensitivities calibration, two-dimensional map of BPM response is obtained theoretically and compared with the CST simulation map. Results show a good agreement where as their difference is less than 5%.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME126  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME152 Application of the Optical Diagnostics during the Commissioning of the Booster of NSLS-II booster, diagnostics, vacuum, radiation 3614
 
  • O.I. Meshkov, S.M. Gurov
    BINP SB RAS, Novosibirsk, Russia
  • V.V. Smaluk
    DLS, Oxfordshire, United Kingdom
  • X. Yang
    BNL, Upton, Long Island, New York, USA
 
  We describe the experience obtained with several types of diagnostics during commissioning of the booster of NSLS-II. The set includes fluorescent screens, synchrotron light monitors and beam loss monitors. The information that was useful for commissioning as well as advantages and disadvantages of each diagnostics are discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME152  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME153 The New Optical Device for Turn-to-turn Beam Profile Measurement electron, storage-ring, collider, positron 3617
 
  • O.I. Meshkov, V.L. Dorohov, A.A. Ivanova, A.D. Khilchenko, A.I. Kotelnikov, A.N. Kvashnin, P.V. Zubarev
    BINP SB RAS, Novosibirsk, Russia
  • S.V. Ivanenko, E.A. Puryga
    Budker Institute of Nuclear Physics, Novosibirsk, Russia
  • V. Korchuganov
    RRC, Moscow, Russia
  • Stirin, A.I. Stirin
    NRC, Moscow, Russia
 
  The linear avalanche photodiodes array is applied for turn-to-turn beam profile measurement at Siberia-2 synchrotron light source. The apparatus is able to record a transversal profile of selected bunch and analyze the dynamics of beam during 220 turns. The first experience with application of new diagnostics for routine use at the installation is described.

 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME153  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME162 Filling Pattern Measurements at ALBA using Time Correlated Single Photon Counting photon, radiation, synchrotron-radiation, detector 3644
 
  • L. Torino, U. Iriso
    CELLS-ALBA Synchrotron, Cerdanyola del Vallès, Spain
 
  At the ALBA synchrotron light source, the filling pattern is measured using a Fast Current Transformer (FCT). Applying a data analysis the filling pattern is measured with a dynamic range in the order of 102, limited by the electronic noise in the device. A new experimental set-up for filling pattern measurements was implemented using the Time Correlated Single Photon Counting. The technique consists in the measurements of the temporal distribution of the produced synchrotron radiation using Electro-Optical devices, from where the filling pattern is inferred. Two different photomultipliers are used to perform the measurement and results are compared. A further comparison between results from the photomultipliers and the FCT is performed to verify the accuracy of the results.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME162  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME173 Beam-based Measurements of the CPS Wire Scanner Precision and Accuracy emittance, simulation, optics, proton 3674
 
  • G. Sterbini, B. Dehning, S.S. Gilardoni, A. Guerrero
    CERN, Geneva, Switzerland
 
  During 2013 run a systematic campaign of beam-based measurement on the CERN Proton Synchrotron wire scanners has been performed. In this work we report the conditions of the measurements, we describe the results and their interpretation. The observations are compatible with an emittance relative precision and accuracy respectively better than 2 % and 5 % in the vertical plane for nTOF beams. The present limitations of the system are discussed and possible solutions are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME173  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME174 High-accuracy Diagnostic Tool for Electron Cloud Observation in the LHC based on Synchronous Phase Measurements cryogenics, electron, operation, simulation 3677
 
  • J.F. Esteban Müller, P. Baudrenghien, T. Mastoridis, E.N. Shaposhnikova, D. Valuch
    CERN, Geneva, Switzerland
 
  Electron cloud effects such as heat load in the cryogenic system, pressure rise and beam instabilities are among the main limitations for the LHC operation with 25 ns spaced bunches. A new observation tool was developed to monitor the e-cloud activity and has been successfully used in the LHC during Run 1 (2010-2012). The power loss of each bunch due to the e-cloud can be estimated using very precise bunch-by-bunch measurement of the synchronous phase shift. In order to achieve the required accuracy, corrections for reflection in the cables and some systematic errors need to be applied followed by a post-processing of the measurements. Results show clearly the e-cloud build-up along the bunch trains and its evolution during each LHC fill as well as from fill to fill. Measurements during the 2012 LHC scrubbing run reveal a progressive reduction in the e-cloud activity and therefore a decrease in the secondary electron yield (SEY). The total beam power loss can be computed as a sum of the contributions from all bunches and compared with the heat load deposited in the cryogenic system. The plan to use this method in the LHC operation is also presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME174  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME177 A Novel Approach to Synchrotron Radiation Simulation simulation, injection, detector, radiation 3687
 
  • G. Trad, E. Bravin, A. Goldblatt, S. Mazzoni, F. Roncarolo
    CERN, Geneva, Switzerland
  • G. Trad
    LPSC, Grenoble Cedex, France
 
  At the Large Hadron Collider (LHC) at CERN, synchrotron radiation (SR) is used to continuously monitor the transverse properties of the beams. Unfortunately the machine and beam parameters are such that the useful radiation emitted inside a separation dipole, chosen as source, is diffraction limited affecting heavily the accuracy of the measurement. In order to deconvolve the diffraction effects from the acquired beam images and in order to design an alternative monitor based on a double slit interferometer an extensive study of the synchrotron light source and of the optical propagation has been made. This study is based on simulations combining together several existing tools: SRW for the source, ZEMAX for the transport and MATLAB for the "glue" and analysis of the results. The resulting tool is very powerful and can be easily adapted to other synchrotron radiation problems. In this paper the simulation package and the way it is used will be described as well as the results obtained for the LHC and SPS cases.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME177  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME180 Vibration Measurement Experiment at TLS photon, interface, electron, operation 3697
 
  • C.C. Liang, C.K. Chou, S. Fann, C.K. Kuan, D. Lin, T.F. Lin, Y.-C. Liu, T.-C. Yu
    NSRRC, Hsinchu, Taiwan
  • Y.-C. Liu
    NTHU, Hsinchu, Taiwan
 
  The oncoming completion of Taiwan Photon Source is closely constructed beside Taiwan Light Source (TLS). Few civil works are continuously under construction. Building the measurement, recording and analysis platform of software and hardware is the one of the main directions of operation group. To diagnose the instability problem of the light source, the external influence must be eliminated. One of the factors causing the instability is the physical vibration. Vibration measurement helps to evaluate if newly installed equipments are suited for adding on or the influence of the earthquake to the stability of TLS and to improve the light source quality for users. Software has been developed to provide assistance to do some preliminary diagnoses at TLS. In this article, some actual cases in routine operation are also presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME180  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME181 Progress on Beam Measurement and Control Systems for the ISIS Synchrotron lattice, injection, quadrupole, controls 3700
 
  • B. Jones, D.J. Adams, B.G. Pine, H. V. Smith, C.M. Warsop
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
 
  The ISIS Facility at the Rutherford Appleton Laboratory in the UK produces intense neutron and muon beams for condensed matter research. Its 50 Hz, 800 MeV proton synchrotron delivers a mean beam power of 0.2 MW to two spallation targets. Recent developments to beam control and measurement systems at ISIS are described. New PXI-based digitising hardware and custom software developed with LabVIEW have increased the capability to study beam behaviour. New, more flexible power supplies for steering and trim quadrupole correction magnets have been commissioned allowing greater control of beam orbits and envelopes. This paper looks at recent linear lattice measurements and attempts to identify the source of lattice errors.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME181  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME183 Longitudinal Beam Profile Measurements of the Microbunching Instability detector, radiation, experiment, lattice 3706
 
  • W. Shields, A. Finn, P. Karataev
    JAI, Egham, Surrey, United Kingdom
  • R. Bartolini, I.P.S. Martin, G. Rehm
    DLS, Oxfordshire, United Kingdom
 
  The microbunching instability is a phenomenon characterized by the onset of radiation bursts above a threshold bunch current. These bursts consist of coherent emissions with wavelengths comparable to the bunch length and shorter. The instability has recently been observed at Diamond Light Source, a 3rd generation synchrotron. The operating conditions for triggering the instability at Diamond Light Source are well known, however measuring the spectral content of the resulting emissions is a more challenging investigation. A Michelson interferometer has been installed with the aim of recording the coherent spectrum from the bunches, using ultra-fast response Schottky Barrier Diode detectors. The longitudinal profile of the bunches can be estimated with subsequent analysis.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME183  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME196 Low Energy Coded Aperture Performance at the CesrTA x-Ray Beam Size Monitor detector, electron, photon, operation 3741
 
  • D.P. Peterson, J.P. Alexander, A. Chatterjee, M. P. Ehrlichman, B.K. Heltsley, A. Lyndaker, N.T. Rider, D. L. Rubin, R.D. Seeley, J.P. Shanks
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • J.W. Flanagan
    KEK, Ibaraki, Japan
 
  Funding: U.S. National Science Foundation PHY-0734867, PHY-1002467, PHYS-1068662, U.S. Department of Energy DE-FC02-08ER41538, DE-SC0006505
We report on the design and performance of coded aperture optics elements in the CesrTA x-ray beam size monitor (xBSM). Resolution must be sufficient to allow single-turn measurements of vertical beam sizes of order 10um by imaging synchrotron radiation photons onto a one-dimensional photodiode array. Measurements with beam energies above 2.1GeV and current above 0.1mA can be performed with a single-slit (pinhole) optic. At lower energy or current, small beam size measurements are limited by the diffractive width of a pinhole image and counting statistics. A coded aperture is a multi-slit mask that can improve on the resolution of a pinhole in two ways: higher average transparency improves counting statistics; and the slit pattern and masking transparency can be designed to obtain a diffractive image with narrower features. We have previously implemented coded apertures that are uniform redundant arrays (URA). A new coded aperture design is optimized for imaging with 1.8 GeV beam energy (1.9keV average x-ray energy) and with beam sizes below 20um. Resolution measurements were made in December 2013. Performance of the new coded aperture is compared to the pinhole and the URA.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME196  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME197 Power Saving Status in the NSRRC controls, operation, synchrotron-radiation, status 3744
 
  • J.-C. Chang, Y.C. Chang, Y.F. Chiu, Y.-C. Chung, C.W. Hsu, Y.-C. Lin, C.Y. Liu, Y.-H. Liu, Z.-D. Tsai, T.-S. Ueng
    NSRRC, Hsinchu, Taiwan
 
  National Synchrotron Radiation Research Center (NSRRC), Taiwan has completed the construction of the civil and utility system engineering of the Taiwan Photon Source (TPS) in 2013 and 2014, respectively. The contract power capacities of the Taiwan Light Source (TLS) and the TPS with the Taiwan Power Company (TPC) are 5.5MW and 3MW currently, respectively. The ultimate power consumption of the TPS is estimated about 12.5MW. To cope with increasing power requirement in the near future, we have been conducting several power saving schemes for years. They include power consumption control, optimization of chillers operation, air conditioning system improvement, power factor improvement, application of heat pump, and promotion for power saving.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME197  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRI011 Beam-machine Interaction at TLEP: First Evaluation and Mitigation of the Synchrotron Radiation Impact dipole, synchrotron-radiation, radiation, collider 3785
 
  • L. Lari, F. Cerutti, A. Ferrari, A. Mereghetti
    CERN, Geneva, Switzerland
  • L. Lari
    IFIC, Valencia, Spain
  • A. Mereghetti
    UMAN, Manchester, United Kingdom
 
  In the framework of post-LHC accelerator studies, TLEP is a proposed high-luminosity circular e+e collider, aimed at measuring the properties of the Higgs-boson H(126) with unprecedented accuracy, as well as those of the W boson, the Z boson and the top quark. In order to calculate the impact of synchrotron radiation, the latter has been implemented in the FLUKA code as new source term. A first account of escaping power as a function of the vacuum chamber shielding thickness, photoneutron production, and activation has been obtained for the 80km circumference 175 GeV (beam energy) TLEP option. Starting from a preliminary layout of the FODO cell and a possible dipole design, energy deposition simulations have been carried out, investigating the effectiveness of absorbers in the interconnections. The results provide inputs to improve the cell design and to support mechanical integration studies.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRI011  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRI098 Brazing and Helium Leaking Test for High Heat Load Components in the Taiwan Photon Source vacuum, photon, synchrotron-radiation, radiation 4004
 
  • P.A. Lin, C.K. Kuan, T.Y. Lee, H.Y. Lin, I.C. Sheng
    NSRRC, Hsinchu, Taiwan
 
  Taiwan Photon Source is the second accelerator constructed by National Synchrotron Radiation Research Center (NSRRC). With 3GeV, 500mA, this facility will generate extremely high synchrotron radiation and most of the power load will be shadowed at front end in order to shape final confining beam size for beam lines users. The high heat load components are known to be the critical parts to absorb the unwanted energy. In order to practically distribute high density power along each high heat load components, several absorbers are introduced. Namely, primary mask, main mask, photon absorber and slits. The manufacturing process such as UHV chemical cleaning, brazing and helium leaking test will be described in this report.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRI098  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRI099 Constructing and Installation of TPS Front End radiation, photon, controls, synchrotron-radiation 4007
 
  • Y.T. Cheng, Y.T. Cheng, J. -Y. Chuang, C.K. Kuan, T.Y. Lee, H.Y. Lin, P.A. Lin, Y.K. Liu
    NSRRC, Hsinchu, Taiwan
 
  National Synchrotron Radiation Research Center (NSRRC) in Taiwan is completing the construction of Taiwan Photon Source (TPS) synchrotron accelerator project. This 3GeV, 500mA beam current 3rd generation synchrotron accelerator will have total of 7 insertion device beam lines at day one. Corresponding front ends have been design and fabricated. Installation and craning is underway. Current status of frond end are reported and presented in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRI099  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRI105 Determination of Magnetic Multipoles using a Hall Probe multipole, quadrupole, insertion, insertion-device 4025
 
  • J. Campmany, J. Marcos, V. Massana
    CELLS-ALBA Synchrotron, Cerdanyola del Vallès, Spain
 
  In this work we present a method that allows determining the harmonic content of the magnetic field generated by an accelerator magnet using a Hall probe bench. The method is based on measuring the three components of the magnetic field on a cylindrical surface parallel to the longitudinal axis of the magnet. Such a measurement is accomplished by carrying out a series of on-the-fly scans for a series of straight lines whose transversal coordinates lay on a circle. The Fourier decomposition of the magnetic field along a circle at a given longitudinal position yields the harmonic terms of the field at a reference radius equal to the circle’s radius. As a result the method provides the longitudinal dependence of the harmonic terms, and in particular it allows analyzing their behavior in the fringe field region. We present an example of the application of this method to the measurement of a quadrupole of the Storage Ring of ALBA. A comparison with the integrated results provided by a rotating coil bench is also shown.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRI105  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRI108 Manufacturing and Inspecting Supporting Tables for Front End in Taiwan Photon Source synchrotron-radiation, alignment, simulation, radiation 4031
 
  • P.A. Lin, K.H. Hsu, C.K. Kuan, C.-S. Lin, H.Y. Lin, I.C. Sheng
    NSRRC, Hsinchu, Taiwan
 
  Taiwan Photon Source is the second accelerator constructed by National Synchrotron Radiation Research Center with energy 3 GeV and 500 mA beam current. In order to install and support front end components those table are designed and constructed. The results of manufacturing and inspecting tables are one of the primary factors that will directly affect the final confining aperture to the end usres. Those supporting table has six types and are all designed and simulated by Solidworks. Different alignment and measurement tools are utilized to inspect these tables. In addition, some results of final post-installation measurement and vibration test are also reported.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRI108  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)