Paper | Title | Other Keywords | Page |
---|---|---|---|
MOZA02 | Advanced RF Design and Tuning Methods of RFQ for High Intensity Proton Linacs | linac, coupling, dipole, operation | 34 |
|
|||
The injector of high intensity linacs includes a Radio Frequency Quadrupole (RFQ) which must sustain high surface fields and thermal effects while accelerating intense low energy beams. For this purpose, the modelisation, realisation and tuning of accurate field laws is mandatory to preserve beam emittances and minimize beam losses. This presentation reviews the progress of advanced methods for the RF design, RF measurements during fabrication and final tuning of RFQ for high intensity linacs. It reports the ongoing developments on the injectors of high intensity demonstrators and of the linacs under construction such as SPIRAL2, LINAC4 or IFMIF-EVEDA. | |||
![]() |
Slides MOZA02 [2.026 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOZA02 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPME002 | Simulation of the Thermal Deformation and the Cooling of a Four-rod Radio Frequency Quadrupole | simulation, radio-frequency, quadrupole, radio-frequency-quadrupole | 376 |
|
|||
Funding: This work is supported by the European Atomic Energy Community’s Seventh Framework Programme under grant agreement nr. 269565 (MAX project). A four-rod radio frequency quadrupole (RFQ) contains four modulated rods kept in place by a number of stems and fixed within a resonating cavity. The position and the modulation of the rods determines the focusing and accelerating properties of the RFQ. The resonating field induces currents, and by that Joule losses, in the stems, rods and tuning plates. The temperature increase causes a mechanical deformation which may lead to a deteriorated performance of the RFQ. The temperature increase is kept small by cooling the rods and stems. A new layout of cooling channels has been proposed. The paper reports about coupled electromagnetic, fluid-dynamic, thermal and structural dynamic field simulations carried out for predicting the mechanical deformation of the stems and the rods. The results for the four-rod RFQ planned for the MYRRHA proton accelerator indicate a change of 47 μm of the distance between the rods when cooling water with a velocity of 3 m/s is applied. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPME002 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPME003 | Radio Frequency Quadrupole Surrogate Field Models Based on 3D Electromagnetic Field Simulation Results | simulation, multipole, quadrupole, electromagnetic-fields | 379 |
|
|||
Funding: This research is funded by grant ”KUL 3E100118” ”Electromagnetic Field Simulation for Future Particle Accelerators”, Project FP7-Euratom No. 269565 and the Belgian Nuclear Research Centre (SCK•CEN) Surrogate field models for the different sections of a Radio Frequency Quadrupole (RFQ) are developed, identified on the basis of finite element (FE) simulation and embedded in a moment method beam dynamics simulation code. The models are validated for both theoretical and realistic RFQ designs. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPME003 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPME004 | RFQ Solver based on the Method of Moments | simulation, linac, impedance, quadrupole | 382 |
|
|||
Funding: SCK•CEN The aim of this research is to improve the accuracy and the simulation time of solvers devoted to Radio Frequency Quadrupoles (RFQ). The Method of Moments is a full-wave method used to solve scattering problems. Its main advantage over FE or FDTD solvers is that unknowns are limited to the boundaries of the object. The resulting dense system of equations can be solved very rapidly with the help of domain-decomposition approaches (e.g. Macro Basis Functions*), especially when the level of detail is very fine compared to the wavelength, which is definitely the case for RFQ’s. Such a method however needs a first regularization method to overcome the low-frequency breakdown in order to compute the Macro Basis Functions. The respective field contributions of different parts of the global structure (e.g. rods vs. stems) can also easily be finely investigated. Numerical results will be presented based on the Myrrha RFQ. The low-frequency breakdown issue due to the very fine mesh will be discussed and a solution based on the so-called Loop-Tree** decomposition will be detailed. * Ozdemir, N.A.; Gonzalez-Ovejero, D.; Craeye, C., IEEE Tr.AP, vol.61, no.4, pp.2088, 2098, April 2013 ** Andriulli, F.P., IEEE Tr.AP, vol.60, no.5, pp.2347, 2356, May 2012 |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPME004 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPME013 | A Python Poisson Solver for 3D Space Charge Computations in Structures with Arbitrary Shaped Boundaries | simulation, space-charge, electron, ion | 406 |
|
|||
Numerical techniques in the field of particle accelerators are mainly driven by the design of next-generation accelerators: The need for higher simulation complexity and the necessity for more and more specialized algorithms arises from the ever increasing need to include a broader range of physical effects and geometrical details in a computer simulation. This, on the other hand requires fast and reliable simulation tools for a limited user base. Therefore, new approaches in simulation software development are necessary to provide useful tools that are well-suited for the task at hand and that can be easily maintained and adapted by a small user community. We show how Python can be used to solve numerical problems arising from particle accelerator design efficiently. As model problem, the computation of space charge effects of a bunch in RFQs including the vane geometry was chosen and a suited solver was implemented in Python. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPME013 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPME032 | PIC Simulations in Low Energy Part of PIP-II Proton Linac | simulation, emittance, linac, proton | 448 |
|
|||
The front end of PIP-II linac is composed of a 30 keV ion source, low energy beam transport line (LEBT), 2.1 MeV radio frequency quadrupole (RFQ), and medium energy beam transport line (MEBT). This configuration is currently being assembled at Fermilab to support a complete systems test. The front end represents the primary technical risk with PIP-II, and so this step will validate the concept and demonstrate that the hardware can meet the specified requirements. SC accelerating cavities right after MEBT require high quality and well defined beam after RFQ to avoid excessive particle losses. In this paper we will present recent progress of beam dynamic study, using CST PIC simulation code, to investigate partial neutralization effect in LEBT, halo and tail formation in RFQ, total emittance growth and beam losses along low energy part of the linac. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPME032 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPME059 | Design of a Multi-harmonic Buncher for LINCE | ion, bunching, operation, linac | 508 |
|
|||
Funding: Work partially supported by the Spanish Government (MINECO-CDTI) under program FEDER INTERCONNECTA. Continuous beams delivered by the LINCE ECR ion source will be bunched by a multi-harmonic buncher consisting of two copper-made electrodes. Its numerical design is reported here along with electric and magnetic field maps. Multi-frequency operation is proven by tracking a continuous beam and optimizing the its longitudinal phase space bunching for various ion species under the influence of space charge effects. A thermo-mechanical study carried out in order to estimate the needed water flow through the electrodes is presented as well. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPME059 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPRI086 | Status of the PXIE Low Energy Beam Transport Line | solenoid, ion, ion-source, emittance | 812 |
|
|||
Funding: Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy A CW-compatible, pulsed H− superconducting RF linac (a.k.a. PIP-II) is envisaged as a possible path for upgrading Fermilab’s injection complex [1]. To validate the concept of the front-end of such machine, a test accelerator (a.k.a. PXIE) [2] is under construction. The warm part of this accelerator comprises a 10 mA DC, 30 keV H− ion source, a 2m-long LEBT, a 2.1 MeV CW RFQ, and a MEBT that feeds the first cryomodule. In addition to operating in the nominal CW mode, the LEBT should be able to produce a pulsed beam for both PXIE commissioning and modelling of the front-end nominal operation in the pulsed mode. Concurrently, it needs to provide effective means of inhibiting beam as part of the overall machine protection system. A peculiar feature of the present LEBT design is the capability of using the ~1m-long section immediately preceding the RFQ in two regimes of beam transport dynamics: neutralized and space charge dominated. This paper introduces the PXIE LEBT, reports on the status of the ion source and LEBT installation, and presents the first beam measurements. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRI086 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPRI090 | Beam Distribution Transformation with SFMs at 3MeV C-ADS Beamline | linac, target, beam-transport, quadrupole | 824 |
|
|||
The C-ADS project is building a test facility at the Institute of High Energy Physics. The design goal of the test facility is 10MeV beam energy with a continuous beam current of 10mA. To sustain the 100kW CW beam power at the beam dump, a beam distribution transform system is designed. The Step Field Magnets (SFMs) are used to transform the beam distribution from Gaussian to uniform. In this test stand, two sets of SFMs will be employed to manipulate the beam distribution. At the first commissioning stage, the bump dump line will be connected to the Medium Energy Beam Transport-1 (MEBT1) to test the beam manipulation scheme. The design and error analysis of this 3MeV beam dump line will be discussed in this paper. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRI090 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPRI093 | Technical Design of Normal Conducting Re-buncher in the MEBT for Rare Isotope Science Project | cavity, acceleration, ion, operation | 830 |
|
|||
Funding: This work was supported by the RISP of Institute for Basic Science funded by Ministry of Science, ICT and Future Planning and National Research Foundation of Korea.(2011-0032011) The front-end system of RISP heavy-ion accelerator(RAON) consists of an electron cyclotron resonance ion source, a low energy beam transport line, a radio frequency quadrupole accelerator and a medium energy beam transport(MEBT) line. The MEBT system, which consists of quadrupole magnets, three normal-conducting re-bunchers and diagnostic devices, is installed between the RFQ accelerator and the superconducting linac(SCL). The three normal-conducting re-bunchers are used to minimize the growths of the longitudinal emittance and to manipulate the particle distribution on longitudinal phase space for beam transportation in SCL. Several combination of the number of cavities was examined, and the quarter wave resonator(QWR) type re-buncher was chosen for MEBT line in RAON. The QWR cavity has a frequency of 81.25 MHz, a maximum electric field of 2.53 MV/m on the cavity surface with an electric field of 1 MV/m on the beam axis, a geometrical beta factor of 0.032 and an effective length of 24 cm. In this presentation, I will present the results of baseline design for electro-magnetic field analysis and mechanical design for stress analysis, thermal stress analysis and cooling channel. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRI093 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPRO054 | Preliminary Design of a LEBT for HIAF Linac at IMP | ion, ion-source, solenoid, quadrupole | 1153 |
|
|||
Funding: National Basic Research Program of China (contract No. 2014CB845500) and the 100 Talents Program of the CAS ( No. Y214160BR0) and China Nature Science Foundation (contract No. 11221064). Heavy-Ion Advanced Research Facility (HIAF) is a new project proposed at Institute of Modern Physics (IMP) in China. HIAF project accelerator is composed of intense ion beam sources, injector superconducting LINAC, acceleration and accumulation storage ring, a collection ring and a collider ring. To achieve the ultimate project goal, HIAF accelerator requires the ion source to provide very high intensity of heavy ion beams, such as 1.7 emA 238U34+ with a repetition rate of 5 Hz and pulse length of 0.5 ms. No state-of-the-art ion source can meet the needs. As a baseline of the project, a high performance superconducting ECR ion source, which is designed to be operational at the microwave frequency of 40-60 GHz will be adopted to produce the pulsed beam of interest for the HIAF accelerator. To transport and match the beams from ECR to the downstream RFQ, a low energy beam transport (LEBT) is needed. This paper presents a preliminary design of the LEBT and the beam dynamics in the LEBT. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO054 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPRO055 | Design Status of the RISP Test Facility LEBT | ECR, simulation, linac, quadrupole | 1156 |
|
|||
Funding: Supported by the Rare Isotope Science Project of Institute for Basic Science funded by Ministry of Science, ICT and Future Planning and National Research Foundation of Korea Project No. 2011-0032011 Raon, the rare isotope accelerator of the the Rare Isotope Science Project (RISP) in Daejeon, South Korea, is being designed to accelerate multiple-charge-state beams simultaneously. Using an Electron Cyclotron Resonance (ECR) Ion Source to produce the ions, Raon will transport the beam through two 90-degree bending magnets and a Low Energy Beam Transport (LEBT) system to a Radio Frequency Quadrupole (RFQ). In order to test the components of the injector and LEBT system, a test facility is under development. A new LEBT, based upon the LEBT of the main driver linac, is being designed to fit within the test facility’s restrictive space requirements. This work will briefly review the main driver linac LEBT design, and then discuss the current status of the test facility LEBT design. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO055 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPRO072 | Lattice and Component Design for the Front End Test Stand MEBT at RAL | quadrupole, simulation, lattice, emittance | 1205 |
|
|||
The Front End Test Stand (FETS) linear accelerator at Rutherford Appleton laboratory (RAL) will accelerate a 60 mA, 2 ms, 50 pps H− beam to 3MeV. The aim of FETS is to demonstrate perfect chopping using a novel 2 stage (fast / slow) chopper scheme. The beam chopper and associated beam dumps are located in the MEBT. Achieving a low emittance-growth under the influence of strong, non-linear space-charge forces in a lattice which has to accommodate the long chopping elements is challenging. The baseline FETS MEBT design is 4.3 m long and contains 7 quadrupoles, 3 rebunching cavities, a fast and slow chopper deflector and two beam dumps. In particle dynamics simulations using a distribution from an RFQ simulation as input, beam loss for the un-chopped beam is below 1% while the chopping efficiency is >99 % in both choppers. The final MEBT lattice chosen for FETS will be presented together with particle tracking results and design details of the beam line components. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO072 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPRO067 | Development of NICA Injection Complex | ion, linac, ion-source, DTL | 2103 |
|
|||
The new accelerator complex Nuclotron-based Ion Collider fAcility (NICA) is assumed to operate using two linear accelerators: the Alvarez-type linac LU-20 as injector for light ions, polarized protons and deuterons and a new linac HILac for heavy ions. The new Booster and existing Nuclotron superconducting rings are the main parts of the injection complex of the NICA collider. The status of ion sources, both linacs and rings is presented. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO067 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPRO075 | The Conceptual Design of the China White Neutron Source | DTL, linac, neutron, resonance | 2127 |
|
|||
Funding: Work supported by NSFC of (91126003) In order to feed the nuclear data needs for design of the Chinese Accelerator Driven sub-critical System (CADS) and new generation nuclear energy systems, we plan to construct the China White Neutron Source (CWNS). The CWNS will be composed of a Proton Linac, an Accumulator Ring, a Target and Experimental Facilities. The linac is designed to deliver a proton beam having an average current of 1 mA at energy up to 300 MeV. The revolution frequency of the accumulator ring will be ~1.4 MHz. Two spallation targets are planned, with one for short pulsed modes and the other for micro-pulsed mode. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO075 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPRO083 | Implementation of a Superconducting Electron Beam Ion Source into the HIT Ion Source Test Bench | ion, ion-source, ECRIS, emittance | 2153 |
|
|||
Cancer therapy with light heavy ions is now a well proven technology. Almost all facilities are running Electron Cyclotron Resonance Ion Sources (ECRIS) to produce carbon ions and protons as well. In the 1990’s the idea of using a Electron Beam Ion Source was proposed (EBIS) [1]. Some proof of principle measurements were carried out [2] but the application of EBIS ion sources in radiation facilities has not been established. We present results from the implementation of a superconducting EBIS, the Dresden EBIS-SC, at an RFQ accelerator at the testbench of the Heidelberg Ion Therapy Center (HIT). First results from C 4+ ions produced by the Dresden EBIS-SC [3] and injection in an RFQ accelerator at the HIT testbench are shown. Furthermore, emittance measurements as well as investigations of the ion energy and the transmission through the RFQ were done. The emittance of the EBIS source is lower by a factor of nine compared to an ECRIS, which improves the transmission through the RFQ. With the current setup the ion output from the EBIS-SC is lower by a factor of 7 compared to an ECRIS to fulfill the requirements of the highest irradiation level. Further improvements are discussed.
* erik.ritter@dreebit.com |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO083 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPRO094 | Large Scale Particle Tracking and the Application in the Simulation of the RFQ Accelerator | software, simulation, emittance, space-charge | 3107 |
|
|||
Large scale particle tracking is important for the design and optimization of the Radio-frequency Quadrupole (RFQ) accelerator. In this paper, we present RFQ simulation results of new parallel software named LOCUS3D, which is developed at Institute of Software, Chinese Academy of Sciences. It is based on Particle-In-Cell method and calculates three-dimensional space charge field by an efficient parallel fast Fourier transform method. A RFQ accelerator in Tsinghua University is simulated by tracking 100 million macro particles. This RFQ is designed to accelerate protons from 50 keV to 3 MeV, with peak beam current of 50 mA. As large number of particles been simulated, more accurate and detailed information have been obtained. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRO094 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPRO095 | The Design, Construction and Experiments of a RFQ Cold Model at Tsinghua University | cavity, dipole, insertion, experiment | 3110 |
|
|||
Funding: Work supported by National Natural Science Foundation of China (Major Research Plan Grant No. 91126003 and Project 11175096). The design, construction and experiments of a cold model of one high-current CW RFQ with ramped inter-vane voltage at Tsinghua University are presented in this paper. The 1-meter-long aluminium cold model is chosen to be the same as the low-energy part of the 3-meter-long RFQ. This cold model will be used mainly for the RFQ field study and education. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRO095 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPRO098 | Realistic Modeling of 4-Rod RFQs with CST Studio | simulation, quadrupole, emittance, cavity | 3119 |
|
|||
RFQ accelerators are usually designed and modeled with standard codes based on electrostatic field approximations. There are recent examples when this approach fails to predict the RFQ performance accurately: for 4-rod RFQs 3D effects near the vane ends can noticeably influence the beam dynamics. The same applies to any RFQ where the quadrupole symmetry is broken, e.g., 4-vane RFQ with windows. We analyzed two 201.25-MHz 4-rod RFQs – one recently commissioned at FNAL and a new design for LANL – using 3D modeling with CST Studio. In both cases the manufacturer CAD RFQ model was imported into CST. The EM analysis with MicroWave Studio (MWS) was followed by beam dynamics modeling with Particle Studio (PS). For the LANL RFQ with duty factor up to 15%, a thermal-stress analysis with ANSYS was also performed. The simulation results for FNAL RFQ helped our Fermilab colleagues fix the low output beam energy. The LANL RFQ design was modified after CST simulations indicated insufficient tuning range and incorrect output energy; the modified version satisfies the design requirements. Our PS results were confirmed by multi-particle beam-dynamics codes that used the MWS-calculated RF fields. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRO098 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPRO129 | Online Modeling of the Rare Isotope Reaccelerator - ReA3 | emittance, linac, SRF, diagnostics | 3195 |
|
|||
Funding: Work supported by Michigan State University With the installation and commissioning of the third accelerating cryomodule in summer of 2014 the first phase of the radioactive ion beams postaccelerator ReA at National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University (MSU) will be completed. ReA was integrated in 2013 into the Coupled Cyclotron Facility providing unique low-energy rare isotope beams. After the fast rare isotopes are stopped in a gas stopping system, mass separated and their charge state boosted in an Electron Beam Ion Trap (EBIT), the ions are reaccelerated in a compact superconducting (SC) LINAC. For rare isotope operations, the LINAC is pre-tuned using stable pilot beams with a similar mass to charge ratio as the rare isotope beams and consequently the system is scaled. Scaling steps of up to 5\% are needed to change to the radioactive beams. To preserve the stringent beam characteristic on the experimental end station a precise online model is required. We will present the status of this online model. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRO129 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPME001 | Commissioning and Operation of the MedAustron Injector: Results and Future Outlook | ion, ion-source, DTL, emittance | 3202 |
|
|||
The MedAustron facility is a synchrotron-driven hadron therapy and research center presently under construction in Wiener Neustadt, Austria. In its final outline, the facility will provide H+ beams with kinetic energies ≤250MeV and C6+ beams of ≤400MeV/u for clinical applications, and for non-clinical applications H+ of up to 800MeV. First patient treatment is foreseen for the end of 2015. The (H3)+ and C4+ beams are generated at 8keV/u in continuous mode by three ECR ion sources and transported to the RFQ for acceleration to 400keV/u. An inter-tank section matches the beam to the entrance of an IH-mode DTL that accelerates the particles to 7MeV/u before they are stripped to, respectively, H+ and C6+, debunched and transported to the injection plane of the synchrotron. At a later stage of the project, beams of other species can be generated with similar optics. This contribution presents the results of the injector commissioning and operation. A comparison with the baseline optics and with the design error studies is given. In addition, an overview on the operational experience is given, with emphasis on the system reliability, stability and reproducibility. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME001 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPME006 | Straight Injection of an intense Uranium Beam into the GSI High Current RFQ | ion, emittance, ion-source, quadrupole | 3217 |
|
|||
A dedicated high current uranium ion source and LEBT will be built at the GSI High Current Injector (HSI), to fulfil the intensity requirements for FAIR (Facility for Antiproton and Ion Research at Darmstadt). This new injection line will be integrated into the existing complex which already comprises two branches. The new LEBT is designed as a straight injection line without dipole magnet, i.e. without dispersive charge state separation. All uranium charge states, coming from the ion source, are transported to the heavy ion high current GSI-HSI-RFQ. Only the design charge state U4+ is accelerated to the final RFQ energy. The new LEBT design is based on beam emittance and current measurements behind the existing ion source. Beam dynamics simulations have been performed with the codes TRACE-3D (envelopes), DYNAMION, BEAMPATH and TRACK (multiparticle). The recent layout of the LEBT, as well as the results of beam dynamics studies are presented. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME006 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPME008 | New Reference Design of the European ADS RFQ Accelerator for MYRRHA | emittance, simulation, bunching, operation | 3223 |
|
|||
For demonstrating the technical feasibility of nuclear waste transmutation in an Accelerator Driven System (ADS), the MYRRHA (Multi-purpose hYbrid Research Reactor for High-tech Applications) proton driver is under intensive studies. Good performance of the 2 – 4 mA, 1.5MeV RFQ (Radio-Frequency Quadrupole), the start of the accelerator chain, is essential to the reliability of the whole facility, so it must be very well designed. On the basis of the first reference design, further improvements with respect to electrode aperture, emittance growths and output distributions have been performed. The simulation results of the new reference design are presented in this paper. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME008 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPME009 | Beam Dynamics for the FAIR Proton-Linac RFQ | linac, bunching, simulation, focusing | 3226 |
|
|||
The FAIR (Facility for Antiproton and Ion Research) Proton-Linac (P-LINAC) will be started with a 325.224 MHz, 3 MeV Radio-Frequency Quadrupole (RFQ) accelerator. To ensure that a ≥35 mA beam can be injected into the downstream synchrotrons, the design beam intensity of this Proton-RFQ (P-RFQ) has been chosen as 70 mA. Based on the so-called NFSP (New Four-Section Procedure) method, two new beam dynamics designs with varying and constant transverse focusing strength, respectively, have been worked out to meet the latest design requirements using a compact structure. This paper presents the main design concepts and simulation results. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME009 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPME012 | Results of the High Power Test of the 325 MHz 4-Rod RFQ Prototype | impedance, linac, proton, dipole | 3235 |
|
|||
For the FAIR proton linac at GSI a 325 MHz 4-rod RFQ prototype has been built. On this prototype RF measure- ments have been carried out. After low power conditioning in cw mode the structure was high power tested in pulsed mode. During the performance tests the 6 stem prototype was optimized and has shown the feasibility of a dipole free 4-rod RFQ at high frequencies and was testet up to 120 kW per meter. In this tests the input power and the electrode voltage was observed using gamma spectroskopy. From this the shunt impedance was calculated and compared to other methods of measurements. The power test results are presented in this paper. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME012 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPME013 | Field Optimized 4-rod RFQ Model | simulation, quadrupole, shielding, bunching | 3238 |
|
|||
The performance of an RFQ in case of its beam quality and transmission is in the basis dependent on the conformity of the field distribution of the manufactured structure with the one of its particle dynamic design. In the last years studies have been performed on the influence of various elements of the 4-rod RFQ on its field distribution. In particular the tuning process of the 4-rod RFQ with its tuning plates has been optimized. These studies have been complemented with detailed simulations on the fringe fields at the end of the electrodes and the conformity of the fields along the structure as well as the influence of other tuning elements like the piston tuner. Based on the findings of this research a proposal for a field optimized 4-rod RFQ model has been developed and will be presented in this paper. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME013 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPME014 | Beam Dynamics in the LEBT for FRANZ | emittance, solenoid, injection, simulation | 3241 |
|
|||
The two Low Energy Beam Transport (LEBT) sections of the accelerator-driven neutron source FRANZ* consist of four solenoids. The first section with two solenoids will match the 120 keV proton beam into a chopper system**. Downstream from the chopper system a second section with two more solenoids will match the beam into the acceptance of the following RFQ. The accelerator will be operated using either a 2 mA dc beam or a pulsed beam with intensities from 50 mA to 200 mA at 250 kHz repetition rate. The high intensity of these ion beams requires the consideration of space-charge effects. Particle simulations with varying parameter sets have been performed in order to determine the settings providing best transmission and beam quality. Loss profiles along the transport channel were computed to identify hotspots. Simulation results for best transmission at lowest emittance growth will be presented.
* O. Meusel et al., Proc. of LINAC12, Tel-Aviv, Israel, MO3A03 ** C. Wiesner et al., Proc. of IPAC2012, New Orleans, LA., USA, THPPP074 |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME014 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPME015 | Experimental Performance of an E×B Chopper System | flattop, proton, ion, dipole | 3244 |
|
|||
Beam operation of an E×B chopper system has started in the Low-Energy Beam Transport (LEBT) section of the accelerator-driven neutron source FRANZ*. The chopper is designed for low-energy high-perveance beams and high repetition rates. It combines a static magnetic deflection field with a pulsed electric compensation field in a Wien filter-type E×B configuration**. Helium ions with 14 keV energy were successfully chopped at the required repetition rate of 257 kHz. The maximum chopped beam intensity of 3.5 mA, limited by the given test ion source, corresponds to a generalized perveance of 2.7·10-3. For the design species and energy, 120 keV protons, this is equivalent to a beam current of 174 mA. Beam pulses with rise times of 120 ns, flat top lengths of 85 ns to 120 ns and Full Width at Half Maximum (FWHM) between 295 ns and 370 ns were experimentally achieved.
* U. Ratzinger et al., Proc. of IPAC2011, San Sebastián, Spain, WEPS040. ** C. Wiesner et al. Proc. of IPAC2012, New Orleans, LA., USA, THPPP074. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME015 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPME016 | Experimental Results on SCDTL Structures for Protons | proton, beam-transport, coupling, DTL | 3247 |
|
|||
The medium-energy section of the proton linear accelerator for radiotherapy under realization in the framework of the TOP-IMPLART Project consists in a high frequency 7-35 MeV SCDTL (Side Coupled Drift Tube Linac) structure. The structure, made of 4 modules supplied by one klystron, has been completely designed. The first module up to 11.6 MeV has been built and is under commissioning at ENEA-Frascati and the second and third modules are under realization. The paper describes the system and presents the main results of the experimental activity on this part of the accelerator. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME016 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPME019 | LIPAc, the 125mA / 9MeV / CW Deuteron IFMIF’s Prototype Accelerator: What Lessons Have We Learnt from LEDA? | linac, proton, emittance, space-charge | 3256 |
|
|||
The Engineering Validation and Engineering Design Activities (EVEDA) phase of IFMIF aims at running a 9 MeV / 125 mA / CW deuteron accelerator to demonstrate the feasibility of IFMIF’s 40 MeV / 125 mA / CW accelerator with components mainly designed and constructed in European labs. LEDA was operated successfully in 1999-2001 as a 6.7 MeV / 100 mA / CW proton accelerator with high availability. The present paper assesses the experience gained in LEDA and explains how LIPAc, the IFMIF prototype accelerator, is inheriting its role of breaking through technological boundaries. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPME022 | Recent Progress of the SSC-LINAC RFQ | cavity, linac, operation, pick-up | 3265 |
|
|||
Funding: NFSC(11079001) The project of SSC-LINAC RFQ has important progresses in the past year. The machine has been moved to the Institute of Modern Physics in the first season of 2013. The cavity measurement including tests of RF performance and field distribution is carried out again in the laboratory. The Q0 is 6440, and the unflatness of the electric field in longitudinal is ±2.5%. The results demonstrated a good agreement with simulation. The RF and beam commissioning of the RFQ has been carried out in the first half of 2014. The duty factor rose from 5% to CW gradually. By now, the cavity has been operated with 35 kW on CW mode. The measurement of the bremsstrahlung spectrum reveals that the 35 kW power is needed to generate the 70 kV inter-vane voltage. The beam transmission efficiency and energy spread has been obtained in beam commissioning by accelerating 16O5+ and 40Ar8+ beams. The efficiency of 40Ar8+ is as high as 94%, and the output energy is 142.78 keV/u. All the processes and results of the experiments will be discussed in details. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME022 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPME023 | CPHS Linac Status at Tsinghua University | target, linac, neutron, operation | 3268 |
|
|||
Funding: Work supported by National Natural Science Foundation of China (Major Research Plan Grant No. 91126003 and 11175096). We present, in this paper, the operation status of the 3 MeV high current proton Linac for the Compact Pulsed Hadron Source (CPHS) at Tsinghua University. Proton beam with the peak current of 30 mA, pulse length of 100 μs and repetition rate of 50 Hz has been delivered to the Beryllium target to produce the neutron since July 2013. The pulse length will be further increased to 500 μs. The proton beam energy is expected to be enhanced to the designed value of 13 MeV after the Drift Tube Linac is ready in 2015. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME023 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPME024 | Cooling Design for the FRIB RFQ Cavity at Michigan State University | simulation, cavity, operation, linac | 3271 |
|
|||
Funding: Work supported by the Major Research plan of the National Natural Science Foundation of China (Grant No. 91126003) We present, in this paper, the cooling design for the Radio Frequency Quadrupole (RFQ) cavity of the Facility for Rare Isotope Beams (FRIB) at Michigan State University. The locations and radius of the cooling passages are optimized, which exist in the five-meter-long copper cavity, tuners, dipole-mode stabilizing rods and end-plates. A three-dimensional RF, thermal, and structural analysis by ANSYS has been performed to carry out the design and verify that the present design can meet the requirement for water velocity, stress, deformation and frequency shift. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME024 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPME025 | Low Power Test of a Hybrid Single Cavity Linac | linac, cavity, ion, injection | 3274 |
|
|||
We fabricated and assembled a hybrid single cavity (HSC) linac which is formed by combining a radio frequency quadrupole (RFQ) structure and a drift tube (DT) structure into one interdigital-H (IH) cavity. ]. The HSC linac was designed as an injector for a cancer facility and was able to be used as a neutron source for boron neutron capture therapy. The injection method of the HSC linac used a direct plasma injection scheme (DPIS), which is considered to be the only method for accelerating a high current heavy ion beam produced by a laser ion source. The input beam current was designed to be 20 mA, which could be produced by a laser ion source. According to the simulations and calculations, the HSC linac could accelerate a 6-mA C6+, beam which satisfies the particle number criteria for cancer therapy use (108~9 ions/pulse). Details of the measurements and evaluations of the assembled HSC linac, and details of a DPIS test using a laser ion source are reported in this paper. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME025 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPME026 | The R&D Status of SSC-LINAC | ion, linac, ion-source, ECR | 3277 |
|
|||
A powerful heavy ion injector SSC-linac is under constructing at IMP in Lanzhou. The continuous wave (CW) 4-rod RFQ operating at 53.667 MHz has been developed as the low beam energy injector linac. The 40Ar8+ ion beam extracted from the ECR ion source was used for the RFQ commissioning. The particle energy 142.8 keV/u and the 198 euA beam current were measured at the exit of RFQ with the 94% transmission. In this paper, the recent R&D progress of the SSC-LINAC including the development of key components and the beam commissioning results are presented. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME026 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPME027 | Development of the injector II RFQ for China ADS project | cavity, acceleration, linac, proton | 3280 |
|
|||
As one of the main components of the injector II of China ADS LINAC project, an RFQ working at 162.5MHz is used to accelerate proton beams of 15mA from 30 keV to 2.1 MeV. The four vane RFQ has been designed in collaboration with Lawrence Berkeley National Laboratory and built at the workshop of the Institute of Modern Physics, Chinese Academy of Sciences (IMP, CAS). Low power test of the cavity have been completed, and it shows the field flatness is within ±1% and the unloaded Q is 12600. RF conditioning has been completed, results of preliminary beam test show the output beam energy is 2.16 MeV with energy spread of 3.5% and the transmission efficiency is 97.9%. Continuous wave (CW) beam of 2.3 mA has been accelerated for more than one hour. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME027 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPME030 | Beam Dynamics and Accelerating Cavity Electrodynamics' Simulation of CW 2 MeV Proton RFQ | linac, cavity, simulation, Windows | 3286 |
|
|||
The CW proton linac has a number of important applications; serving as the initial part of a high-energy, high-power linac for an accelerator-driven system is the main of them. Its CW operation mode and a 5-10 mA beam current, however, are limiting factors for the accelerating field. The surface field should not exceed the Kilpatrick field by more than 1.2-1.5 times. This limitation leads to the increase in linac length and beam bunching complexity. The first results of a 2 MeV, 5 mA, CW RFQ, designed for the operating frequency of 162 MHz, are discussed. Beam dynamics simulation results, obtained by using the BEAMDULAC-RFQ code*, are presented. The electrodynamics of the accelerating structure based on the four-vane cavity is discussed. The accelerating cavity design uses coupling windows as was proposed earlier **, but with windows of an elliptical form. Such form allows for better separation of quarupole and dipole modes.
* S.M. Polozov. Problems of Atomic Science and Technology. Series: Nuclear Physics Investigations, 3 (79), 2012, p. 131-136. ** V.A. Andreev. Patent US5483130, 1996. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME030 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPME036 | ECOS-LINCE: A High Intensity Multi-ion Superconducting Linac for Nuclear Structure and Reactions | ion, heavy-ion, linac, ECR | 3301 |
|
|||
Funding: Work partially supported by the Spanish Government (MINECO-CDTI) under program FEDER INTERCONNECTA. During the past ten years, ECOS working group and users strongly supported the construction of a dedicated high-intensity stable-ion-beam facility in Europe, with energies at and above the Coulomb barrier as part of the Long-Range Plan of the Nuclear-Physics community. LINCE will be a multi-user facility dedicated to ECOS science: fundamental physics, astrophysics, nuclear structure and reaction dynamics. Applied research is foreseen in the fields of medical physics, aerospace and material sciences with energetic heavy ions. The facility will produce a wide range of ions, from protons (45 MeV) up to Uranium (8.5 MeV/u) with 1mA maximum beam intensity. A very compact linac has been designed by using a HV platform with a double-frequency ECR ion source, multi-harmonic buncher, an innovative CW RFQ design (1 ≤A/Q ≤ 7) and 26 accelerating cavities made of bulk niobium (β = 0.045, 0.077 and 0.15) working at 72.75 and 109.125 MHz. This article gives an outline of the accelerator complex from the ion source to the experimental areas, and presents its research potential and the relevant physics instrumentation. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME036 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPME037 | Development of a 72.75 MHz RFQ for the LINCE Accelerator Complex | quadrupole, Windows, simulation, resonance | 3304 |
|
|||
Funding: Work partially supported by the Spanish Government (MINECO-CDTI) under program FEDER INTERCONNECTA. Low-energy acceleration for the LINCE project [1] will be achieved using a 72.75 MHz normal conducting four vanes RFQ designed to give a 460 keV/u boost for A/Q = 7 ions in about 5 m. The vanes are modeled to accommodate windows for a clear separation of the RFQ modes and easy fitting to an octagonal resonance chamber. This article presents the main numerical results of the radio-frequency modeling and computational fluid dynamics (CFD). Particle tracking studies optimized for bunching and acceleration are shown as well. [1] I. Martel et al., “LINCE: A High Intensity Multi-ion Superconducting Linac for Nuclear Structure and Reactions”, IPAC’14, Dresden, Germany, June 2014, THPME036, These Proceedings. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME037 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPME038 | Low Power RF Characterization of ESS Bilbao RFQ Cold Model | dipole, cavity, pick-up, quadrupole | 3308 |
|
|||
In order to test both the design and manufacturing procedures of the final ESS-Bilbao RFQ, a 1 meter long RFQ Cold Model, including a longitudinal vane modulation, has been manufactured in aluminium. Low power RF measurements have been performed to obtain the main figures of merit of the cavity, including: frequency spectrum, coupling and quality factors, tuning range, RF sealing effect and the accelerating field profile. The experimental and simulated results are explained and analyzed. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME038 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPME043 | The ESS Linac | linac, target, proton, quadrupole | 3320 |
|
|||
The European Spallation Source, ESS, uses a linear accelerator to bombard the tungsten target with the high intensity protons beam for producing intense beams of neutrons. The nominal average beam power of the linac is 5~MW with a peak beam power at target of 125~MW. During last year the ESS linac was costed, and to meet the budget a few modifications were introduced to the linac design. One of the major changes is the reduction of final energy from 2.5~GeV to 2.0~GeV and therefore beam current was increased accordingly to compensate for the lower final energy. As a result the linac is designed to meet the cost objective by taking a higher risk. This paper focuses on the driving forces behind the new design, engineering and beam dynamics requirements of the design and finally on the beam dynamics performance of the linac. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME043 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPME044 | Statistical Error Studies in the ESS Linac | linac, emittance, alignment, DTL | 3323 |
|
|||
Following the completion of the latest layout of the ESS linac statistical error studies have been performed to define the field vector quality and alignment tolerances. Based on these tolerances and error study results a scheme for the correction system is proposed that assures low losses and permits hands-on maintenance. This paper reports on the strategy of simulating and performing the error studies as well as setting the tolerances. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME044 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPME045 | Beam Physics Design of the ESS Medium Energy Beam Transport | DTL, linac, lattice, emittance | 3326 |
|
|||
A radio frequency quadrupole (RFQ) and drift tube linac (DTL) in the ESS proton linac are connected with a medium energy beam transport (MEBT) to remove low intensity bunches on the head and tail of a macro-pulse with a chopper and house diagnostic devices to characterize and adjust the beam out of the RFQ for the DTL. These must be achieved within a relatively short space and without large degradation of beam quality due to space charge force, imposing a challenge on the lattice design. This paper presents a beam physics design of the MEBT in the ESS proton linac, which satisfies its requirement while preserving a decent beam quality. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME045 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPME048 | Status and Plans for Linac4 Installation and Commissioning | linac, ion, ion-source, emittance | 3332 |
|
|||
Linac4 is a normal conducting 160 MeV H− linear accelerator presently being installed and progressively commissioned at CERN. It will replace the ageing 50 MeV Linac2 as injector of the PS Booster (PSB), increasing at the same time its brightness by a factor of two thanks to the higher injection energy. This will be the first step of a program to increase the beam intensity in the LHC injectors for the needs of the High-Luminosity LHC project. After a series of beam measurements on a dedicated test stand the 3 MeV Linac4 front-end, including ion source, RFQ and a beam chopping line, has been recommissioned at its final position in the Linac4 tunnel. Commissioning of the following section, the Drift Tube Linac, is starting. Beam commissioning will take place in steps of increasing energy, to reach the final 160 MeV in 2015. An extended beam measurement phase including testing of stripping equipment for the PSB and a year-long test run to assess and improve Linac4 reliability will take place in 2016, prior to the connection of Linac4 to the PSB that will take place during the next long LHC shut-down. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME048 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPME050 | SPP Beamline Design and Beam Dynamics | ion, ion-source, plasma, solenoid | 3338 |
|
|||
The Radio Frequency Quadrupole (RFQ) of SNRTC Project Prometheus (SPP) will be a demonstration and educational machine which will accelerate protons from 20 keV to 1.5 MeV. The project is funded by Turkish Atomic Energy Authority (TAEK) and it will be located at Saraykoy Nuclear Research and Training Center (SNRTC) in Ankara. The SPP beamline consists of a multi-cusp H+ ion source, a Low Energy Beam Transport (LEBT) line and a four-vane RFQ operating at 352.2 MHz. The design studies for the multi-cusp ion source (RF or DC) were performed with IBSimu and SIMION software packages. The source has already been produced and currently undergoes extensive testing. There is also a preliminary design for the solenoid based LEBT, POISSON and PATH were used in parallel for the preliminary design. Two solenoid magnets are produced following this design. The RFQ design was made using LIDOS. RFQ.Designer and it was crosschecked with a home-grown software package, DEMIRCI. The initial beam dynamics studies have been performed with both LIDOS and TOUTATIS. This paper discusses the design of the SPP beamline focusing on the RFQ beam dynamics. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME050 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPME051 | Preparatory Investigations for a Low Frequency Prebuncher at ReA | linac, bunching, simulation, detector | 3342 |
|
|||
The ReA reaccelerator facility at the National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University (MSU) will provide a unique capability to study reactions with low-energy beams of rare isotopes. A beam from the coupled cyclotron facility is stopped in a gas stopping system, charge bred in an Electron Beam Ion Trap (EBIT), and then reaccelerated in a compact superconducting LINAC. At present the beam repetition rate at the ReA targets is the same as the LINAC RF frequency of 80.5 MHz. A lower frequency would be desirable for many types of experiments using time of flight data acquisitions. Studies were undertaken to investigate possible methods of reducing the beam frequency with minimal reduction in overall beam current. This paper reports the results of preliminary design studies of such a low frequency prebuncher designed to increase the pulse separation and minimize bunch lengths at the detector. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME051 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPME052 | Measurement of the Longitudinal Acceptance of the ReA RFQ | simulation, linac, ion, injection | 3346 |
|
|||
The ReA reaccelerator facility at the National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University (MSU) will provide a unique capability to study reactions with low-energy beams of rare isotopes. A beam from the coupled cyclotron facility is stopped in a gas stopping system, charge bred in an Electron Beam Ion Trap (EBIT), and then reaccelerated in a compact superconducting LINAC. The beam is injected into the LINAC by a room-temperature Radio Frequency Quadrupole (RFQ) combined with an external Multiharmonic Buncher. (MHB) In preparation for future upgrades to the capabilities of the ReA, an accurate determination of the longitudinal acceptance of the RFQ was conducted using a stable ion beam from a test source. This paper presents the results of the acceptance measurement, including empirical confirmation of a predicted asymmetry in the shape of the acceptance window. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME052 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPME055 | RF Tuning of the IPHI RFQ | coupling, dipole, quadrupole, operation | 3355 |
|
|||
The construction of IPHI (High Power Proton Accelerator) is in its final step of installation. The RFQ will accelerate beam up to 100 mA with energy up to 3 MeV. The RFQ, made of six modules, one meter each, is of the four-vane type. The RFQ is divided in 2-meter long segments with capacitive coupling. It is also equipped with 96 fixed tuners and four waveguide RF ports located in the fourth module. This paper describes the procedure used to tune the accelerating field and power couplers of the RFQ. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME055 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPME059 | Preparation of the Coupled RFQ-IH-cavity for FRANZ | DTL, coupling, cavity, operation | 3367 |
|
|||
The Frankfurt neutron source at the Stern-Gerlach-Zentrum (FRANZ) will provide ultra-short neutron pulses at high intensities and repetition rates. The neutrons will be produced using the 7Li(p, n)7Be reaction induced by a proton beam. The 175 MHz IH-type drift tube linac with 8 gaps succeeds a 4-rod-RFQ. Together they form a coupled linac combination with a length of 2.3 m and accelerate the protons from 120 keV to 2.03 MeV. As the RF losses add up to 200 kW, the cooling of both accelerators is a central challenge. The RFQ-IH combination is powered by a radio frequency amplifier, which couples the RF power into the RFQ. The two structures are connected via inductive coupling. The initial beam operation of the accelerators is configured for 50 mA in cw mode. The IH-components were fabricated, RF tuning measurements are underway. The RFQ and the IH-DTL will be conditioned separately and then be connected, aiming for a beam operation at the end of 2014. A main challenge in fabrication was the precise welding required for the water cooled drift tubes and stems. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME059 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPME073 | Performance of the Low Energy Beam Transport at the RAL Front End Test Stand | solenoid, emittance, ion, ion-source | 3406 |
|
|||
The Front End Test Stand (FETS) at the Rutherford Appleton Laboratory (RAL) is intended to demonstrate the early stages of acceleration (0-3 MeV) and beam chopping required for high power proton accelerators, including proton drivers for pulsed neutron spallation sources and neutrino factories. A Low Energy Beam Transport (LEBT), consisting of three solenoids and four drift sections, is used to transport the H− beam from the ion source to the Radio Frequency Quadrupole (RFQ). We present the current performance of the LEBT with regards to beam alignment, transmission and focusing into the acceptance of the RFQ. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME073 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPME075 | FNAL - The Proton Improvement Plan (PIP) | booster, linac, proton, operation | 3409 |
|
|||
Funding: The United States Department of Energy The FNAL Proton Source is currently undergoing a major improvement effort. A plan has been developed and is underway to increase Proton Source throughput while maintaining good availability and acceptable residual activation. The plan addresses hardware modifications to increase repetition rate and improve beam loss while ensuring viable operation of the proton source through 2025. The PIP goals will enable Linac/Booster to: Deliver 2.25·1017 protons per hour with a 15 HZ cycle rate Availability greater than 85% Maintain residual activation at acceptable levels. The work has been progressing on schedule and is expected to finished by 2018. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME075 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPME139 | Emittance Measurement with Wire Scanners at CADS MEBT1 | emittance, quadrupole, space-charge, linac | 3575 |
|
|||
The C-ADS project has started beam commissioning. The ion source and LEBT has been commissioned successfully, while the RFQ is under conditioning. The Medium Energy Beam Transport line-1 (MEBT) is the place where extensive beam parameter measurement will be carried out. Beam emittance is one of the most critical parameters which have to characterized. In the C-ADS injector-I, the MEBT-1 has installed three wire scanners to measure the beam sizes. The transverse emittance measurement method using the wire scanners will be discussed in detail in this paper. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME139 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPRI049 | Engineering Design of the RF Input Couplers for C-ADS RFQ | cavity, linac, impedance, operation | 3878 |
|
|||
A new coupler with the special ceramic window has been developed at IMP, CAS (Institute of Modern Physics, Chinese Academy of Sciences), operating at 30 kW/162.5 MHz in CW mode for an one-meter prototype cavity, which can provide all kinds of experiences to the real four-meter cavity including EM simulation, power conditioning, cooling consideration and so on. Now, the beam experiments on prototype cavity have been completed and the results show the simulation and the measurements of coupler were in the good agreement. The special bowl-type ceramic window can promote S parameter and reduce sparking risk for beam commissioning stably. A detailed electromagnetic design and measured results of the coupler will be presented in the paper. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRI049 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPRI058 | RF Delivery System for FETS | klystron, rf-amplifier, quadrupole, simulation | 3902 |
|
|||
The Front End Test Stand (FETS) is an experiment based at the Rutherford Appleton Laboratory (RAL) in the UK. In this experiment, the first stages necessary to produce a very high quality, chopped H− ion beam as required for the next generation of high power proton accelerators (HPPAs) are designed, built and tested. HPPAs with beam powers in the megawatt range have many possible applications including drivers for spallation neutron sources, neutrino factories, accelerator driven sub-critical systems, waste transmuters and tritium production facilities. An RF system outline, circulator high power tests, RF amplifiers tests, waveguide run with shielding and couplers design are presented and discussed in this paper. Experimental measurements of the system’s circulator and RF Amplifiers high power test will be presented as part of the system testing results. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRI058 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
FRXCB01 | Overview of Worldwide Accelerators and Technologies for ADS | proton, cavity, ECR, target | 4069 |
|
|||
There are many interesting proposals and programs for accelerator driven subcritical facilities for waste transmutation(ADS) in the world, which is to speed up from the basic study to the real facility, and the significant progress in the development of accelerator technologies, in particular, superconducting RF linacs for ADS, but the key technologies in high power proton accelerator are still severe challenges which call for the closer international cooperation. This talk provides a broad overview of worldwide ADS accelerators. | |||
![]() |
Slides FRXCB01 [10.151 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-FRXCB01 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||