Keyword: shielding
Paper Title Other Keywords Page
MOPRO067 Analytic Calculation of Electric Fields of Coherent THz Pulses radiation, electron, synchrotron, synchrotron-radiation 234
 
  • M. Schwarz, P. Basler, M. Guenther, A.-S. Müller, M. von Borstel
    KIT, Karlsruhe, Germany
  • M.T. Schmelling
    MPI-K, Heidelberg, Germany
 
  The coherently emitted electric field pulse of a short electron bunch is obtained by summing the fields of the individual electrons, taking phase differences due to different longitudinal positions into account. For an electron density, this sum becomes an integral over the charge density and frequency spectrum of the emitted radiation, which, however, is difficult to evaluate numerically. In this paper, we present a fast analytic method valid for arbitrary bunch shapes. We also include shielding effects of the beam pipe and consider ultra-short bunches, where the high frequency part of the coherent synchrotron spectrum is cut-off not by the inverse bunch length but by the critical frequency of synchrotron radiation. Our technique is applied to bunches, simulated simulated for the linac-based FLUTE accelerator test facility at KIT.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO067  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPME040 MadFLUKA Beam Line 3D Builder. Simulation of Beam Loss Propagation in Accelerators optics, dipole, lattice, database 463
 
  • M. Santana-Leitner, Y. Nosochkov, T.O. Raubenheimer
    SLAC, Menlo Park, California, USA
 
  Funding: This work was supported by Department of Energy contract DE-AC02-76-SFO0515
Beam tracking programs provide information of orbits along the nominal trajectory to design beam-line optics. Other aspects like machine or radiation protection, which inspect the transverse dimensions and volumes, are simulated with radiation transport Monte Carlo codes, some of which also include magnetic tracking capabilities. Evaluation of certain aspects, like beam loss shower induced propagation along a beam line, or beam mis-steering phase-space, would require to combine features of both types of codes, or use the latter ones with full accelerator 3D implementations, often too cumbersome and time consuming. This paper presents MadFLUKA, a program that produces FLUKA compatible geometries from MAD files. Objects selected from a user user-configurable database are auto-replicated with the rules of ‘twiss’ and ‘survey’ files to create beam lines with hundreds of components. FLUKA magnetic subroutine is generated from MAD optics, including history randomization of fields for ray-trace analysis of mis-steering failures. MadFLUKA is used in the design of the LCLS-II, at SLAC.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPME040  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUOAA02 Design of the LBNE Beamline target, proton, operation, extraction 907
 
  • V. Papadimitriou, R. Andrews, J. Hylen, T.R. Kobilarcik, A. Marchionni, C.D. Moore, P. Schlabach, S. Tariq
    Fermilab, Batavia, Illinois, USA
 
  Funding: DOE, contract No. DE-AC02-07CH11359
The Long Baseline Neutrino Experiment (LBNE) will utilize a beamline facility located at Fermilab to carry out a compelling research program in neutrino physics. The facility will aim a wide band beam of neutrinos toward a detector placed at the Sanford Underground Research Facility in South Dakota, about 1,300 km away. The main elements of the facility are a primary proton beamline and a neutrino beamline. The primary proton beam (60-120 GeV) will be extracted from the MI-10 section of Fermilab’s Main Injector. Neutrinos are produced after the protons hit a solid target and produce mesons which are subsequently focused by a set of magnetic horns into a 204 m long decay pipe where they decay into muons and neutrinos. The parameters of the facility were determined taking into account the physics goals, spacial and radiological constraints and the experience gained by operating the NuMI facility at Fermilab. The initial beam power is expected to be ~1.2 MW, however the facility is designed to be upgradeable for 2.3 MW operation. We discuss here the status of the design and the associated challenges.
 
slides icon Slides TUOAA02 [5.781 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUOAA02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO007 LS1 “First Long Shutdown of LHC and its Injector Chains” operation, radiation, cryogenics, electronics 1010
 
  • K. Foraz, S. Baird, M.B.M. Barberan Marin, M. Bernardini, J. Coupard, N. Gilbert, D. Hay, S. Mataguez, D.J. Mcfarlane
    CERN, Geneva, Switzerland
 
  The LHC and its injectors were stopped in February 2013, in order to maintain, consolidate and upgrade the different equipment of the accelerator chain, with the goal of achieving LHC operation at the design energy of 14 TeV in the centre-of-mass. Prior to the start of this Long Shutdown (LS1), a major effort of preparation was performed in order to optimize the schedule and the use of resources across the different machines, with the aim of resuming LHC physics in early 2015. The rest of the CERN complex will restart beam operation in the second half of 2014. This paper presents the schedule of LS1, describes the organizational set-up for the coordination of the works, the main activities, the different main milestones, which have been achieved so far, and the decisions taken in order to mitigate the issues encountered.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO007  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO108 Design and Performance of the TPS DC Septum Magnet septum, booster, simulation, electron 1301
 
  • C.S. Yang, C.-H. Chang, Y.L. Chu, T.Y. Chung, C.-S. Hwang, F.-Y. Lin
    NSRRC, Hsinchu, Taiwan
 
  To decrease the loading on an AC septum magnet, a DC septum magnet was fabricated and applied to the extraction system of the booster ring at Taiwan Photon Source (TPS). The minimal gap is 16.44 mm; the core length is 800 mm and the pole width is 45 mm. The maximum peak field of the DC septum magnet is designed to be 0.95 T at 12 kA with 24-turn coils. The maximum bending angle of the electron beam passing through the septum magnet is 75.5 mrad. Because the electron beam would be perturbed by the leakage field from the septum magnet, shielding between the septum magnet and the booster ring is an important issue for the operation of the beam. Here we report the shielding method with two materials of the DC septum magnet, and discuss the field mapping and shielding from the leakage field.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO108  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPME003 Effect of CSR Shielding in the Compact Linear Collider radiation, electron, simulation, synchrotron 1337
 
  • J. Esberg, R. Apsimon, A. Latina, D. Schulte
    CERN, Geneva, Switzerland
 
  The Drive Beam complex of the Compact LInear Collider must use short bunches with a large charge making beam transport susceptible to unwanted effects of Coherent Synchrotron Radiation emitted in the dipole magnets. We here present the effects of transporting the beam within a limited aperture which decreases the magnitude of the CSR wake. The effect, known as CSR shielding, eases the design of key components of the facility.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPME003  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRI037 Some Features of Wave Distribution in the Thin-Wall Waveguide vacuum, impedance, undulator, radiation 1641
 
  • M. Ivanyan, L.V. Hovakimyan, A. Sargsyan
    CANDLE SRI, Yerevan, Armenia
 
  In this report we derive rigorous and approximate dispersion relations for the round resistive thin-wall waveguide. The features of the distributions of dispersion curves of the waveguide axisymmetric TM modes are obtained. Cases of splitting and degeneracy of modes under consideration are detected and regularities of their behaviours are established.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI037  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRI039 Radiation Safety Considerations for Areal Electron Linac With Beam Diagnostic System radiation, electron, target, diagnostics 1647
 
  • V.G. Khachatryan, V.H. Petrosyan, A. Sargsyan
    CANDLE SRI, Yerevan, Armenia
 
  The AREAL linear accelerator will produce electron beam with 5 MeV energy and further upgrade up to 20 MeV. At the first stage of the operation the construction of the beam diagnostic section of complex shape and layout is planned thus making the radiation source definition difficult. FLUKA particle tracking simulation code was used to calculate produced radiation dose rates and define an appropriate radiation shielding.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI039  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRI099 A Proton Therapy Test Facility: the Radiation Protection Design proton, radiation, neutron, target 1805
 
  • S. Sandri, L. Picardi, C. Poggi, C. Ronsivalle
    ENEA C.R. Frascati, Frascati (Roma), Italy
  • G. Ottaviano
    ENEA-Bologna, Bologna, Italy
 
  A proton therapy test facility with a beam current lower than 10 nA in average, and an energy up to 85 MeV, has to be sited at the Frascati ENEA Research Center, in Italy. The accelerator is composed by a sequence of linear sections. From the radiation protection point of view the source of radiation for this facility is almost completely located at the final target. Physical and geometrical models of the device have been developed and implemented into a radiation transport computer code based on Monte Carlo method. The main scope is the assessment of the dose rates around the radiation source for supporting the safety analysis. For the assessment was used the FLUKA (FLUktuierende KAskade) computer code. A general purpose tool for the calculation of particle transport and interaction with matter, covering an extended range of applications including proton beam analysis. The models implemented into the code are described and the results are presented. The calculated dose rates are reported at different distances from the target. Considerations about personnel safety are issued and the shielding requirements are anticipated.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI099  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO077 Thermal Neutron Beam Characterization at the HRPT Instrument at the Swiss Spallation Neutron Source neutron, simulation, target, proton 2134
 
  • V. Talanov, D. Cheptiakov, U. Filges, S.H. Forss, T. Panzner, V. Pomjakushin, E. Rantsiou, T. Reiss, M. Wohlmuther
    PSI, Villigen PSI, Switzerland
 
  The Swiss spallation neutron source (SINQ) at Paul Scherrer Institut (PSI) provides beams of thermal and cold neutrons to different neutron instruments. In a view of a potential SINQ upgrade, an experimental program characterizing the current performance of SINQ neutron beams was started in 2013. We present experimental results of the irradiation of imaging plates and gold foils at one of SINQ thermal neutron beam lines that hosts the high resolution powder diffractometer (HRPT) and compare the experimental results to the numerical MCNPX simulations of the neutron flux from the SINQ target-moderator system.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO077  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO112 Fusion Based Neutron Sources for Security Applications: Energy Optimisation neutron, target, proton, simulation 2230
 
  • S.C.P. Albright, R. Seviour
    University of Huddersfield, Huddersfield, United Kingdom
 
  There is a growing interest in the use of neutrons for national security. The majority of work on security focuses on the use of either sealed tube DT fusors or fission sources, e.g. Cf-252. Fusion reactions enable the energy of the neutron beam to be chosen to suit the application, rather than the application being chosen based on the available neutron beam energy. In this paper we discuss simulations of fusion reactions demonstrating the broad range of energies available and methods for adapting the neutron beam energy produced by target/projectile combinations.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO112  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPME048 Preliminary Design of the HiLumi-LHC Triplet Area Beam Screen optics, cryogenics, vacuum, luminosity 2378
 
  • R. Kersevan, C. Garion, N. Kos
    CERN, Geneva, Switzerland
 
  The so-called beam screen (BS) is a proven solution for intercepting the thermal loads caused by the circulating beams in the cryogenically-cooled sections of the LHC and minimizing dynamic vacuum effects. The new triplet area foreseen for the HiLumi-LHC machine upgrade has the additional feature of needing internal tungsten shields to reduce the amount of collision debris which is deflected by the high-gradient triplet magnets towards the superconducting magnets' cold masses and coils. The very aggressive optics design, based on large beam separations, calls for a maximum of physical space to remain available to the counter rotating beams in the common BS. This places severe constraints to the fabrication and installation tolerances of the BS itself, in addition to affecting the design and routing of the cryogenic lines in the area. The latest version of the BS design will be shown and discussed, together with future plans for testing materials, fabrication procedures, and installation.
* The HiLumi LHC Design Study is partly funded by the European Commission within the Framework Programme 7 Capacities Specific Programme, Grant Agreement 284404
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPME048  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRI060 Investigation of Thermocurrents Limiting the Performance of Superconducting Cavities cavity, niobium, linac, framework 2621
 
  • R.G. Eichhorn, C.G. Daly, F. Furuta, A. Ganshin
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  As the surface resistance of superconducting cavities approach the theoretical limits parasitic effects limiting the performance came into focus of current research. One of these effects is that the quality factor of a cavity is impacted by the cooldown rate. We will present results from recent investigations on thermocurrents, driven by the temperature difference between the two material interfaces between the superconducting Niobium cavity and its Titanium helium-vessel, leading to the presence of a magnetic field while the cavity transits to the superconducting state.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRI060  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THOBB01 Pursuing the Origin and Remediation of Low Q0 observed in the Original CEBAF Cryomodules cryomodule, cavity, SRF, linac 2828
 
  • R.L. Geng, J.F. Fischer, C.E. Reece, A.V. Reilly
    JLab, Newport News, Virginia, USA
  • F.S. He, Y.M. Li
    PKU, Beijing, People's Republic of China
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
We report on results of a new investigation into the Q0 degradation phenomenon observed in original CEBAF cavities when assembled into cryomodules. As a result, the RF dissipation losses increased by roughly a factor of two. The origin of the degradation, first observed in 1994, has remained unresolved up to current period, despite much effort. Recently, a new investigation has been launched, taking advantage of the latest cryomodule to undergo refurbishment. Systematic measurements are conducted with respect to the magnetic shielding effects of the double-layer shields and the magnetic properties of various components within the inner shield. This resulted in the new discovery of strongly magnetized strut springs as a major source of remnant magnetic flux near a cavity inside of all magnetic shielding. New springs with superior magnetic properties have been found, evaluated and implemented into the current cryomodule. In this contribution, we will review the data accumulated so far. Options for complete Q0 preservation of assembled cavities and possible Q0 remediation for those 330 cavities already installed in CEBAF will be presented.
 
slides icon Slides THOBB01 [16.521 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THOBB01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME013 Field Optimized 4-rod RFQ Model rfq, simulation, quadrupole, bunching 3238
 
  • J.S. Schmidt, B. Koubek, A. Schempp
    IAP, Frankfurt am Main, Germany
 
  The performance of an RFQ in case of its beam quality and transmission is in the basis dependent on the conformity of the field distribution of the manufactured structure with the one of its particle dynamic design. In the last years studies have been performed on the influence of various elements of the 4-rod RFQ on its field distribution. In particular the tuning process of the 4-rod RFQ with its tuning plates has been optimized. These studies have been complemented with detailed simulations on the fringe fields at the end of the electrodes and the conformity of the fields along the structure as well as the influence of other tuning elements like the piston tuner. Based on the findings of this research a proposal for a field optimized 4-rod RFQ model has been developed and will be presented in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME013  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME035 High-performance Accelerating Cryomodule for the LINCE Project cryomodule, solenoid, radiation, vacuum 3298
 
  • D. Gordo-Yáñez, R. Carrasco Dominguez, I. Martel, A.R. Pinto Gómez
    University of Huelva, Huelva, Spain
  • C. Gómez
    IDOM, Bilbao, Spain
 
  Funding: Work partially supported by the Spanish Government (MINECO-CDTI) under program FEDER INTERCONNECTA.
The linear accelerator of LINCE consists on 26 superconducting quarter-wave resonators with three different geometric betas working at 72.75 and 109.125 MHz and three types of SC solenoids. In this paper we discuss the first cryomodule design based on thermal and mechanical studies carried out in COMSOL Multiphysics. This includes the design of cavity and solenoid cryostats, liquid-helium reservoir and layout of the cryogenic tank.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME035  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRI082 Power Upgrade Studies for the ISIS-TS1 Spallation Target target, neutron, proton, embedded 3961
 
  • C. Bungau, A. Bungau, R. Cywinski, T.R. Edgecock
    University of Huddersfield, Huddersfield, United Kingdom
 
  ISIS is one of the world's most powerful spallation neutron sources for the study of material structures and dynamics. Currently ISIS has two spallation targets, TS1 operating at proton beam powers of up to 200kW, and TS2 operating to 45kW. This paper focuses upon an upgrade study of TS1 with the goal of increasing the ultimate operating power to 1 MW and beyond. During this study we have taken into consideration the necessity of maintaining the spallation neutron pulse width at current values. The increased heat deposition was monitored and the target plates dimensions were modified to take this into account.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRI082  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRI083 Target Design for the ISODAR Neutrino Experiment neutron, target, proton, cyclotron 3964
 
  • A. Bungau, R.J. Barlow
    University of Huddersfield, Huddersfield, United Kingdom
  • J.R. Alonso, L.M. Bartoszek, J.M. Conrad, M. Moulai
    MIT, Cambridge, Massachusetts, USA
  • M. Shaevitz
    Columbia University, New York, USA
 
  This paper focuses on the design of a high-intensity antineutrino source from the production and subsequent decay of Li8. The Geant4 code is used to calculate the anti-neutrino flux that can be obtained along with the production of undesirable contaminants. We present in this paper the optimised design for the target, moderators, reflector and shielding. Engineering issues associated with this design are also discussed in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRI083  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRI086 Beam Dumps of the New LCLS-II electron, neutron, radiation, operation 3973
 
  • M. Santana-Leitner, A. Ibrahimov, L.Y. Nicolas, S.H. Rokni, D.R. Walz, J.J. Welch
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported by U.S. Department of Energy contract DE-AC02-76SF00515.
In 2013 the design of the new LCLS-II new hard X-FEL facility at the SLAC National Accelerator Laboratory was rescoped to operate two parallel variable gap undulator lines at repetition rates up to 1MHz and above. A new superconducting RF structure will be installed in the first third of the SLAC two-mile Linac to provide a few hundred kWof beam power at energies of up to 4 GeV. This paper describes the radiological aspects of the dumps that are being designed for the end of the electron beam lines. A layered arrangement of shielding materials is being optimized to reduce instantaneous dose leakage to occupied areas, minimum cool-down time to access the tunnel, and impact to equipment and to the environment. Calculations deal with numerous constraints, as legacy beam components will be used, and the existing tunnel structure was designed for beam powers fifty times below those envisaged for LCLS-II.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRI086  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRI088 Energy Deposition in the Target System of a Muon Collider/Neutrino Factory target, proton, factory, collider 3979
 
  • K.T. McDonald
    PU, Princeton, New Jersey, USA
  • V.B. Graves
    ORNL, Oak Ridge, Tennessee, USA
  • H.G. Kirk
    BNL, Upton, Long Island, New York, USA
  • N. Souchlas, R.J. Weggel
    Particle Beam Lasers, Inc., Northridge, California, USA
 
  Most of the energy of the primary proton beam of Muon Collider/Neutrino Factory would be deposited in the superconducting coils that provide a solenoid-magnet transport channel for secondary particles, unless those coils are protected by massive internal shielding. Studies are reported of energy deposition in such shielding, with the goal of permitting 10 years operational life at 4-MW beam power. The graphite target should be able to withstand the "thermal shock" induced by the pulsed beam; further study is needed to confirm this.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRI088  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)