

CHALLENGES OF RADIOACTIVE BEAM FACILITIES **COMPARING SOLUTIONS AT SPIRAL2 AND FAIR**

R. Ferdinand – SPIRAL2

A huge discovery potential Exotic Nuclei 126

82

3 fundamental questions

28

20

Neutron number N

50

Which force?

tema incognita

Isospin dependence, 3-body, tensor, spin-orbit.

Leading to which structure?

Haloes, neutron skins, molecular states, new shells and magic numbers, super heavies.
Playing which role in the Univers?

Nucleosynthesis, supernovae, Neutron stars.

Robin FERDINAND - IPAC14

Proton number **Z**

20

New facilities

- Production and study of Radioactive Ion Beams (RIB) arrived at various mature techniques
- New facilities have objectives to provide better tools
- Drivers are cyclotrons, synchrotrons, LINACs
 - SPES, SPIRAL2
- Energies of drivers range from few MeV/u to few GeV/u
- In Europe, two were recognized of prime importance by NuPECC (Nuclear Physics European Collaboration Committee)
 - 🛐 FAIR
 - SPIRAL2

recommended for construction by ESFRI (European Strategy Forum on Research Infrastructures).

Challenges for RIB production

- Low production cross section
 - higher production rate associated to higher intensity of the primary beam (increase the number of reaction products)
- Short life time
 - An Efficient extraction
- Huge amount of unwanted particles
 - An efficient separation is required
 - Management of the high level of radioactivity produced

- The probability of production of a fragment is related to its production cross section
 - Depends of the target materials (mass, thickness), the types of primary particles and kinetic energy

$$P = \frac{N(\tau)}{N_0} = \left(1 - e^{-\frac{\tau N_a \sigma}{A_t}}\right)$$

τ target thickness (g/cm²) N_a Avagodro's number A_t target mass number σ production cross section

Advantages/drawbacks

ISOL

÷

÷

- Good beam quality (∆E/E small)
- Pure beam (better selectivity with chemistry)
- Higher production rate for the "extractable" species
- Low energy, light ions => smaller facility
- Ife time has to be ≥ 10ms
- Beam energy varies within the thick target (and so does the efficiency of the production)
- Safety issues with the inerted hot cells

In-flight

- Access to very short lived fragments (\geq 600ns)
- Solution Direct relation between cross sections and observed production rates → knowledge for the ISOL methods
- Provides beams with energy near that of the primary beam
- Important energy dispersion
- Simplest production target but sophisticated fragment separation
- High energy, heavy particles lead to big facility
- Reaction mechanism are mostly different
 - Different fission fragments

FAIR

Thanks to O. K. Kester for providing the elements

FAIR – Beam Parameters

Research Primary Beam Intensity: x100–1000 Compressed matter Secondary Beam Intensity :x 10000 ➢Rare isotopes Heavy Ion Energy : x30 >Antiproton Cooled pbar Beams (15 GeV) SIS 100 ➢Plasma Intense Cooled Radioactive Beams Atomic physics Variable duty cycle 515100 **CBM/HADES APPA** SIS100 ion beam parameters: PANDA Ion species : U^{28+} -ions (all p – U) NuSTAR RES N: 5x10¹¹ /cycle (uranium) CR NEDR Rep. rate: 0.5 Hz WEOBAo1 - Peter SPILLER Energy : 400 – 2715 MeV/u for heav Pulse length : 30 - 90 ns Status of the FAIR Synchrotron Projects SIS18 Upgrade and SIS100 Courtesy of O. K. Kester

Super-Fragment Separator at FAIR

Courtesy of O. K. Kester

Work on the Super-FRS

Courtesy of O. K. Kester

Target Wheel

- Revision ongoing
 - larger wheel size
 - omit transverse motion (moving mechanism)
 - design for remote handling
- WP will be done in collaboration with KVI-CART

increase beam spot size

usually (σ): 1x2 mm² to (σ): 4x6 mm² to have target survive P_{max tensile} ~ 26 MPa

biggest issue, bearings in vacuum

Courtesy of O. K. Kester

d = 450mm (prototyp)

SPIRAL₂

Thanks to the team !

DESIR (very low energy studies)

Existing GANIL

CIME: 3 ROAMEL

Phase2 objectives:

- Increasing the RIB production by a factor 10 to 1000
- Extend the range of beams nuclei Z>40 A>80

Phase 1

Phase 2

DESIR (very low energy studies)

Existing GANIL

(9ANev For RIB)

: 120 ANRL

Phase2 objectives:

Accelerator

33 MeV P, 40 MeV d (5MA) 14.5 A.MeV HI (1MA)

- Increasing the RIB production by a factor 10 to 1000
- Extend the range of beams nuclei Z>40 A>80

DESIR (very low energy studies)

Existing GANIL

(9ANev For RIB)

: 120 ANRL

Phase2 objectives:

Accelerator

33 MeV P, 40 MeV d (5MA) 14.5 A.MeV HI (1MA)

A/q=2 ECR source

p, d, ^{3,4}He, 5mA

- Increasing the RIB production by a factor 10 to 1000
- Extend the range of beams nuclei Z>40 A>80

DESIR (very low energy studies)

Existing GANIL

(9ANev For RIB)

: 2:20 ANIEL

Phase2 objectives:

Accelerator

33 MeV P, 40 MeV d (5MA) 14.5 A.MeV HI (1MA)

A/q=2 ECR source

p, d, ^{3,4}He, 5mA

A/q=3 ECR source

Up to 1mA

- Increasing the RIB production by a factor 10 to 1000
- Extend the range of beams nuclei Z>40 A>80

DESIR (very low energy studies)

Existing GANIL

DESIR

CINIK

(9AMer For RIB)

: 2 20 AMEL

Phase2 objectives:

Accelerator

33 MeV P, 40 MeV d (5mA) (14.5 A.MeV HI (1mA)

A/q=2 ECR source

p, d, ^{3,4}He, 5mA

A/q=3 ECR source

Up to 1mA

Increasing the RIB production by a factor 10 to 1000

 5^3

Production

HRS & RFQ cooler

up to 2024 FFIs

Extend the range of beams nuclei Z>40 A>80

SPIRAL₂ Scientific objectives

- Strong demand of radioactive beams by the nuclear and astrophysics communities (Prod)
 - Establish a bridge between nuclei-nuclei interaction and underlying quarks and gluons
 - Produce RIB using the ISOL technique
 - ⁵ 10⁹ pps for ¹³²Sn, 10¹⁰ pps for ⁹²Kr
- Research with high intensity stable beams (S3)
 Iow-energy in-flight techniques using stable beam
 - N=Z, nuclear structure study through collisions, chemical and physical studies of heavy and super heavy elements,
 - Ions-ions collisions
- Neutron for science (NFS) and interdisciplinary studies : Production of an intense neutron flux
 - Material irradiation, cross section measurements (for ADS, generation IV, fusion etc...)

18/06/2014

Robin FERDINAND - IPAC14

Regions of the Chart of Nuclei Accessible

Neutron For Science

Accelerator Baseline Configuration

Particles	H+	³ He ²⁺	D +	Ions	
Q/A	1	2/3	1/2	1/3	1/6
I (mA) max.	5	5	5	1	1
W _o max. (MeV/A)	33	24	20	15	9
CW max. beam power (KW)	165	180	200	44	48

Total length: 65 m (without HE lines)

Slow (LEBT) and Fast Chopper (MEBT) RFQ (1/1, 1/2, 1/3) & 3 re-bunchers

12 QWR beta 0.07 (12 cryomodules) 14 (+2) QWR beta 0.12 (7+1 cryomodules) 1.1 kW Helium Liquifier (4.5 K) Room Temperature Quadrupoles Solid State RF amplifiers (10 & 20 KW) 6.5 MV/m max $E_{acc} = V_{acd} (\beta_{opt} \lambda)$ with $V_{acc} = \int E_{a}(z) e^{i\omega z/c} dz$.

SPIRAL₂ Challenges

- Huge number of different beams
 - Intensities (diagnostics), energies (cavities and RF), particles (facility operation, safety)
- Accelerator components
 - 🞦 Heavy Ion source (1mA Ar¹²⁺)
 - RFQ transmission + frequency (88MHz) → tolerances
 - 🔝 Cryomodules
 - ▶ 6.5 MV/m in operation
 - Separate vacuum, compactness (transition and helium buffer)
 - 📁 Safety issues
 - Losses < 1W/m</p>
 - Tunnel accessibility, Nuclear ventilation
 - earthquake
- RIB Production module (primary beam : D⁺, 200kW)
 - Reliability, maintenance
 - Connections
 - 📁 UCx oven
 - $\Box \rightarrow$ n Converter and delay window

RFQ description

5-m long, 88.05 MHz, 4-vanes, >99% transmission

29

SC LINAC

Beta 0.07 energy section Beta 0.12 energy section									
L~35 m									
			Cryomodule	Α	В				
			Valve-to-valve length [mm]	610	1360				
			# cavities	12	14				
			f [MHz]	88.05	88.05				
			β_{opt}	0.07	0.12				
			Epk/Ea	5.36	4.76				
		lattice	Bpk/Ea [mT/MV/m]	8.70	9.35				
	lattice	1940	r/Q [Ω]	599	515				
	119	Ĺø	Vacc @ 6.5 MV/m & β_{opt}	1.55	2.66				
Cryomodule A	Cryom <u>odule B</u>	Power coupler	Lacc [m]	0.24	0.41				
CEA Saclay	IPN Orsay	LPSC Grenoble	Beam tube $arnothing$ [mm]	38	44				
	Cryomodule A CEA Saclay	Beta o.ory energy Image: Cryomodule A Cryomodule A Cryomodule A Cryomodule A Diversity	And	Beta o.or energy section Beta o.12 energy sector Beta o.or energy section Beta o.12 energy sector L-35 m Cryomodule Valve-to-valve length [mm] # cavities f [MHz] β _{opt} Bpk/Ea [mT/MV/m] Fpk/Ea Bpk/Ea [mT/MV/m] Valce (@ 6.5 MV/m & β _{opt}) Valce (@ 6.5 MV/m & β _{opt}) Lacc [m] Cryomodule Norsay Power coupler EASaclay IPN Orsay LPSC Grenoble	Cryomodule Λ Cryomodule Λ Λ				

Cryomodule status

- Cavities :
 - All QWR cavities qualified
- Cryostats :

- Eight A-type cryomodules conditioned and qualified with FPC
- Four B-type cryomodules conditioned, qualified delivered to GANIL
- Installation in the tunnel starts

Cryomodule status

Cavities :			1. 6. 1	-				IA			
	Unit	Specs	CMA4	CMA6	CMA7	CMA2	CMA3	CMA5	CMA9	CMA8	
Max. acc. Gradient	MV/m	>6.5	8.85	8.34	9	8.6	7.95	9.1	8.44	9	
Rx activity @6.5MV/m	μSv/h		560	91	14.3	730	494	1.5	677	32	
Total losses@4к, 6.5мv/m	W	<20.5	20.8	11.4	11.8	15.56	17.9	11.3	12.6	10.38	
Static losses @4K	W	<8.5W	6.5	3.98	4.1	3.11	4.34	3.6	4.47	3.12	
Pressure sensitivity	Hz/mbar	<5	-1.58	-1.32	-1.45	-1.31	-1.08	-1.22	-1.24	-1.66	
Cavity alignment	mm	0 1.3	0.52	0.4	0.48	1.46	0.4	0.24		0.76	
	Unit	Specs	СМ	IB1	31 CMB2		СМВЗ		CMB4		
Max. acc. Gradient	MV/m	> 6.5	>8.0	>8.0	>8.0	>8.0	>8.0	>8.0	>8.0	>8.0	
Rx activity @6.5MV/m	μSv/h		22000	0	160	0	0	0	70	0	
Total losses@4к, 6.5мv/m	w	< 36.0	29		2	29		27		31.5	
Static losses @4k	w	<12.5	17		19		19		19		
Pressure sensitivity	Hz/mbar	< 8.0	-5.3	-4.95	-5.4	-5.8	-5.2	-4.5	-4.9	-5.2	
Beam vacuum	mbar	< 5.0e-7	5E-08		3E-08		4E-08		6E-08		
Cavity alignment	mm	0 1.2	0.16	0.34	0.62	0.42	0.24	0.38	0.14	0.36	

18/06/2014

33

IPAC14

Process installation

A<u>C14</u>

ERDINA

Process installation

RIB production

Energy range of SPIRAL₂ ISOL RIB : ≤ 60keV and 1-15 MeV/nucl.

Production Cell

Totally remote-operated system

Takes into account radiological environment, safety and contamination handling rules

18/06/2014

Robin FERDINAND - IPAC14

3

Production module

Converter test bench

 50/200kW test chamber assembled and tested
 (a) INFN/LNL
 and GANIL

Delay window
200kW D⁺:
580ms

• Electrons tests : 800ms

50 kW converter

Ucx Oven

- 1.2
- Tested above 2000°C

Robin FERDINAND - IPAC14

Conclusion

FAIR and SPIRAL2 : major nuclear facility

- Complementary since they are using different production methods
- 🔝 broad range of research

FAIR – In flight

- 🚦 highlights
 - High energy, parallel users
 - Size of the project
 - First equipments are coming
- Sirst beam is expected 2019 for SIS100 and 2020 for Super-FRS.

SPIRAL2 - ISOL and In flight

- 🚦 Highlights
 - No short lived nuclei apart from S3
 - safety issues mastered for the hot cell
 - Major Phase-1 parts are now constructed and under installation
- S First beam tests expected by end of 2014, LINAC beam by 2015
- Lots of possible researches to come in Europe

40

Scaled FAIR and SPIRAL2 facilities

