Keyword: septum
Paper Title Other Keywords Page
MOPRO025 Electron Beam Injection System for SuperKEKB Main Ring injection, betatron, synchrotron, emittance 122
 
  • T. Mori, N. Iida, M. Kikuchi, T. Mimashi, Y. Sakamoto, S. Takasaki, M. Tawada
    KEK, Ibaraki, Japan
 
  The SuperKEKB project is in progress toward the initial physics run in the year 2015. It assumes the nano-beam scheme, in which the emittance of the colliding beams is ε=4.6\mbox{nm}. The emittance of the injected beam is ε=1.46\mbox{nm}. To acheave such a low emittance, it is vitally important to preserve the emittance during the transport of the beam from the linac to the main ring. One of the most difficult sections is the injection system. It has been pointed out that the injected beam has possibility of leading to blowup in the ring, which is caused by a beam-beam interaction with the stored positron beam. To avoid the beam blowup, the synchrotron injection is adopted as a backup option. The orbit of the electron injection beam has been designed and the septum magnet prototype has been constructed. The optics study for electron injection and the current R&D status for the septum magnet will be reported in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO025  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPME076 Upgrade of the SPS Injection Kicker System for LHC High Luminosity Operation with Heavy Ion Beam injection, ion, kicker, impedance 547
 
  • T. Kramer, J. Borburgh, L. Ducimetière, B. Goddard, L. Sermeus, J.A. Uythoven, F.M. Velotti
    CERN, Geneva, Switzerland
 
  In the context of the LHC High Luminosity Upgrade project a performance upgrade for heavy ions is envisaged. One of the performance limitations is the rise time of the present SPS injection kicker system MKP. A reduction of the rise time for lead ions was studied in line with a modification of the whole injection system. This paper briefly describes the different rise time options studied for an initially proposed dedicated ion kicker system MKP-I, focuses however on a cost effective alternative using the presently installed 12 MKPS magnets connected to a new fast pulse forming line. As only 12 out of the 16 injection kicker magnets would be fast enough to be used in an upgraded system, additional deflection has to be provided by the septa. The beam optics for that variant is highlighted and first requirements for the septum elements are stipulated. The paper concludes with a failure analysis of the proposed scheme.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPME076  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRI080 Measurement of Beam Phase using Phase Probe at the NIRS-930 Cyclotron acceleration, pick-up, extraction, cyclotron 794
 
  • S. Hojo, K. Katagiri, M. Nakao, A. Noda, K. Noda, A. Sugiura
    NIRS, Chiba-shi, Japan
  • T. Honma, A.K. Komiyama, T. Okada, Y. Takahashi
    AEC, Chiba, Japan
 
  The NIRS-930 cyclotron of the National Institute of Radiological Sciences (NIRS) has been used for production of short-lived radio-pharmaceuticals for PET, research of physics, developments of particle detectors in space, and so on. The NIRS-930 has twelve trim coils for generation of the isochronous fields. Until recently, currents of the twelve trim coils had been adjusted only by monitoring the beam intensity. In order to exactly produce the isochronous fields, a phase probe has been installed in the NIRS-930. Recent results of beam tests using the phase probe will be presented in the present work.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRI080  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRI087 Challenges of the Technical Layout of the SIS 100 Extraction System vacuum, extraction, quadrupole, radiation 815
 
  • N. Pyka, L.H.J. Bozyk, U. Kopf, C. Mühle, D. Ondreka, P. Rottländer, P.J. Spiller, St. Wilfert
    GSI, Darmstadt, Germany
  • A.G. Kalimov
    St. Petersburg State Polytechnic University, St. Petersburg, Russia
 
  The FAIR synchrotron SIS100 which is under construction will provide heavy ion and proton beams of high intensity with fast and slow extraction. All extraction devices, including an internal emergency beam dump system, are installed within one straight section. This way, expected systematic beam loss is kept in a relatively small area of the synchrotron. In this area, it is rather challenging to protect components against high radiation fields, to keep XHV conditions, and to allow for maintenance of highly activated components to assure reliable beam operation. In this contribution, the technical measures to fulfill the requirements for the extraction straight section of SIS100 will be presented. These include remote controlled devices to move apart magnet yokes for the purpose of placing beam pipe heater; dedicated star-shaped vacuum chambers with integrated collimators and NEG-panels to reduce pressure bumps due to lost particles behind the electrostatic septa; a high-power multi-stage vertical extraction septum including a variable horizontal deflection.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRI087  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRI089 Upgrade of J-PARC Fast Extraction System operation, extraction, quadrupole, kicker 821
 
  • K. Fan, K. Ishii, H. Matsumoto, N. Matsumoto, T. Sugimoto
    KEK, Ibaraki, Japan
  • T. Shibata
    JAEA, Ibaraki-ken, Japan
 
  The J-PARC main ring (MR) fast extraction (FX) system has two functions: to deliver a high power beam to the neutrino experimental facility and to dump the beam at any time in case of hardware failures. The present FX system consists of five bipolar kickers and eight bipolar septa. In order to raise the beam power to the design limit, both the beam intensity and the repetition rate will increase gradually. The FX system needs to be upgraded to satisfy the new requirements. The upgrade includes FX orbit optimization and new design of devices. Firstly, two high performance eddy current septa have been designed and fabricated. Then downstream high field septa are redesigned and using ceramic beam pipe to eliminate eddy current effects, which meets the requirement of high repetition rate operation. A new large physical aperture quadrupole is needed to accommodate high intensity beam. In order to evaluate the beam loss in the new system, realistic 3D beam tracking is studied.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRI089  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRI097 Feasibility Studies for the Extraction of both LHC Beams from CERN SPS using a Common Kicker extraction, kicker, simulation, impedance 842
 
  • F.M. Velotti, W. Bartmann, C. Bracco, E. Carlier, K. Cornelis, B. Goddard, V. Kain, M. Meddahi
    CERN, Geneva, Switzerland
 
  The CERN Super Proton Synchrotron has to fulfil the demanding intensity specifications for the High Luminosity LHC (HL-LHC) era, with a doubling of the presently achieved operational beam intensity. One of the main problems to be addressed is given by impedance-driven beam instabilities. About 40 % of the total measured SPS impedance is due to the kickers, of which the extraction kickers in two of the SPS straight sections are the largest systems. A potential upgrade is explored which would strongly reduce the number of extraction kickers required in the SPS, by performing non-local extraction. In this scenario LHC Beam 1 would be kicked by the extraction kicker in SPS Long Straight Section 4 (LSS4), normally only used for Beam 2, to be extracted in LSS6. The concept and the expected performance of such a scheme are presented along with detailed simulation results.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRI097  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRI100 Investigations of SPS Orbit Drifts extraction, flattop, injection, betatron 852
 
  • L.N. Drøsdal, C. Bracco, K. Cornelis, B. Goddard, V. Kain, M. Meddahi, J. Wenninger
    CERN, Geneva, Switzerland
  • E. Gianfelice-Wendt
    Fermilab, Batavia, Illinois, USA
 
  The LHC is filled from the last pre-injector, the Super Proton Synchrotron (SPS), via two 3 km long transfer lines, TI 2 and TI 8. Over the LHC injection processes, a drift of the beam trajectories has been observed in TI 2 and TI 8, requiring regular correction of the trajectories, in order to ensure clean injection into the LHC. Investigations of the trajectory variations in the transfer lines showed that the main source of short term trajectory drifts are current variations of the SPS extraction septa (MSE). The stability of the power converters has been improved, but the variations are still present and further improvements are being investigated. The stability over a longer period of time cannot be explained by this source alone. The analysis of trajectory variations shows that there are also slow variations in the SPS closed orbit at extraction. A set of SPS orbit measurements has been saved and analysed. These observations will be used together with simulations and observed field errors to locate the second source of variations.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRI100  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO049 Layout and Optics of the Dump Line at the European XFEL extraction, kicker, quadrupole, optics 1138
 
  • N. Golubeva, V. Balandin, W. Decking
    DESY, Hamburg, Germany
 
  The purpose of the optical system, which we call the dump line, is not simply the transport of the beam to the beam dump. It is an essential part of the beam switchyard which provides the possibility to distribute electron bunches of one beam pulse to different FEL beam lines, allowing a flexible selection of the bunch pattern at each FEL experiment. In this paper we describe the final layout of this optical system as it is now under construction.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO049  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO108 Design and Performance of the TPS DC Septum Magnet shielding, booster, simulation, electron 1301
 
  • C.S. Yang, C.-H. Chang, Y.L. Chu, T.Y. Chung, C.-S. Hwang, F.-Y. Lin
    NSRRC, Hsinchu, Taiwan
 
  To decrease the loading on an AC septum magnet, a DC septum magnet was fabricated and applied to the extraction system of the booster ring at Taiwan Photon Source (TPS). The minimal gap is 16.44 mm; the core length is 800 mm and the pole width is 45 mm. The maximum peak field of the DC septum magnet is designed to be 0.95 T at 12 kA with 24-turn coils. The maximum bending angle of the electron beam passing through the septum magnet is 75.5 mrad. Because the electron beam would be perturbed by the leakage field from the septum magnet, shielding between the septum magnet and the booster ring is an important issue for the operation of the beam. Here we report the shielding method with two materials of the DC septum magnet, and discuss the field mapping and shielding from the leakage field.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO108  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRI058 Impedance Studies of the Dummy Septum for CERN PS Multi-turn Extraction impedance, extraction, simulation, synchrotron 1704
 
  • S. Persichelli, O.E. Berrig, M. Giovannozzi, J. Herbst, J. Kuczerowski, M. Migliorati, B. Salvant
    CERN, Geneva, Switzerland
 
  A protection septum has been installed in the CERN PS section 15 in order to mitigate irradiation of the magnetic septum 16 for fast extractions towards the SPS. Impedance studies have been performed, showing that beams circulating in the septum during extraction generate sharp resonances in the coupling impedance. Impedance measurements with the wire technique have been performed, showing a good agreement with simulations. Instability rise times of trapped modes have been evaluated and compared to extraction duration. Solutions for reducing the impact on the stability of the beam have been considered.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI058  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO012 New Injection System of Siberia-2 Light Source injection, kicker, simulation, electron 1965
 
  • S.I. Tomin, V. Korchuganov
    NRC, Moscow, Russia
 
  The storage ring Siberia-2 is SR source of second generation with circumference 124 m. The electron beam is injected into the ring at the energy 450 MeV. The Siberia-2 injection system was initially consisted of two high voltage rectangular pulses generators connected to the two in-vacuum strip – line kickers of traveling wave (wave impedance 50 Ohm) – a pre-inflector and an inflector. The amplitude voltage was 25-35 kV with 20 ns pulse duration and 2-3 ns pulse front/fall. Recently the new injection generators were proposed. Injection system now includes the same kickers and the new 1 microsecond pulse duration and 10 kV voltage amplitude generators. A dynamics of the electron beam after injection moment is considered in the article. The possibility of effective injection with kikers pulse duration over 2 periods of revolution of the electron beam is shown. The results of the new injection system commissioning are also demonstrated.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO012  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO013 Design Modifications and Installation of the Injection Girder System in the Taiwan Photon Source injection, kicker, lattice, photon 1968
 
  • K.H. Hsu, J.-R. Chen, Y.L. Chu, H.C. Ho, D.-G. Huang, W.Y. Lai, C.J. Lin, Y.-H. Liu, H.M. Luo, S.Y. Perng, P.L. Sung, T.C. Tseng, H.S. Wang, M.H. Wu
    NSRRC, Hsinchu, Taiwan
  • J.-R. Chen
    National Tsing Hua University, Hsinchu, Taiwan
 
  The prototype of TPS injection girder system was designed and installed in a temporary factory. As the leakage field of the kicker magnet in the prototype was found to be too large according to both simulation and measurement to be acceptable, the lattice was altered to fit the requirements. In this paper, we present the design modifications of the injection girder system due to the new lattice. The DC septum magnet is replaced by a pre-AC septum magnet, of which its adjustable stage must be redesigned. The positions of vacuum components in the injection girder are also altered; we add some new holes in the prototype girder. The prototype of an injection girder system after modification has been installed in the tunnel of Taiwan Photon Source. The accuracy of position of three girders installed, and the stages for the septum or kicker magnet are within 0.25 and 0.08 mm, respectively.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO013  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO065 New Design of J-PARC Main Ring Injection System for High Beam Power Operation injection, kicker, operation, space-charge 2097
 
  • K. Fan, K. Ishii, H. Matsumoto, N. Matsumoto, T. Shibata, T. Sugimoto
    KEK, Ibaraki, Japan
 
  The present J-PARC main ring (MR) injection system has worked for 6 years since 2008, and the performance has been improved a lot by correcting the original design faults. But there are still problems in the existing injection system that affects the daily operation. In order to realize the MR beam power to the design limit, a high performance injection system is crucial. The remaining problems may have severe effects on high intensity beam, and become a big block to the realization of high beam power operation. Thus, upgrade the present injection system to satisfy the demands of high beam power operation is extremely important. The upgrade will redesign injection septa to obtain high performance, which will reduce the leakage field greatly. The kicker rise time will be reduced greatly by optimizing the configuration and using speed-up circuit. A compensation kicker magnet is being studied for reflection tail field cancelation. Careful 3D electromagnetic field simulations and 3D particle tracking are performed to ensure the accuracy of magnets design.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO065  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO079 Accelerator Systems Modifications for a Second Target Station at the Oak Ridge Spallation Neutron Source target, kicker, quadrupole, linac 2140
 
  • M.A. Plum, J. Galambos, S.-H. Kim
    ORNL, Oak Ridge, Tennessee, USA
 
  Funding: ORNL/SNS is managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725.
A second target station is planned for the Oak Ridge Spallation Neutron Source. The ion source will be upgraded to increase the peak current from 38 to 49 mA, additional superconducting RF cavities will be added to the linac to increase the H− beam energy from 933 to 1300 MeV, and the accumulator ring will receive modifications to the injection and extraction systems to accommodate the higher beam energy. After pulse compression in the storage ring one sixth of the beam pulses (10 out of 60 Hz) will be diverted to the second target by kicker and septum magnets added to the existing Ring to Target Beam Transport (RTBT) line. No further modifications will be made to the RTBT so that when the kicker and septum magnets are turned off the original target 1 beam transport lattice will be unaffected. In this paper we will discuss these and other planned modifications and upgrades to the accelerator facility, and also the status of this project.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO079  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRI075 A Compact Beam Spreader using RF Deflecting Cavities for the LCLS-II cavity, dipole, electron, HOM 2666
 
  • S.U. De Silva, J.R. Delayen, R.G. Olave
    ODU, Norfolk, Virginia, USA
  • L.R. Doolittle, M. Placidi, A. Ratti
    LBNL, Berkeley, California, USA
  • P. Emma
    SLAC, Menlo Park, California, USA
 
  The LCLS-II project currently under development is designed to accelerate electron bunches up to 4 GeV and transport them to one of two FEL undulators located more than 2 km downstream of the end of the LCLS-II linac. The upgrade requires a spreader system to separate the baseline electron bunches and transport them to two undulator lines or a local dump. Fast bipolar kickers (FK) or transverse electric rf deflectors (RFD) are considered as fast-switching devices (FSD). In the RFD approach described here three design options operating at 325 MHz are studied including a superconducting rf-dipole cavity, a normal conducting rf-dipole cavity, and a normal conducting 4-rod cavity. Optional compact splitting schemes involving a combination of vertical and horizontal initial deflections are addressed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRI075  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME058 Risk Analysis and Machine Protection of SIS100 ion, synchrotron, extraction, proton 3364
 
  • C. Omet, M.S. Mandakovic, D. Ondreka, P.J. Spiller, J. Stadlmann
    GSI, Darmstadt, Germany
 
  To ensure safe functionality and reduce unneccessary shutdowns, a risk analysis of the main driver accelerator for the FAIR project SIS100, has been done. The analysis includes all major technical systems and was done accordingly to EN 61508. Results of the analysis and appropriate countermeasures for detection and/or mitigation of the failures are presented. Furthermore, an estimation of the accelerator‘s availability is given.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME058  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME071 Injection and Extraction Systems for a High-Power Proton Synchrotron at CERN laser, injection, extraction, kicker 3400
 
  • W. Bartmann, V. Fedosseev, B. Goddard, T. Kramer
    CERN, Geneva, Switzerland
 
  A new High-Power Proton Synchrotron (HP-PS) is being studied at CERN for the second phase of the Long Baseline Neutrino facility (LAGUNA-LBNO) where a 2 MW beam power shall impinge onto a target. A 4 GeV H injection based on foil stripping and extendable to laser-assisted magnet stripping is described. The proposed laser-assisted stripping is assessed with regard to the laser power requirements. The feasibility of a fast extraction system at 75 GeV is presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME071  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)