Keyword: kicker
Paper Title Other Keywords Page
MOPRO015 Advances in Coherent Electron Cooling electron, hadron, FEL, bunching 91
 
  • V. Litvinenko, Y. Hao, Y.C. Jing, D. Kayran, G. Wang
    BNL, Upton, Long Island, New York, USA
  • G.I. Bell, I.V. Pogorelov, B.T. Schwartz, A.V. Sobol, S.D. Webb
    Tech-X, Boulder, Colorado, USA
  • D.L. Bruhwiler
    RadiaSoft LLC, Boulder, Colerado, USA
  • A. Elizarov
    SUNY SB, Stony Brook, New York, USA
  • D.F. Ratner
    SLAC, Menlo Park, California, USA
  • O.A. Shevchenko
    BINP SB RAS, Novosibirsk, Russia
 
  This paper will be focused on advances and challenges in cooling of high-energy hadron – and potentially heavy lepton-beams. Such techniques are required to improve quality of hadron beams and for increasing the luminosity in hadron and electron-hadron colliders. In contrast with light leptons, which have very strong radiation damping via synchrotron radiation, the hadrons radiate very little (even in 7TeV LHC) and require additional cooling mechanism to control growth of their emittances. I will discuss the physics principles of revolutionary, but untested, technique: the coherent electron cooling (CeC). Further, current advances and novel CeC schemes will be presented as well as the status of preparation at Brookhaven National Laboratory for the CeC demonstration experiment.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO015  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRO020 FLUKA Simulation of Particle Fluences to ALICE due to LHC Injection Kicker Failures injection, simulation, high-voltage, detector 109
 
  • N.V. Shetty, C. Bracco, A. Di Mauro, A. Lechner, E. Leogrande, J.A. Uythoven
    CERN, Geneva, Switzerland
 
  The counter-rotating beams of the LHC are injected in insertion regions which also accommodate the ALICE and LHCb experiments. An assembly of beam absorbers ensures the protection of machine elements in case of injection kicker failures, which can affect either the injected or the stored beam. In the first years of LHC operation, secondary particle showers due to beam impact on the injection beam stopper caused damage to the MOS injectors of the ALICE silicon drift detector as well as high-voltage trips in other ALICE subdetectors. In this study, we present FLUKA simulations of particle fluences to the ALICE cavern for injection failures encountered during operation. Two different cases are reported, one where the miskicked beam is fully intercepted and one where the beam grazes the beam stopper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRO023 SuperKEKB Beam abort System quadrupole, extraction, sextupole, power-supply 116
 
  • T. Mimashi, N. Iida, M. Kikuchi, T. Mori
    KEK, Ibaraki, Japan
  • K. Abe
    Hitachi Power Semiconductor Device, Ltd., Hitachishi, Ibaraki, Japan
  • A. Sasagawa
    KYOCERA Corporation, Higashiomi-city, Shiga, Japan
  • A. Tokuchi
    Pulsed Power Japan Laboratory Ltd., Kusatsu-shi Shiga, Japan
 
  The abort system of the SuperKEKB is described. The beam abort system consists of the beam abort kicker magnets, pulsed quadrupole magnets, a lambertson septum magnet and extracted window. The dumped beam is extracted with beam abort kicker through the extraction window. The pulsed quadrupole magnets make the beam spot size large at the window. The damages of the extraction window is tested with KEKB beam. The pulsed kicker power supply is under development.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO023  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRO024 The Beam Test for the Ti Extraction Window Damage extraction, experiment, radiation, electron 119
 
  • T. Mimashi, N. Iida, M. Kikuchi
    KEK, Ibaraki, Japan
 
  For the SuperKEKB beam abort system, the Ti extraction window will be used. The damage of the extraction window was estimated with KEKB electron beam. Thin Ti plate and Ti alloy plate were tested as candidates of extraction window material. The damages were observed as a function of beam current. From this experiment, the maximum charge density at the extraction window is determined.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO024  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRO027 Measurements and Laboratory Tests on a Prototype Stripline Kicker for the CLIC Damping Rings impedance, simulation, coupling, damping 125
 
  • C. Belver-Aguilar, A. Faus-Golfe
    IFIC, Valencia, Spain
  • M.J. Barnes, H.A. Day
    CERN, Geneva, Switzerland
  • F. Toral
    CIEMAT, Madrid, Spain
 
  The Pre-Damping Rings (PDRs) and Damping Rings (DRs) of CLIC are required to reduce the beam emittances to the small values required for the main linacs. The injection and extraction, from the PDRs and DRs, are performed by kicker systems. To achieve both low beam coupling impedance and reasonable broadband impedance matching to the electrical circuit, striplines have been chosen for the kicker elements. Prototype striplines have been built: tests and measurements of these striplines have started. The goal of these tests is to characterize, without beam, the electromagnetic response of the striplines. The tests have been carried out at CERN. To study the signal transmission through the striplines, the measured S-parameters have been compared with simulations. In addition, measurements of longitudinal beam coupling impedance, using the coaxial wire method, are reported and compared with simulations.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO027  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRO028 Measurements on Prototype Inductive Adders with Ultra-flat-top Output Pulses for CLIC DR Kickers flattop, damping, operation, high-voltage 128
 
  • J. Holma, M.J. Barnes
    CERN, Geneva, Switzerland
  • C. Belver-Aguilar
    IFIC, Valencia, Spain
 
  The CLIC study is investigating the technical feasibility of an electron-positron collider with high luminosity and a nominal centre-of-mass energy of 3 TeV. The CLIC pre-damping rings and damping rings (DRs) will produce ultra-low emittance beam with high bunch charge. To avoid beam emittance increase, the DR kicker systems must provide extremely flat, high-voltage, pulses. The specifications for the DR extraction kickers call for a 160 ns duration flat-top pulses of ±12.5 kV, 250 A, with a combined ripple and droop of not more than ±0.02 % (±2.5 V). An inductive adder is a very promising approach to meeting the specifications because this topology allows the use of both passive and analogue modulation methods to adjust the output waveform. Recently, two five-layer, 3.5 kV, prototype inductive adders have been built at CERN. The first of these has been used to test the passive and active analogue modulation methods to compensate voltage droop and ripple of the output pulses. Pulse waveforms have been recorded with ±0.05 % relative (±1.0 V) stability for 160 ns flat-top duration at 1.823 kV.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO028  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRO029 Feed Forward Orbit Correction in the CLIC Ring to Main LINAC Transfer Lines emittance, extraction, simulation, collimation 131
 
  • R. Apsimon, A. Latina, D. Schulte, J.A. Uythoven
    CERN, Geneva, Switzerland
 
  The emittance growth in the betatron collimation system of the 27 km long transfer lines between the CLIC damping rings and the main LINAC depends strongly on the transverse orbit jitter. The resulting stability requirements of the damping ring extraction elements seem extremely difficult to achieve. Position and angle feed forward systems in these long transfer lines bring the specified parameters of the extraction elements within reach. The designs of the optics and feed forward hardware are presented together with tracking simulations of the systems.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO029  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRO030 Changes to the LHC Beam Dumping System for LHC Run 2 dumping, operation, controls, vacuum 134
 
  • J.A. Uythoven, M.G. Atanasov, J. Borburgh, E. Carlier, S. Gabourin, B. Goddard, N. Magnin, V. Senaj, N. Voumard, W.J.M. Weterings
    CERN, Geneva, Switzerland
 
  The LHC beam dumping system performed according to expectations during Run 1 of the LHC (2009 – 2013). A brief overview of the experience is given, including a summary of the observed performance in comparison to expectations. An important number of changes are applied to the beam dumping system during the present Long Shutdown on order to further improve its system safety and performance. They include the addition of a direct link between the Beam Interlock System and the re-triggering system of the dump kickers, the modification of the uninterrupted electrical power distribution architecture, the upgrade of the HV generators, the consolidation of the trigger synchronization system, the modifications to the triggering system of the power switches and the changes to the dump absorbers TCDQ.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO030  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRO032 Upgrades to the LHC Injection and Beam Dumping Systems for the HL-LHC Project injection, dumping, impedance, coupling 141
 
  • J.A. Uythoven, M.J. Barnes, B. Goddard, J. Hrivnak, A. Lechner, F.L. Maciariello, A. Mereghetti, A. Perillo Marcone, N.V. Shetty, G.E. Steele
    CERN, Geneva, Switzerland
 
  The HL-LHC project will push the performance of the LHC injection and beam dumping systems towards new limits. This paper describes the systems affected and presents the new beam parameters for these systems. It also describes the studies to be performed to determine which sub-components of these systems need to be upgraded to fulfill the new HL-LHC requirements. The results from the preliminary upgrade studies for the injection absorbers TDI are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO032  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRO037 Collimator Fast Failure Losses for Various HL-LHC Configurations optics, collimation, simulation, luminosity 157
 
  • L. Lari, R. Bruce, S. Redaelli
    CERN, Geneva, Switzerland
  • L. Lari
    IFIC, Valencia, Spain
 
  Funding: Research supported by EU FP7 HiLumi LHC - Grant Agreement 284404
The upgrade of the Large Hadron Collider (LHC), in terms of beam intensity and energy, implies an increasing risk of severe damage in particular in case of fast failures losses. For this reason, efforts were put in developing simulation tools to allow studies of asynchronous dump accident, including realistic failure cases for collimator settings and machine parameters like orbit and optics. The scope of these studies is to understand realistic beam loads in different collimators, in order to improve the actual LHC collimator system design, to provide feedbacks on optic design and to evaluate different mitigation actions. Simulations were set up with a modified SixTrack collimation routine able to simulate erroneous firing of a single dump kicker or the simultaneous malfunction of all the 15 kickers. In such a context, results are evaluated from the whole LHC collimation system point of view.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO037  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRO082 Suppression of Stored Beam Oscillation at Injection by Fast Kicker in the SPring-8 Storage Ring timing, injection, storage-ring, operation 280
 
  • C. Mitsuda, K. Fukami, K. Kobayashi, M. Masaki, H. Ohkuma, S. Sasaki, K. Soutome
    JASRI/SPring-8, Hyogo-ken, Japan
  • T. Nakanishi
    SES, Hyogo-pref., Japan
 
  When the injection bump orbit is not closed perfectly at the beam injection, the horizontal stored beam oscillation is excited. In the SPring-8 storage ring, many efforts had been paid to reduce the beam oscillation by adjusting the temporal shape and timing of four bump magnets and by applying a counter kick to the residual oscillation, whose amplitude is as large as 0.4mm and the width is as narrow as 500ns. Now, the averaged oscillation amplitude has successfully been suppressed to the level of less than 0.1mm. To confirm the suppression effect, we observed the turn-by-turn photon beam profile at the diagnostics beamline with the insertion device. We confirmed that the light axis oscillation was significantly suppressed by a factor of 5 comparing by applying a counter kick. We also found that the oscillation shape and the oscillation amplitude, which were caused by the timing shift of firing bump magnets, are drastically changed by only timing shift of one magnet. We are considering the feedback scheme to keep the suppression effect at the initial level during the user-time.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO082  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRO087 High Voltage Generators Upgrade of Siberia-2 Injection System injection, operation, high-voltage, power-supply 292
 
  • S.I. Tomin, A. Belkov, V. Korchuganov, I. Kuzmin, K. Kuznetsov
    NRC, Moscow, Russia
 
  The injection system is one of the important systems which determine efficiency and reliability of the accelerator facility. The spark gap switches (SGS), which were used before at Siberia-2 in high voltage nanosecond pulse generators, are the critical components requiring permanent maintenance. SGS has a series of limitations such as a relatively large pulse jitter and a work at a high pressure nitrogen atmosphere. The new injection system uses new half-sine microsecond pulse generators which based on Pseudo-Spark Switches. Some technical aspects of the new injection system are considered and results of generators operation are shown in the article.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO087  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRO088 The NSLS-II Booster Commissioning booster, extraction, controls, monitoring 295
 
  • S.M. Gurov, S.E. Karnaev, V.A. Kiselev, E.B. Levichev, S.V. Sinyatkin, A.N. Zhuravlev
    BINP SB RAS, Novosibirsk, Russia
  • V.V. Smaluk
    DLS, Oxfordshire, United Kingdom
 
  The National Synchrotron Light Source II is a third generation light source, which was constructed at Brookhaven National Laboratory. This project includes a highly-optimized 3 GeV electron storage ring, linac pre-injector, and full-energy synchrotron injector. Budker Institute of Nuclear Physics built and delivered the booster for NSLS-II. The commissioning of the booster was successfully completed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO088  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPME049 Design Considerations of the Final Turnaround Regions for the CLIC Drive Beam lattice, emittance, extraction, dipole 485
 
  • R. Apsimon, J. Esberg, A. Latina, D. Schulte, J.A. Uythoven
    CERN, Geneva, Switzerland
 
  The optics design of the final turnaround regions for the CLIC drive beam is presented. This includes the extraction region, the turnaround loop and the phase feed forward chicane for correcting errors on the bunch phase. The design specifications of the kicker and septum magnets are provided. Tracking simulations and detailed studies of coherent and incoherent synchrotron radiation have been used to optimise the optics in the turnaround region in order to minimise transverse and longitudinal emittance growth.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPME049  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPME067 Kicker Development at the ELBE Facility positron, gun, SRF, electron 520
 
  • G.S. Staats
    FZD, Dresden, Germany
  • A. Arnold, H. Büttig, T. Kirschke, M. Kuntzsch, P. Michel, J. Teichert, H. Vennekate, A. Wagner, R. Xiang
    HZDR, Dresden, Germany
  • R. Krause-Rehberg, A. Müller
    Martin-Luther-Universität, Naturwissenschaftliche Fakultät II, Halle (Saale), Germany
 
  Kicker-devices, also known as choppers, are of great interest for a multi-purpose electron accelerator like the ELBE at HZDR. They serve the following three main tasks: Firstly, they can be used to improve the time resolution for the positron beam line by removing certain parts of the bunch. As a second advantage they enable the machine to run two independent experiments at the same, as a chopper may split the beam into two separate parts. Lastly, a well-positioned kicker can reduce the dark current emitted by the SRF injector of the accelerator. Different designs for structures, deflecting the bunch in the beam line, have been simulated using CST Particle Studio. Here, no big difference to well-known strip line structures do exist. The next step is to design the supply electronics driving the kickers. As the ELBE accelerator runs at a high bunch repetition rate, the kicker has to keep up to this frequencies of up to 13 MHz. Hence, the high power levels needed for the operation may cause additional problems for the driver electronics. The poster is going to present the state of our development for all three tasks and our approaches to solve the corresponding challenges.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPME067  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPME069 Upgrade of the Injection Kicker System for J-PARC Main Ring injection, timing, feedback, operation 526
 
  • T. Sugimoto, K. Fan, K. Ishii, H. Matsumoto
    KEK, Ibaraki, Japan
 
  Four lumped inductance injection kicker magnets for the J-PARC main ring (MR) produce a kick of 0.1096 T·m with a 1% to 99% rise-time of about 400 nsec. A residual field of about 6% of the flat-top exists at the tail of the pulse due to an impedance mismatching. The residual field is required to be suppressed less than 1% to reduce injection losses. For a higher intensity beam operation, the kicker rise-time of less than 300nsec is required to inject longer beam bunches which reduces a space charge effect. During the long shutdown in FY2013, 140Ω resistor and 7nF capacitor were connected to the thyratron to improve the post-pulse shape. In addition, an optimization of a capacitance in the matching circuit was carried out to optimize the waveform. As the result, the rise-time of 195nsec and the residual tail field of 2% were achieved. However, another reflection peak of about 9% is appeared. We plan to compensate the effect of the new peak by using a new small kicker magnet. This paper discusses the detail of the circuit and the beam test results.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPME069  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPME072 Pulse Power Supplies for the Dipole Kickers of MAX-IV and Solaris Storage Rings power-supply, controls, storage-ring, dipole 535
 
  • A.A. Korepanov, A.A. Eliseev, A. Panov, A.A. Starostenko
    BINP SB RAS, Novosibirsk, Russia
 
  For initial operation of the MAX-IV and Solaris storage rings the single dipole kickers were decided to use. The pulsers wich drive the magnets have the following requirements: current amplitude up to 4kA (3 GeV ring), pulse length 0.6us (1.5 GeV ring) and 3.5us (3 GeV ring), pulse amplitude stability ±0.1%, timing jitter <±5ns, maximium repetition frequency 10 Hz. The design and test results of the pulse power supplies are presented in the paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPME072  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPME074 High Voltage Performance of the Beam Screen of the LHC Injection Kicker Magnets injection, vacuum, operation, impedance 541
 
  • M.J. Barnes, P. Adraktas, G. Bregliozzi, S. Calatroni, P. Costa Pinto, H.A. Day, L. Ducimetière, V. Gomes Namora, T. Kramer, V. Mertens, M. Taborelli
    CERN, Geneva, Switzerland
 
  The LHC injection kicker magnets include beam screens to shield the ferrite yokes against wakefields resulting from the high intensity beam. The screening is provided by conductors lodged in the inner wall of a ceramic support tube. The design of the beam screen has been upgraded to overcome limitations and permit LHC operation with increasingly higher bunch intensity and short bunch lengths: the new design also significantly reduces the electric field associated with the screen conductors, decreasing the probability of electrical breakdown. The high voltage conditioning process for the upgraded kicker magnets is presented and discussed. In addition a test setup has been utilized to study flashover, on the inner wall of the ceramic tube, as a function of both applied voltage and vacuum pressure: results from the test setup are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPME074  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPME075 Cooling of the LHC Injection Kicker Magnet Ferrite Yoke: Measurements and Future Proposals vacuum, injection, simulation, operation 544
 
  • M.J. Barnes, S. Bouleghlimat, L. Ducimetière, M. Garlaschè, V. Gomes Namora, T. Kramer, R. Noulibos, Y. Sillanoli, Z.K. Sobiech, W.J.M. Weterings
    CERN, Geneva, Switzerland
 
  LHC operation with high intensity beam, stable for many hours, resulted in significant heating of the ferrite yoke of the LHC Injection Kicker Magnets. For one kicker magnet the ferrite yoke approached its Curie temperature. As a result of a long thermal time-constant the yoke can require several hours to cool sufficiently to allow re-injection of beam, thus limiting the running efficiency of the LHC. The beam screen, which screens the ferrite yoke from wakefields, has been upgraded to limit ferrite heating. In addition it is important to improve the cooling of the ferrite yoke: one method is to increase the internal emissivity of the cylindrical vacuum tank, in which the kicker magnet is installed. This paper describes a method developed for measuring the emissivity of the inside of the tanks, which has been benchmarked against measurements of the ferrite yoke temperature during heat treatment in an oven and transient thermal simulations. Conclusions are drawn regarding an ion bombardment technique evaluated for improving emissivity without degrading vacuum properties. In addition initial concepts for improved cooling are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPME075  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPME076 Upgrade of the SPS Injection Kicker System for LHC High Luminosity Operation with Heavy Ion Beam injection, ion, impedance, septum 547
 
  • T. Kramer, J. Borburgh, L. Ducimetière, B. Goddard, L. Sermeus, J.A. Uythoven, F.M. Velotti
    CERN, Geneva, Switzerland
 
  In the context of the LHC High Luminosity Upgrade project a performance upgrade for heavy ions is envisaged. One of the performance limitations is the rise time of the present SPS injection kicker system MKP. A reduction of the rise time for lead ions was studied in line with a modification of the whole injection system. This paper briefly describes the different rise time options studied for an initially proposed dedicated ion kicker system MKP-I, focuses however on a cost effective alternative using the presently installed 12 MKPS magnets connected to a new fast pulse forming line. As only 12 out of the 16 injection kicker magnets would be fast enough to be used in an upgraded system, additional deflection has to be provided by the septa. The beam optics for that variant is highlighted and first requirements for the septum elements are stipulated. The paper concludes with a failure analysis of the proposed scheme.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPME076  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPME078 Relief of an Electric Field via a Cone Structure high-voltage, extraction, booster, vacuum 550
 
  • Y.T. Huang, C.K. Chan, C.S. Chen, J.-R. Chen, G.-Y. Hsiung, Y.-H. Liu
    NSRRC, Hsinchu, Taiwan
  • J.-R. Chen
    National Tsing Hua University, Hsinchu, Taiwan
 
  A terminated power cable is typically applied not only for terminated ends but also to connect two or more cables. The electric field inside the insulation layer becomes disturbed when a coaxial cable structure is broken and the electric stress increases near the ground edge. A structure of cone type is a major method to alter the lines of equi- potential and to relieve the electric stress around the ground. The dimensions of the cone depend on the cable structure. In this paper we introduce a way to calculate the displacement of equi-potential lines when a cone is brought into a coaxial cable, RG220, and then determine a suitable angle and length of the cone, which are important factors to withstand tens of kV and even greater. The corresponding high-voltage tests are also presented here.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPME078  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPME079 The DC and AC Withstands Test for TPS Booster Injection Kicker booster, injection, extraction, vacuum 554
 
  • Y.-H. Liu, C.K. Chan, C.-S. Chen, H.H. Chen, J.-R. Chen, Y.T. Huang, C.S. Yang
    NSRRC, Hsinchu, Taiwan
 
  TPS requires highly precise and stable pulsed magnets for top-up mode operation. One injection and two extraction in vacuum kicker magnets in the booster ring are designed and noticed to minimize driving voltage. The HV insulation for magnet itself and vacuum feedthrough need to be tested. A DC withstand voltage tester MUSASHI 3802 (Model: IP-701G) is used to test the DC breakdown voltage, which the maximum driving voltage is 37 kV. And the AC withstand voltage tester was also test the AC breakdown voltage. Thicker than 10 mm ceramic plate could effectively avoid the breakdown occurred with 37 kV DC charging. Thus HV withstand voltage will be higher in vacuum chamber and the insulation with HV will not be the problem.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPME079  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPME081 A Stripline Kicker Driver for the Next Generation Light Source high-voltage, simulation, coupling, impedance 559
 
  • F.M. Niell, N. Butler, M.P.J. Gaudreau, M.K. Kempkes, J. Kinross-Wright
    Diversified Technologies, Inc., Bedford, Massachusetts, USA
 
  Funding: US Department of Energy, Award DE-SC00004255
Diversified Technologies, Inc. (DTI) assembled a prototype pulse generator capable of meeting the original specifications for the Next Generation Light Source (NGLS) fast deflector. The ultimate NGLS kicker driver must drive a 50 Ω terminated Transverse Electromagnetic (TEM) deflector blade at 10 kV, with flat-topped pulses and a sustained repetition rate of 100 kHz. Additional requirements of the specification include a 2 ns rise time (10 – 90%), a highly repeatable flattop with pulse width from 5 – 40 ns, and a fall time less than 1 μs (down to 10-4 of the peak value). The driver must also effectively absorb high-order mode signals emerging from the deflector itself. It is envisioned that a scintilla of deflection will be imparted by a symmetric pair of shaped parallel deflection blades, pulsed in opposition at 10 kV. Within the guide, each TEM wave produced by the two pulse generators traverses the guide synchronously with the selected (relativistic) charge packet. The DTI team has designed and demonstrated the key elements of a solid state kicker driver capable of meeting the NGLS requirements, with possible extension to a wide range of fast-pulse applications.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPME081  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPME083 Fast Kicker Systems for ALS-U impedance, injection, lattice, storage-ring 564
 
  • G.C. Pappas, S. De Santis, J.E. Galvin, L.R. Reginato, C. Steier, C. Sun, H. Tarawneh, W.L. Waldron
    LBNL, Berkeley, California, USA
 
  Funding: Work supported by the Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231
Fast kicker systems are required for the proposed upgrade of ALS to a diffraction-limited light source (ALS-U). The main approach is to have multiple stripline kicker magnets driven by inductive adders. The design details of the kicker structures and the inductive adder options will be discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPME083  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRI089 Upgrade of J-PARC Fast Extraction System septum, operation, extraction, quadrupole 821
 
  • K. Fan, K. Ishii, H. Matsumoto, N. Matsumoto, T. Sugimoto
    KEK, Ibaraki, Japan
  • T. Shibata
    JAEA, Ibaraki-ken, Japan
 
  The J-PARC main ring (MR) fast extraction (FX) system has two functions: to deliver a high power beam to the neutrino experimental facility and to dump the beam at any time in case of hardware failures. The present FX system consists of five bipolar kickers and eight bipolar septa. In order to raise the beam power to the design limit, both the beam intensity and the repetition rate will increase gradually. The FX system needs to be upgraded to satisfy the new requirements. The upgrade includes FX orbit optimization and new design of devices. Firstly, two high performance eddy current septa have been designed and fabricated. Then downstream high field septa are redesigned and using ceramic beam pipe to eliminate eddy current effects, which meets the requirement of high repetition rate operation. A new large physical aperture quadrupole is needed to accommodate high intensity beam. In order to evaluate the beam loss in the new system, realistic 3D beam tracking is studied.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRI089  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRI097 Feasibility Studies for the Extraction of both LHC Beams from CERN SPS using a Common Kicker extraction, septum, simulation, impedance 842
 
  • F.M. Velotti, W. Bartmann, C. Bracco, E. Carlier, K. Cornelis, B. Goddard, V. Kain, M. Meddahi
    CERN, Geneva, Switzerland
 
  The CERN Super Proton Synchrotron has to fulfil the demanding intensity specifications for the High Luminosity LHC (HL-LHC) era, with a doubling of the presently achieved operational beam intensity. One of the main problems to be addressed is given by impedance-driven beam instabilities. About 40 % of the total measured SPS impedance is due to the kickers, of which the extraction kickers in two of the SPS straight sections are the largest systems. A potential upgrade is explored which would strongly reduce the number of extraction kickers required in the SPS, by performing non-local extraction. In this scenario LHC Beam 1 would be kicked by the extraction kicker in SPS Long Straight Section 4 (LSS4), normally only used for Beam 2, to be extracted in LSS6. The concept and the expected performance of such a scheme are presented along with detailed simulation results.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRI097  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO013 Studies on Stochastic Cooling of Heavy Ions in the LHC cavity, luminosity, ion, pick-up 1030
 
  • M. Schaumann, J.M. Jowett, B. Salvant, M. Wendt
    CERN, Geneva, Switzerland
  • M. Blaskiewicz, S. Verdú-Andrés
    BNL, Upton, Long Island, New York, USA
 
  Future high luminosity heavy-ion operation of the LHC will be dominated by very rapid luminosity decay due to the large collision cross-section and, to a lesser extent, emittance growth from intra-beam scattering (IBS) due to the high bunch intensities. A stochastic cooling system could reduce the emittance far below its initial value and reduce the losses from debunching during collisions, allowing more of the initial beam intensity to be converted into integrated luminosity before the beams are dumped. We review the status of this proposal, system and hardware properties and potential locations for the equipment in the tunnel.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO013  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO014 Semi-empirical Model for Optimising Future Heavy Ion Luminosity of the LHC luminosity, injection, heavy-ion, simulation 1033
 
  • M. Schaumann
    CERN, Geneva, Switzerland
 
  The wide spectrum of intensities and emittances imprinted on the LHC Pb bunches during the accumulation of bunch trains in the injector chain result in a significant spread in the single bunch luminosities and lifetimes in collision. Based on the data collected in the 2011 Pb-Pb run, an empirical model is derived to predict the single-bunch peak luminosity depending on the bunch's position within the beam. In combination with this model, simulations of representative bunches are used to estimate the luminosity evolution for the complete ensemble of bunches. Several options are being considered to improve the injector performance and to increase the number of bunches in the LHC, leading to several potential injection scenarios, resulting in different peak and integrated luminosities. The most important options for after the long shutdown 1 and 2 are evaluated and compared.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO014  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO032 RHIC Performance for FY2014 Heavy Ion Run luminosity, electron, cavity, ion 1090
 
  • G. Robert-Demolaize, J.G. Alessi, M. Bai, E.N. Beebe, J. Beebe-Wang, S.A. Belomestnykh, I. Blackler, M. Blaskiewicz, J.M. Brennan, K.A. Brown, D. Bruno, J.J. Butler, R. Connolly, T. D'Ottavio, K.A. Drees, A.V. Fedotov, W. Fischer, C.J. Gardner, D.M. Gassner, X. Gu, M. Harvey, T. Hayes, H. Huang, P.F. Ingrassia, J.P. Jamilkowski, N.A. Kling, J.S. Laster, C. Liu, Y. Luo, D. Maffei, Y. Makdisi, M. Mapes, G.J. Marr, A. Marusic, F. Méot, K. Mernick, R.J. Michnoff, M.G. Minty, C. Montag, J. Morris, C. Naylor, S. Nemesure, A.I. Pikin, P.H. Pile, V. Ptitsyn, D. Raparia, T. Roser, P. Sampson, J. Sandberg, V. Schoefer, C. Schultheiss, F. Severino, T.C. Shrey, K.S. Smith, S. Tepikian, P. Thieberger, D. Trbojevic, J.E. Tuozzolo, B. Van Kuik, M. Wilinski, Q. Wu, A. Zaltsman, K. Zeno, W. Zhang
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
After running uranium-uranium and copper-gold collisions in 2012, the high energy heavy ion run of the Relativistic Heavy Ion Collider (RHIC) for Fiscal Year 14 (Run14) is back to gold-gold (Au-Au) collisions at 100 GeV/nucleon. Following the level of performance achieved in Run12, RHIC is still looking to push both instantaneous and integrated luminosity goals. To that end, a new 56 MHz superconducting RF cavity was installed and commissioned, designed to keep ions in one RF bucket and improve luminosity by allowing a smaller beta function at the interaction point (IP) due to a reduced hourglass effect. The following presents an overview of these changes and reviews the performance of the collider.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO032  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO041 Status of Ion-optical Design of the Collector Ring optics, antiproton, quadrupole, injection 1114
 
  • O.E. Gorda, A. Dolinskyy, S.A. Litvinov
    GSI, Darmstadt, Germany
  • D.E. Berkaev, I. Koop, P.Yu. Shatunov, D.B. Shwartz
    BINP SB RAS, Novosibirsk, Russia
 
  The Collector Ring at FAIR will be used for fast cooling of hot antiproton or ion beams. The ring layout as well as the injection and extraction scheme have been modified during the latest design stage. In this paper, we report on the present status of the ion-optical properties of the machine.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO041  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO045 Simulation Studies on Beam Injection into a Figure-8 Type Storage Ring simulation, injection, storage-ring, experiment 1126
 
  • M. Droba, A. Ates, O. Meusel, H. Niebuhr, D. Noll, U. Ratzinger, J.F. Wagner
    IAP, Frankfurt am Main, Germany
 
  The proposed figure-8 storage ring at Frankfurt University [1, 2] is based on longitudinal guiding magnetic fields and will have special features with respect to the beam dynamics. A crucial part of the ring is the injection section, where the low energy beams have to cross an area of steeply rising field – up to B = 6 T into the main ring field. An optimized magnetic channel is designed to bring the injected beam close enough to the magnetic ring flux. An ExB kicker is needed to move the injected beam from the injection channel to the main magnetic field flux allowing multi turn injection. Simulation studies concentrate on this part and will be presented, results will be discussed. A comparison with simulations for prepared scaled down experiments with existing room temperature toroids will be done.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO045  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO049 Layout and Optics of the Dump Line at the European XFEL extraction, quadrupole, septum, optics 1138
 
  • N. Golubeva, V. Balandin, W. Decking
    DESY, Hamburg, Germany
 
  The purpose of the optical system, which we call the dump line, is not simply the transport of the beam to the beam dump. It is an essential part of the beam switchyard which provides the possibility to distribute electron bunches of one beam pulse to different FEL beam lines, allowing a flexible selection of the bunch pattern at each FEL experiment. In this paper we describe the final layout of this optical system as it is now under construction.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO049  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO060 First Turn-by-turn Measurements for Beam Dynamics Studies at ALBA injection, optics, electron, sextupole 1171
 
  • Z. Martí, G. Benedetti, M. Carlà, A. Olmos
    CELLS-ALBA Synchrotron, Cerdanyola del Vallès, Spain
 
  This paper summarizes the tasks carried out to develop a turn-by-turn (TBT) measurement system at ALBA. These tasks mainly include testing the MAF firmware for the libera BPMs and implementing the necessary analytical tools to infer the beam dynamics parameters. TBT measurements using an injection kicker are presented. Linear and non-linear beam dynamics results are compared with LOCO. Results are still preliminary since a good agreement with the linear model has not been achieved yet.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO060  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO071 Optimization of Low Energy Electrostatic Beam Lines quadrupole, beam-transport, simulation, ion 1202
 
  • O. Karamyshev, D. Newton, C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • O. Karamyshev, D. Newton, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
 
  Funding: Work supported by the STFC Cockcroft Institute Core Grant No. ST/G008248/1
Electrostatic elements are frequently used for transporting low energy charged particles, as they are easy to build and operate. However, beam motion is strongly affected by effects from fringe fields, positioning and manufacturing errors of individual ion optical elements. It is important to carry out detailed studies into these effects in order to optimize beam transport. In this paper results from numerical studies with a purpose-written code are presented and compared against analytical estimates. It is shown how the results can be used to optimize the mechanical layout of the electrostatic ion optics elements, including quadrupoles and spherical deflectors. Finally, the results from beam tracking through a multi-element beam line are presented on the basis of both, matrix multiplication and numerical particle tracking.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO071  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO077 AGS Snake Stories solenoid, injection, extraction, resonance 1220
 
  • F. Méot, Y. Dutheil, R.C. Gupta, H. Huang, N. Tsoupas
    BNL, Upton, Long Island, New York, USA
  • J. Takano
    J-PARC, KEK & JAEA, Ibaraki-ken, Japan
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
This contribution re-visits fields, particle motion, and spin precession in the AGS helical polarization snakes. The work was undertaken in preparation of orbit and spin modeling for future polarized proton and helion runs at RHIC. The investigations include re-computation of 3-D OPERA field maps of the helical snakes and particle and spin tracking. There is a series of sub-products of this study, amongst others, the appropriate settings of the AGS cold snake when changing its strength, cold snake settings for polarized helion programs, non-linear coupling in the AGS, the transport of the stable polarization axis from the AGS to RHIC injection kickers, and in addition, a series of high accuracy 3-D field maps have been produced, in view of long-term tracking in the AGS for beam and polarization transmission studies.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO077  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO101 Fast Kicker impedance, vacuum, simulation 1280
 
  • V.V. Gambaryan, A.A. Starostenko
    BINP SB RAS, Novosibirsk, Russia
 
  Pulsed deflecting magnet project was worked out in BINP. The kicker design task is: impulsive force value is 1 mT*m, pulse edge is 5 ns, and impulse duration is about 200 ns. The unconventional approach to kicker design was offered. The possibility for set of wires using instead of plates using is considered. This approach allows us to reduce the effective plate surface. In this case we can decrease effects related to induced charges and currents. In the result of modelling optimal construction was developed. It includes 6 wires. The magnet aperture is about 5 cm. Calculated field rise time (about 1.5 ns) satisfies the conditions. Induced current effect reducing idea was confirmed. For configuration with 3 wires pair (with cross section of 2 mm) induced current in one wire is about 10% and in the wall is about 40%. However for design with plates current is about 40% and 20% respectively. Obtained magnet construction allows controlling of high field homogeneity by changing currents magnitudes in wires. In general we demonstrated the method of field optimization. Summary. Optimal kicker design was obtained. Wires using idea was substantiated.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO101  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO112 Transient Magnetodynamic Finite Element Analysis of the ISIS M25/2 10Hz Kicker Magnet simulation, flattop, target, proton 1313
 
  • T.B.J. Mouille
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
 
  In 2007 a second target station (TS2) was added to the ISIS pulsed neutron source at RAL. Two slow kicker magnets are operated in order to direct a 10Hz proton beam toward TS2 through the TS2 Extract Proton Beam line (EPB2). When first manufactured and tested, the M25/2 exhibited an unforeseen magnetic and thermal behaviour. It was quickly identified that this was caused by the eddy currents induced in the laminated core and the mechanical structure of the magnet. Corrective actions were taken to counterbalance their effects but no further analysis was performed at the time. Recent developments in hardware and software make this analysis more feasible. In this paper we present the results of the transient magnetodynamic simulation that was set up in order to model these eddy currents and study their impact on the M25/2 field quality.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO112  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPME009 A Sub-micron Resolution, Wide-band, Stripline BPM System for Driving Bunch-by-bunch Feed-back and Feed-forward Systems at ATF feedback, cavity, operation, extraction 1358
 
  • G.B. Christian, D.R. Bett, N. Blaskovic Kraljevic, P. Burrows, M.R. Davis, Y.I. Kim, C. Perry
    JAI, Oxford, United Kingdom
 
  A low-latency, sub-micron resolution stripline beam position monitoring (BPM) system has been developed and tested with beam at the KEK Accelerator Test Facility (ATF2), where it has been used as part of a beam stabilisation system. The fast analogue front-end signal processor is based on a single-stage RF down-mixer and a position resolution below 400 nm has been demonstrated for beam intensities of ~1 nC, with single-pass beam. The BPM position data are digitised by fast ADCs on an FPGA-based digital feedback controller, which is used to drive either a pair of kickers local to the BPMs and nominally orthogonal in phase, in closed-loop feedback mode, or a downstream kicker in the ATF2 final focus region, in feedforward mode. The beam jitter is measured downstream of the final focus system with high resolution, low-Q, cavity BPMs, and the relative performance of both systems in stabilising the beam is compared.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPME009  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPME026 TMCI Thresholds for LHC Single Bunches in the CERN-SPS and Comparison with Simulations optics, impedance, simulation, emittance 1407
 
  • H. Bartosik, G. Iadarola, Y. Papaphilippou, G. Rumolo, B. Salvant, C. Zannini
    CERN, Geneva, Switzerland
 
  At the beginning of 2013 an extensive measurement campaign was carried out at the SPS in order to determine the Transverse Mode Coupling Instability thresholds of LHC-type bunches in a wide range of intensities and longitudinal emittances. The measurements were performed in two different configurations of machine optics (nominal and low gamma transition) with the goal to characterize the differences in behavior and performance. The purpose of this paper is to describe in detail the measurement procedure and results, as well as the comparison of the experimental data with HEADTAIL simulations based on the latest SPS impedance model. Beside the impedances of the resistive wall, the beam position monitors (BPMs), the RF cavities, and the flanges, an advanced model of the impedance of the kicker magnets is included, which are found to play a major role in the definition of the stability region of the LHC-type bunches in the two optics configurations studied.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPME026  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRI021 Impedance Calculation and Simulation of Microwave Instability for the Main Rings of SuperKEKB impedance, simulation, cavity, vacuum 1600
 
  • D. Zhou, T. Abe, T. Ishibashi, Y. Morita, K. Ohmi, K. Shibata, Y. Suetsugu, M. Tobiyama
    KEK, Ibaraki, Japan
 
  The SuperKEKB B-factory is now under construction. The designs of the components for the SuperKEKB have mostly been finished. This paper summarises the updated results of longitudinal impedance calculations for various components of the main rings. By summing up all available impedances, a pseudo-Green wake function with bunch length of σz=0.5 mm is constructed as an impedance model for consequent studies of collective effects. The results of these studies are also reported in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRI030 Beam Coupling Impedance of the New Beam Screen of the LHC Injection Kicker Magnets impedance, coupling, injection, operation 1627
 
  • H.A. Day, M.J. Barnes, F. Caspers, E. Métral, B. Salvant, J.A. Uythoven
    CERN, Geneva, Switzerland
 
  The LHC injection kicker magnets experienced significant beam induced heating of the ferrite yoke, with high intensity beam circulating for many hours, during operation of the LHC in 2011 and 2012. The causes of this beam coupling impedance were studied in depth and an improved beam screen implemented to reduce the impedance. Results of measurements and simulations of the new beam screen design are presented in this paper: these are used to predict power loss and temperature of the ferrite yoke for operation after long shutdown 1 and for proposed HL-LHC operational parameters.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI030  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRI051 Comparison between Measurements and Orbit Code Simulations for Beam Instabilities due to Kicker Impedance in the 3-GeV RCS of J-PARC simulation, impedance, injection, acceleration 1683
 
  • P.K. Saha, H. Harada, N. Hayashi, H. Hotchi, Y. Shobuda, F. Tamura, M. Yamamoto
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken, Japan
 
  The transverse impedance of the extraction kicker magnets is the most dominant beam instability source in the 3-GeV Rapid Cycling Synchrotron of J-PARC. The instability occurs when chromaticity is fully corrected during acceleration but on the other hand no instabilities are observed for a full chromatic correction only at the injection energy even for a beam power up to 500 kW. However, the situation may change for a beam power of 1 MW and also for the upgraded injection beam energy from the present 181 MeV to the 400 MeV, as space charge effect in the non-relativistic region is believed to suppress the growth rate of beam instability. In order to study the kicker impedance in detail, recently we have introduced measured time dependent impedance source in the ORBIT simulation code in a realistic manner. The ORBIT code itself has also been well upgraded and given realistic features for application to synchrotrons. We have also carried out a systematic experimental study for a maximum beam power of 500 kW. In this paper, a detail comparison between measurements and corresponding simulations including 1 MW simulation results are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI051  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRI059 The Proton Synchrotron Transverse impedance model impedance, simulation, space-charge, proton 4096
 
  • S. Persichelli, N. Biancacci, S.S. Gilardoni, M. Migliorati, E. Métral, B. Salvant
    CERN, Geneva, Switzerland
 
  The current knowledge of the transverse impedance of the CERN Proton Synchrotron (PS) has been established by theoretical computations, electromagnetic simulations and beam-based measurements at different energies. The transverse coherent tune and phase advance shifts as a function of intensity have been measured in order to evaluate the total effective transverse impedance and its distribution in the accelerator. In order to understand the beam dynamics, the frequency dependence of the impedance budget has also been evaluated considering the individual contribution of several machine devices. 3D models of many PS elements have been realized to perform accurate impedance simulations, while resistive wall and indirect space charge impedances have been evaluated with theoretical and numerical computations. Finally comparisons between the total budget and the measurement results are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI059  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRI060 Impedance Studies for the PS Finemet® Loaded Longitudinal Damper impedance, simulation, cavity, synchrotron 1708
 
  • S. Persichelli, M. Migliorati, M.M. Paoluzzi, B. Salvant
    CERN, Geneva, Switzerland
 
  The impedance of the Finemet® loaded longitudinal damper cavity, installed in the CERN Proton Synchrotron straight section 02 during the Long Shutdown 2013-2014, has been evaluated. Time domain simulations with CST Particle Studio have been performed in order to get the longitudinal and transverse impedance of the device and make a comparison with the longitudinal impedance that was measured for a single cell prototype.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI060  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRI085 Development of a 4 GS/s Intra-bunch Instability Control System for the SPS - Next Steps controls, feedback, pick-up, simulation 1766
 
  • J.D. Fox, J.M. Cesaratto, J.E. Dusatko, K.M. Pollock, C.H. Rivetta, O. Turgut
    SLAC, Menlo Park, California, USA
  • S. De Santis
    LBNL, Berkeley, California, USA
  • W. Höfle, G. Kotzian, U. Wehrle
    CERN, Geneva, Switzerland
 
  Funding: Work supported by the U.S. Department of Energy under contract DE-AC02-76SF00515 and the US LHC Accelerator Research Program (LARP).
We present the expanded system architecture in development for the control of intra-bunch instabilities in the SPS. Earlier efforts concentrated on validating the performance of a single-bunch demonstration processor. This minimal system was successfully commissioned at the SPS just prior to the LS1 shutdown. The architecture is now in expansion for more complex functionality, specifically multi-bunch control, control during energy ramps, and the expansion of the system front-end dynamic range with more sophisticated orbit offset techniques. Two designs of wideband kicker are being developed for installation and evaluation with the beam. With these GHz bandwidth devices and new RF amplifiers we anticipate being able to excite and control internal motion of the beam consistent with modes expected for Ecloud and TMCI effects. We highlight the expanded features, and present strategies for verifying the behavior of the beam-feedback system in the next series of machine measurements planned after the LS1 shutdown.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI085  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRI087 A Wideband Slotted Kicker Design for SPS Transverse Intra-bunch Feedback impedance, feedback, coupling, interface 1772
 
  • J.M. Cesaratto, J.D. Fox, C.H. Rivetta
    SLAC, Menlo Park, California, USA
  • D. Alesini, A. Gallo, M. Zobov
    INFN/LNF, Frascati (Roma), Italy
  • S. De Santis
    LBNL, Berkeley, California, USA
  • W. Höfle
    CERN, Geneva, Switzerland
 
  Funding: Work supported by the U.S. Department of Energy under contract DE-AC02-76SF00515 and the US LHC Accelerator Research Program (LARP) and by the EU FP7 HiLumi LHC - Grant Agreement 284404.
In order for the SPS to meet the beam intensity demands for the HL-LHC upgrade, control and mitigation of transverse beam instabilities caused by electron cloud and TMCI will be essential. For this purpose a wideband intra-bunch feedback method has been proposed, based on a 4 GS/s front end data acquisition and processing, and on a back end frequency response extending to at least 1 GHz. A slotted type kicker, similar to those used for stochastic cooling, as well as an array of stripline kickers have been considered as the terminal elements of the feedback system. A slotted TEM type kicker has been designed fulfilling the bandwidth and kick strength requirements for the SPS application. In this paper we present an updated version of the design and electromagnetic characteristics, leading into the mechanical design and construction of the kicker occurring later this year.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI087  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEOAA01 Longitudinal Top-up Injection for Small Aperture Storage Rings injection, storage-ring, electron, radiation 1842
 
  • M. Aiba, M. Böge, F. Marcellini, A. Saá Hernández, A. Streun
    PSI, Villigen PSI, Switzerland
 
  Future light sources aim at achieving a diffraction limited photon beam both in the horizontal and vertical planes. Small magnet apertures and high magnet gradients of a corresponding ultra-low emittance lattice may restrict physical and dynamic acceptance of the storage ring such that off-axis injection and accumulation may become impossible. We investigate a longitudinal injection, i.e. injecting an electron bunch onto the closed orbit with a time-offset with respect to the circulating bunches. The injected bunch will be merged to a circulating bunch thanks to longitudinal damping.  
slides icon Slides WEOAA01 [0.953 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEOAA01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO012 New Injection System of Siberia-2 Light Source injection, septum, simulation, electron 1965
 
  • S.I. Tomin, V. Korchuganov
    NRC, Moscow, Russia
 
  The storage ring Siberia-2 is SR source of second generation with circumference 124 m. The electron beam is injected into the ring at the energy 450 MeV. The Siberia-2 injection system was initially consisted of two high voltage rectangular pulses generators connected to the two in-vacuum strip – line kickers of traveling wave (wave impedance 50 Ohm) – a pre-inflector and an inflector. The amplitude voltage was 25-35 kV with 20 ns pulse duration and 2-3 ns pulse front/fall. Recently the new injection generators were proposed. Injection system now includes the same kickers and the new 1 microsecond pulse duration and 10 kV voltage amplitude generators. A dynamics of the electron beam after injection moment is considered in the article. The possibility of effective injection with kikers pulse duration over 2 periods of revolution of the electron beam is shown. The results of the new injection system commissioning are also demonstrated.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO012  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO013 Design Modifications and Installation of the Injection Girder System in the Taiwan Photon Source injection, septum, lattice, photon 1968
 
  • K.H. Hsu, J.-R. Chen, Y.L. Chu, H.C. Ho, D.-G. Huang, W.Y. Lai, C.J. Lin, Y.-H. Liu, H.M. Luo, S.Y. Perng, P.L. Sung, T.C. Tseng, H.S. Wang, M.H. Wu
    NSRRC, Hsinchu, Taiwan
  • J.-R. Chen
    National Tsing Hua University, Hsinchu, Taiwan
 
  The prototype of TPS injection girder system was designed and installed in a temporary factory. As the leakage field of the kicker magnet in the prototype was found to be too large according to both simulation and measurement to be acceptable, the lattice was altered to fit the requirements. In this paper, we present the design modifications of the injection girder system due to the new lattice. The DC septum magnet is replaced by a pre-AC septum magnet, of which its adjustable stage must be redesigned. The positions of vacuum components in the injection girder are also altered; we add some new holes in the prototype girder. The prototype of an injection girder system after modification has been installed in the tunnel of Taiwan Photon Source. The accuracy of position of three girders installed, and the stages for the septum or kicker magnet are within 0.25 and 0.08 mm, respectively.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO013  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO014 The Installations of the In-vacuum Kicker System of the Booster Injection Section in TPS booster, vacuum, injection, extraction 1971
 
  • C.S. Chen, C.K. Chan, K.H. Hsu, Y.T. Huang, Y.-H. Liu, C.S. Yang
    NSRRC, Hsinchu, Taiwan
 
  The installations of the In-Vacuum kicker system of the booster injection in TPS are presented in this article. Due to the more than 20 kV operation voltages and precise positioning requirements, the insulations and positioning systems are designed with more attentions. Although increasing the gap between high potential parts and ground could provide enough withstanding voltage, on the other hand, the insufficient space and vacuum requirements limit the sizes of insulators. Therefore, lots of effort have been done to deal with these conflicts. All assembling processes will be described in this paper as well.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO014  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO016 Injection/Extraction Kicker for the ALS-U Project impedance, injection, extraction, coupling 1977
 
  • S. De Santis, W. Barry, S. Kwiatkowski, T.H. Luo, G.C. Pappas, L.R. Reginato, D. Robin, C. Steier, C. Sun, H. Tarawneh, W.L. Waldron
    LBNL, Berkeley, California, USA
 
  Funding: Work supported by the US Department of Energy under Contract no. DEAC02-05CH11231
The ALS-II proposal consists in the upgrade of the existing Advanced Light Source at LBNL to a new ultra-low emittance lattice for production of diffraction-limited soft x-rays. In order to compensate for the reduced beam lifetime we intend to operate the machine in continuous top-off mode, where one of several bunch trains is extracted every 30-60 seconds and swapped with a fresh train from the accumulator ring, which is injected on axis without perturbing the circulating beam. In this paper we present a possible design for the injection/extraction kicker based on matched stripline electrodes. The main parameters of such a kicker are discussed in reference to the minimum gap between trains, the storage ring lattice, and the characteristics of a suitable pulser. We also present results from 3D electromagnetic modeling of the proposed kicker performed to evaluate its rise and fall time and field uniformity characteristics.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO016  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO065 New Design of J-PARC Main Ring Injection System for High Beam Power Operation injection, septum, operation, space-charge 2097
 
  • K. Fan, K. Ishii, H. Matsumoto, N. Matsumoto, T. Shibata, T. Sugimoto
    KEK, Ibaraki, Japan
 
  The present J-PARC main ring (MR) injection system has worked for 6 years since 2008, and the performance has been improved a lot by correcting the original design faults. But there are still problems in the existing injection system that affects the daily operation. In order to realize the MR beam power to the design limit, a high performance injection system is crucial. The remaining problems may have severe effects on high intensity beam, and become a big block to the realization of high beam power operation. Thus, upgrade the present injection system to satisfy the demands of high beam power operation is extremely important. The upgrade will redesign injection septa to obtain high performance, which will reduce the leakage field greatly. The kicker rise time will be reduced greatly by optimizing the configuration and using speed-up circuit. A compensation kicker magnet is being studied for reflection tail field cancelation. Careful 3D electromagnetic field simulations and 3D particle tracking are performed to ensure the accuracy of magnets design.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO065  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO069 Development of Cogging at the Fermilab Booster booster, extraction, dipole, injection 2109
 
  • K. Seiya, S. Chaurize, C.C. Drennan, W. Pellico, A.K. Triplett, A.M. Waller
    Fermilab, Batavia, Illinois, USA
 
  Funding: Work supported by Fermilab Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy.
The development of magnetic cogging is part of the Fermilab Booster upgrade within the Proton Improvement Plan (PIP). The Booster is going to send 2.25·1017 protons/hour which is almost double the present flux, 1.4·1017 protons/hour to the Main Injector (MI) and Recycler (RR). The extraction kicker gap has to synchronize to the MI and RR injection bucket in order to avoid a beam loss at the rising edge of the extraction and injection kickers. Magnetic cogging is able to control the revolution frequency and the position of the gap using the magnetic field from dipole correctors while radial position feedback keeps the beam at the central orbit. The new cogging is expected to reduce beam loss due to the orbit changes and reduce beam energy loss when the gap is created. The progress of the magnetic cogging system development is going to be discussed in this paper.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO069  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO079 Accelerator Systems Modifications for a Second Target Station at the Oak Ridge Spallation Neutron Source septum, target, quadrupole, linac 2140
 
  • M.A. Plum, J. Galambos, S.-H. Kim
    ORNL, Oak Ridge, Tennessee, USA
 
  Funding: ORNL/SNS is managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725.
A second target station is planned for the Oak Ridge Spallation Neutron Source. The ion source will be upgraded to increase the peak current from 38 to 49 mA, additional superconducting RF cavities will be added to the linac to increase the H− beam energy from 933 to 1300 MeV, and the accumulator ring will receive modifications to the injection and extraction systems to accommodate the higher beam energy. After pulse compression in the storage ring one sixth of the beam pulses (10 out of 60 Hz) will be diverted to the second target by kicker and septum magnets added to the existing Ring to Target Beam Transport (RTBT) line. No further modifications will be made to the RTBT so that when the kicker and septum magnets are turned off the original target 1 beam transport lattice will be unaffected. In this paper we will discuss these and other planned modifications and upgrades to the accelerator facility, and also the status of this project.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO079  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THOAA02 Development of a Low-latency, High-precision, Intra-train Beam Feedback System Based on Cavity Beam Position Monitors feedback, cavity, FPGA, controls 2783
 
  • N. Blaskovic Kraljevic, D.R. Bett, P. Burrows, G.B. Christian, M.R. Davis, Y.I. Kim, C. Perry
    JAI, Oxford, United Kingdom
 
  A low-latency, intra-train, beam feedback system utilising a cavity beam position monitor (BPM) has been developed and tested at the final focus of the Accelerator Test Facility (ATF2) at KEK. A low-Q cavity BPM was utilised with custom signal processing electronics, designed for low latency and optimal position resolution, to provide an input beam position signal to the feedback system. A custom stripline kicker and power amplifier, and an FPGA-based digital feedback board, were used to provide beam correction and feedback control, respectively. The system was deployed in single-pass, multi-bunch mode with the aim of demonstrating intra-train beam stabilisation on electron bunches of charge ~ 1nC separated in time by c. 280ns. The system has been used to demonstrate beam stabilisation to below the 100nm level. Results of the latest beam tests, aimed at even higher performance, will be presented.  
slides icon Slides THOAA02 [2.050 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THOAA02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THOAA03 Transverse Intra-bunch Feedback in the J-PARC MR feedback, injection, synchrotron, betatron 2786
 
  • K. Nakamura
    Kyoto University, Kyoto, Japan
  • Y.H. Chin, T. Obina, M. Okada, M. Tobiyama
    KEK, Ibaraki, Japan
  • T. Koseki, T. Toyama
    J-PARC, KEK & JAEA, Ibaraki-ken, Japan
  • Y. Shobuda
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken, Japan
 
  We will report the development of a new broadband (bandwidth of around 100MHz) feedback system for suppression of intra-bunch oscillations and reduction of particle losses at the J-PARC Main Ring (MR). A new BPM has been designed based on the exponential coupler stripline type (the diameter of 134 mm and the length of 300 mm) and it is now under fabrication. In this BPM system, the frequency characteristics are corrected using the equalizer as bunch signals are differentiated. The design detail and the performance of the new BPM as well as preparation of newly installed exciter and power amplifiers will be presented. We will also report beam test results of head-tail mode suppression at 3 GeV with the bunch length of 150-250 ns.  
slides icon Slides THOAA03 [1.149 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THOAA03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRO124 Waveform Remote Supports for the Taiwan Photon Source Project EPICS, controls, interface, Ethernet 3183
 
  • Y.-S. Cheng, J. Chen, P.C. Chiu, K.T. Hsu, K.H. Hu, C.Y. Liao, C.Y. Wu
    NSRRC, Hsinchu, Taiwan
 
  The 3 GeV Taiwan Photon Source (TPS) synchrotron light source is ready for commissioning. Various waveforms includes booster power supply current, pulse magnets current, beam signal, and etc. need monitoring to support commission and routine operation. Remote access of waveforms and spectrums from various digitizer, oscilloscope and spectrum analyzer were implemented to eliminate requirements of long distance cabling and to improve signal quality. Various EPICS supports of Ethernet-based oscilloscope and spectrum analyzer for the TPS are developed for filling pattern measurement, beam spectrum, pulse magnet power supply, and etc. Different operation interfaces to integrate waveform and spectrum acquisition are implemented by various GUI tools to satisfy all kinds of applications. The efforts will be summarized at this report.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRO124  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME069 Performance Studies of the SPS Beam Dump System for HL-LHC Beams proton, simulation, operation, optics 3394
 
  • F.M. Velotti, O. Aberle, C. Bracco, E. Carlier, F. Cerutti, K. Cornelis, L. Ducimetière, B. Goddard, V. Kain, R. Losito, C. Maglioni, M. Meddahi, F. Pasdeloup, V. Senaj, G.E. Steele
    CERN, Geneva, Switzerland
 
  The Super Proton Synchrotron (SPS) beam dump system is a concern for the planned High Luminosity LHC (HL-LHC) operation. The system has initially been designed for very different beam parameters compared to those which will reign after the completion of the LHC injectors upgrade, when the SPS will have to operate with unprecedented beam brightness. This paper describes the relevant operational and failure modes of the dump system together with the expected beam loading levels. Tracking studies are presented, considering both normal operation and failure scenarios, with particular attention on the location and level of proton losses. First FLUKA investigations and thermo-mechanical analysis of the high-energy absorber block are described  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME069  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME071 Injection and Extraction Systems for a High-Power Proton Synchrotron at CERN laser, injection, extraction, septum 3400
 
  • W. Bartmann, V. Fedosseev, B. Goddard, T. Kramer
    CERN, Geneva, Switzerland
 
  A new High-Power Proton Synchrotron (HP-PS) is being studied at CERN for the second phase of the Long Baseline Neutrino facility (LAGUNA-LBNO) where a 2 MW beam power shall impinge onto a target. A 4 GeV H injection based on foil stripping and extendable to laser-assisted magnet stripping is described. The proposed laser-assisted stripping is assessed with regard to the laser power requirements. The feasibility of a fast extraction system at 75 GeV is presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME071  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME072 Delivery of Special Magnets for the MedAustron Project injection, extraction, dipole, controls 3403
 
  • T. Kramer, M.G. Atanasov, R.A. Barlow, M.J. Barnes, J. Borburgh, L. Ducimetière, T. Fowler, M. Hourican, V. Mertens, A. Prost
    CERN, Geneva, Switzerland
  • T. Stadlbauer
    EBG MedAustron, Wr. Neustadt, Austria
 
  Ten different types of kickers, bumpers, and electrostatic and magnetic septa, along with certain power supplies and associated control system components, have been designed in a collaboration between CERN and MedAustron for an ion therapy centre in Wr. Neustadt (Austria). This paper focuses on the status of the special magnets work package and the improvements applied during the production. The design parameters are compared with data from measurements, hardware tests and initial commissioning. The major factors contributing to the successful completion of the work package are highlighted.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME072  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRI014 Modular Stand-Alone Pulse Current Measurement System for Kicker and Septa at BESSY II and MLS operation, controls, EPICS, storage-ring 3794
 
  • O. Dressler, J. Kuszynski, M. Markert
    HZB, Berlin, Germany
 
  Funding: Work supported by German Bundesministerium für Bildung und Forschung and Land Berlin.
Pulse current measurement systems are introduced for all pulsed deflection magnets in the BESSY II and MLS storage rings which acquire data autonomously. The measured pulse currents are displayed locally or remotely as single values or graphs. The data acquisition systems utilize commercial PXI chassis by National Instruments (NI), controllers and 2-channel 14bit, 100MHz high-speed digitizer cards. Measurement routines are programmed with LabVIEW 2012. Special in-house custom made ‘CA-Lab’ client software provides interface for the independent systems to write values into pre-assigned process variables of the EPICS control system. The retrieved data can be displayed in the machine control system and stored in a data archive. This allows shot to shot assessment of the pulse currents for accelerator operation and troubleshooting as well as long term data evaluation in correlation with other relevant machine parameters. This report also describes the set-up for the pulse current measurements and the structured programming for the data acquisition. Limits of the applied measurement technique and experience with the information gained for the accelerator operation will be explained.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRI014  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRI021 Implementation of a Direct Link between the LHC Beam Interlock System and the LHC Beam Dumping System Re-triggering Lines dumping, operation, extraction, electronics 3810
 
  • S. Gabourin, E. Carlier, R. Denz, N. Magnin, J.A. Uythoven, D. Wollmann, M. Zerlauth
    CERN, Geneva, Switzerland
  • M. Bartholdt, B. Bertsche, V. Vatansever, P. Zeiler
    Universität Stuttgart, Stuttgart, Germany
 
  To avoid damage of accelerator equipment due to impacting beam, the controlled removal of the LHC beams from the collider rings towards the dump blocks must be guaranteed at all times. When a beam dump is demanded, the Beam Interlock System communicates this request to the Trigger Synchronisation and Distribution System of the LHC Beam Dumping System. Both systems were built according to high reliability standards. To further reduce the risk of incapability to dump the beams in case of correlated failures in the Trigger Synchronisation and Distribution System, a new direct link from the Beam Interlock System to the re-triggering lines of the LHC Beam Dumping System will be implemented for the start-up with beam in 2015. The link represents a diverse redundancy to the current implementation, which should neither significantly increase the risk for so-called asynchronous beam dumps nor compromise machine availability. This paper describes the implementation choices of this link. Furthermore the results of a reliability analysis to quantify its impact on LHC machine availability are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRI021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)