Keyword: photon
Paper Title Other Keywords Page
MOXBA01 Challenges in the Design of Diffraction-limited Storage Rings emittance, lattice, brightness, storage-ring 7
 
  • R.O. Hettel
    SLAC, Menlo Park, California, USA
 
  This presentation reviews current developments in the design of ultra-low emittance lattices, the experience and challenges with the operation of low emittance lattices and the main technological problems. Beam dynamics issues and collective effects for ultra low emittance machines are also addressed.  
slides icon Slides MOXBA01 [6.969 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOXBA01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOYAA01 Innovative Ideas for Single-pass FELs electron, FEL, operation, undulator 12
 
  • T. Hara
    RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo, Japan
 
  SASE FELs are a powerful light source in short wavelengths from VUV to X-ray regions to investigate matters and phenomena. SASE was first experimentally obtained in 2000 at DESY TTF with an output wavelength of 109 nm. Subsequently, FLASH, LCLS and SACLA have achieved lasing in VUV, soft X-rays and hard X-rays. Although SASE has already been widely used for many application experiments in broad scientific fields, its spiky spectrum and time structures due to the lack of longitudinal coherence sometimes become problematic. To improve its longitudinal coherence, various ideas have been proposed and some of them are already demonstrated experimentally, such as a self-seeded scheme, high-gain harmonic generation (HGHG) and echo-enabled harmonic generation (EEHG). There is also another direction of developments to enhance the capability and potentiality of SASE, for example short pulse generation and two-color lasing. This talk will review recent innovative ideas of short wavelength FELs together with their experimental results.  
slides icon Slides MOYAA01 [10.701 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOYAA01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRO051 SOLEIL Operation and On-going Projects operation, injection, storage-ring, vacuum 200
 
  • L.S. Nadolski, C. Benabderrahmane, P. Betinelli-Deck, F. Bouvet, P. Brunelle, A. Buteau, L. Cassinari, M.-E. Couprie, X. Delétoille, C. Herbeaux, N. Hubert, M. Labat, J.-F. Lamarre, P. Lebasque, A. Lestrade, A. Loulergue, P. Marchand, O. Marcouillé, J.L. Marlats, A. Nadji, R. Nagaoka, P. Prigent, J.P. Ricaud, M.-A. Tordeux
    SOLEIL, Gif-sur-Yvette, France
 
  The 2.75 GeV synchrotron light source SOLEIL delivers photons to 27 beamlines; 2 new ones are under construction together with the FEMTOSLICING project of which commissioning started in January 2014. Five filling patterns are available for the users in Top-up injection mode. The storage ring is running with an upgraded optics less sensitive to insertion device (ID) configurations and giving both better beam lifetime and injection efficiency. The beam position stability remains excellent with a focus on electron vertical beam-size stability for the new very long beamlines. A gating system during Top-up injection improves significantly the quality of the spectrum on an infrared beamline. Several heavy actions of maintenance and upgrades on crucial subsystem equipment are underway. Others accelerator projects are going on such as the design and construction of new IDs, new Multipole Injection Kicker, radiation damage studies as well as R&D on solid-state amplifiers.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO051  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRO057 Undulator Photon Beams with Orbital Angular Momentum undulator, emittance, experiment, storage-ring 213
 
  • J. Bahrdt, K. Holldack, P. Kuske, R. Müller, M. Scheer, P.O. Schmid
    HZB, Berlin, Germany
 
  Photons carrying orbital angular momentum (OAM) are present in the off-axis radiation of higher harmonics of helical undulators. Usually, the purity and visibility of OAM photons is blurred by electron beam emittance. However, high brightness OAM beams are expected in ultimate storage rings and FELs, and they may trigger a new class of experiments utilizing the variability of the topological charge, a 3rd degree of freedom besides wavelength and polarization. We report on the first detection of OAM photons in helical undulator radiation in the 3rd generation storage ring BESSY II. Measurements and simulations are compared and the impact of emittance and energy spread is discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO057  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRO075 Evolution of Elettra towards an Ultimate Light Source emittance, dipole, lattice, quadrupole 258
 
  • E. Karantzoulis
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
 
  Considerations of possible lattices aiming to transform Elettra into an Ultimate Light Source (ULS), the best solution found and some considerations regarding the accelerator components are presented and discussed  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO075  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRO078 The SPARC_LAB Thomson Source Commissioning electron, laser, linac, emittance 267
 
  • C. Vaccarezza, D. Alesini, M.P. Anania, M. Bellaveglia, E. Chiadroni, D. Di Giovenale, G. Di Pirro, M. Ferrario, A. Gallo, G. Gatti, R. Pompili, S. Romeo, F. Villa
    INFN/LNF, Frascati (Roma), Italy
  • A. Bacci, C. Curatolo, D.T. Palmer, V. Petrillo, A.R. Rossi, L. Serafini, P. Tomassini
    Istituto Nazionale di Fisica Nucleare, Milano, Italy
  • P. Cardarelli, G. Di Domenico, M. Gambaccini
    INFN-Ferrara, Ferrara, Italy
  • A. Cianchi
    INFN-Roma II, Roma, Italy
  • P. Delogu
    INFN-Pisa, Pisa, Italy
  • F. Filippi, A. Giribono
    INFN-Roma, Roma, Italy
  • B. Golosio, P. Oliva
    INFN-Cagliari, Monserrato (Cagliari), Italy
  • A. Mostacci
    Rome University La Sapienza, Roma, Italy
 
  The SPARC_LAB Thomson source is presently under commissioning at LNF. An electron beam of energy between 30-150 MeV collides head-on with the laser pulse provided by the Ti:Sapphire laser FLAME, characterized in this phase by a length of 6 ps FWHM and by an energy ranging between 1 and 5 J. The key features of this system are the wide range of tunability of the X-rays yield energy, i.e. 20-500 keV, and the availability of a coupled quadrupole and solenoid focusing system, allowing to reach an electron beam size of 10-20 microns at the interaction point. The experimental results obtained in the February 2014 shifts are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO078  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRO083 Design Study of High Brilliant Optics at the SPring-8 Storage Ring emittance, brilliance, optics, electron 283
 
  • Y. Shimosaki, T. Aoki, K. Fukami, K.K. Kaneki, K. Kobayashi, M. Masaki, C. Mitsuda, H. Ohkuma, M. Shoji, K. Soutome, S. Takano, M. Takao
    JASRI/SPring-8, Hyogo-ken, Japan
 
  At the SPring-8 storage ring, design study of beam optics concentrating particularly on increasing brilliance, not flux density, is in progress besides continuous efforts of increasing both brilliance and flux density for the user optics. The natural emittances are theoretically reduced from 2.41 nmrad at 8 GeV to 2.27 nmrad (8 GeV), 1.78 nmrad (7 GeV) and 1.33 nmrad (6 GeV) by utilizing an emittance damping effect by the insertion devices. The designed optics has experimentally been examined at 6 GeV, and the electron beam parameters have been confirmed by measurements at the diagnostics beamlines.
* Y. Shimosaki et al., “New Optics with Emittance Reduction at the SPring-8 Storage Ring”, IPAC13, MOPEA027.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO083  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRO084 Recent Development and Operational Status of PF-Ring and PF-AR undulator, vacuum, injection, operation 286
 
  • T. Honda, M. Adachi, S. Asaoka, K. Haga, K. Harada, Y. Honda, M. Izawa, T. Kageyama, Y. Kamiya, Y. Kobayashi, K. Marutsuka, T. Miyajima, H. Miyauchi, S. Nagahashi, N. Nakamura, T. Nogami, T. Obina, M. Ono, T. Ozaki, H. Sagehashi, H. Sakai, S. Sakanaka, H. Sasaki, Y. Sato, M. Shimada, K. Shinoe, T. Shioya, M. Tadano, T. Tahara, T. Takahashi, R. Takai, H. Takaki, Y. Tanimoto, K. Tsuchiya, T. Uchiyama, A. Ueda, K. Umemori, K. Watanabe, M. Yamamoto, Ma. Yoshida, S.I. Yoshimoto
    KEK, Ibaraki, Japan
 
  Update of the first-generation undulators installed in 1980s is pushed forward at PF-Ring, a 2.5-GeV SR source of KEK, taking advantage of the expanded straight sections reconstructed in 2005. New undulators have been designed as elliptically polarizing undulators each has 6 magnetic arrays to obtain various polarization states, not only circular polarization but also linear (horizontal and vertical) polarization. Three undulators will be installed in FY2013 and FY2014 for BL02, BL13 and BL28. For BL02, the longest straight section of about 9 m, the new undulator will be installed in tandem with the existing planar undulator, in order to cover the wide photon energy range from 15 eV to 2 keV. At PF-AR, a 6.5-GeV SR source, a new direct beam transport (BT) line from the injector LINAC is under construction. Super KEKB which shares the injector LINAC with PF-Ring and PF-AR will be commissioned at the end of FY2014. The full-energy continuous injection of PF-AR will be available as a simultaneous injection with the 7-GeV HER, the 4-GeV LER and PF-Ring not so later than the commissioning of Super KEKB.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO084  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRO114 Particle Tracking Simulations with FLUKA for DESY FLASH and EXFEL radiation, electron, neutron, simulation 363
 
  • V.G. Khachatryan, V.H. Petrosyan, A. Sargsyan, A.V. Tsakanian
    CANDLE SRI, Yerevan, Armenia
 
  The objective of the study is the simulation of the produced secondary radiation properties when the electron beam halo particles hit collimator walls. Using particle tracking simulation code FLUKA the European XFEL electron beam interaction with the titanium collimator and copper absorber of the undulator intersections as well as FLASH beam interaction with the tapered collimator were simulated. Absorbed dose spatial distribution in the material of the collimators was simulated for the total secondary radiation and its important photon and neutron components. Residual dose rate after irritation of the collimator material by the electron beam was calculated.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO114  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRI057 Photoemission from III-V Semiconductor Cathodes electron, cathode, vacuum, scattering 736
 
  • S.S. Karkare
    Cornell University, Ithaca, New York, USA
  • I.V. Bazarov, L. Cultrera, W.J. Schaff
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • X.G. Jin
    Institute for Advanced Research, Nagoya, Japan
  • Y. Takeda
    Nagoya University, Nagoya, Japan
 
  Quantum efficiencies (QE) and mean transverse energies (MTE) of GaAs photocathodes grown using various techniques: metal-organic vapor phase epitaxy (MOVPE), molecular beam epitaxy (MBE), and atomic polishing have been compared and found to be identical. GaAs and GaInP based samples grown at Nagoya University were activated and measured in the Cornell ERL photoinjector. These were found to be in agreement with the samples measured at the ERL injector in KEK.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRI057  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUZA01 Advanced Concepts and Challenges in Compton Radiation Sources laser, electron, plasma, cavity 928
 
  • I. Pogorelsky
    BNL, Upton, Long Island, New York, USA
 
  Ongoing developments in Compton radiation sources are aimed toward a diversity of potential applications, ranging from university-scale compact x-ray light sources and metrology tools for EUV lithography, to positron sources for ee+ colliders. Novel conceptual approaches are pursued on different routes: One research direction lies in multiplying the source’s repetition rate and increasing its average brightness by placing the point of Compton interaction inside an optical cavity. High-gradient plasma-wakefield accelerators are fast becoming a practical reality, offering a new paradigm to compact all-optical Compton sources operating in x-ray- and gamma-regions. Continuing improvement in the quality of the beam of plasma accelerators promises the achievement of fully coherent Compton x-rays, thereby prompting the evolution of the Compton source to an all-optical free-electron laser.  
slides icon Slides TUZA01 [22.419 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUZA01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUOCA03 Production of Quasi-monochromatic GeV Photons by Compton Scattering using Undulator X-ray Radiation at SPring-8 electron, undulator, laser, experiment 941
 
  • H. Ohkuma, A. Mochihashi, M. Oishi, S. Suzuki, K. Tamura
    JASRI/SPring-8, Hyogo-ken, Japan
  • N. Muramatsu, H. Shimizu
    Tohoku University, Research Center for Electron Photon Science, Sendai, Japan
  • T. Nakano
    RCNP, Osaka, Japan
 
  Funding: This work is supported by JSPS KAKENHI (Grant-in-Aid for Scientific Research) Grant Number 24241035.
Backward Compton scattering (BCS) of X-ray photons emitted by undulator and reflected back by a single crystal from the electron beam can produce a quasi-monochromatic gamma-ray beam up to an energy very close to the electron beam energy. The SPring-8 beam diagnostics beamline (BL05SS) is used to inject a reflected undulator X-ray radiation against 8 GeV stored electron beam and to extract a quasi-monochromatic 8 GeV gamma-ray produced by BCS. BL05SS has conditions to do a pilot experiment to obtain the gamma-ray beam using BCS of X-ray photons from existing undulator. Experimental setup including a Bragg mirror system is now under construction. Preliminary reflectivity measurement of a silicon Bragg mirror using around 10keV photons has been done. Status of the experimental preparation and the future outlook is presented.
 
slides icon Slides TUOCA03 [1.889 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUOCA03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUOCB03 Performance of Elliptical Polarization Undulators at TPS undulator, polarization, multipole, FEL 987
 
  • T.Y. Chung, C.-H. Chang, C.H. Chang, J.C. Huang, C.-S. Hwang, J.C. Jan, F.-Y. Lin, C.Y. Wu
    NSRRC, Hsinchu, Taiwan
 
  Design, assembly, field shimming, and performance of APPLE-II type undulators in NSRRC are described in this article. Essentially, the mechanical error has been well controlled based on the optimize design and mechanical arts. Effectively initial sorting of permanent magnets is developed to minimize several adverse effects, such as magnetic inhomogeneities, no perfection geometry of blocks, and mechanical frame issue, those challenge the sorting expectation, especially for an adjusted polarization undulator. The sorting algorithm shows a quantitative prediction of magnetic field and is verified by measurement results. 2D virtual shimming algorithm has been developed to optimize field quality, including multipole, phase error, and particle trajectory. We describe the considering of each procedure and demonstrate the optimization together with measurement results.  
slides icon Slides TUOCB03 [1.503 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUOCB03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO029 Reducing Backgrounds in the Higgs Factory Muon Collider Detector detector, background, electron, neutron 1081
 
  • S.I. Striganov, N.V. Mokhov, I.S. Tropin
    Fermilab, Batavia, Illinois, USA
 
  Funding: Work supported by Fermi Research Alliance, LLC, under contract No. DE-AC02-07CH11359 with the U.S. Department of Energy through the DOE Muon Accelerator Program (MAP).
A preliminary design of the 125-GeV Higgs Factory (HF) Muon Collider (MC) has identified an enormous background loads on the HF detector. This is related to the twelve times higher muon decay probability at HF compared to that previously studied for the 1.5-TeV MC. As a result of MARS15 optimization studies, it is shown that with a carefully designed protection system in the interaction region, in the machine-detector interface and inside the detector one can reduce the background rates to a manageable level similar to that achieved for the optimized 1.5-TeV case. The main characteristics of the HF detector background are presented for the configuration found.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO029  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO110 Analytic Methods of Simulating Magnetic Fields for the Taiwan Photon Source dipole, multipole, software, simulation 1307
 
  • C.Y. Kuo, C.-H. Chang, C.-S. Hwang, F.-Y. Lin
    NSRRC, Hsinchu, Taiwan
 
  Analytic methods of four kinds served for analysis of the magnetic field of TPS magnets that were simulated with OPERA 2D and 3D software. These analytic methods include fast Fourier transform, one-dimensional fitting, two-dimensional circular or elliptic fitting and a differential field. In this paper we discuss the precision of varied analytic methods for properties of a magnetic field in various situations.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO110  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPME001 Heat Load, Stress and Reaction Force Studies of a Polarized Positron Production Target for the Future International Linear Collider target, positron, vacuum, undulator 1331
 
  • F. Staufenbiel, S. Riemann
    DESY Zeuthen, Zeuthen, Germany
  • G.A. Moortgat-Pick, A. Ushakov
    University of Hamburg, Hamburg, Germany
 
  The International Linear Collider requires an intense polarized positron beam with yields of about 1014 positrons per second. A polarized positron beam can be produced with a helical undulator passed by the accelerated electron beam to create a high power polarized photon beam. The photon beam penetrates a thin titanium-alloy rotating target wheel of 1m diameter with 500 to 2000 rpm rotation speed and produces polarized positrons. The system should run for 1-2 years without failure. A break down can occur due to the huge heat load in a short time (<1ms). The target design must keep the resulting thermo-mechanical stress below the yield strength and the fatigue limit of the material. FEM ANSYS simulations are used to evaluate the thermo-mechanical stress as well as the vibrations at the bearings of the rotating system. Results are presented with the goal to optimize the target wheel design parameters for a long lifetime.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPME001  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPME004 Lowering the CLIC IP Horizontal Beta Function luminosity, sextupole, synchrotron, radiation 1340
 
  • H. Garcia, D. Schulte, R. Tomás
    CERN, Geneva, Switzerland
  • H. Garcia
    UPC, Barcelona, Spain
 
  In order to alleviate the beamstrahlung photon emission, the beams at the CLIC Interaction Point must be flat. We propose to explore this limit reducing the horizontal beta function for CLIC at 500 GeV c.o.m. energy to half of its nominal value. This could increase the photon emission but it also increases luminosity and might allow reducing the bunch charge keeping the same luminosity. This configuration can also be considered for lower energies where beamstrahlung is less critical.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPME004  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPME044 Planned High-brightness Channeling Radiation Experiment at Fermilab's Advanced Superconducting Test Accelerator electron, experiment, detector, radiation 1457
 
  • B.R. Blomberg, D. Mihalcea, H. Panuganti, P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
  • C.A. Brau, B.K. Choi, W.E. Gabella, B.L. Ivanov, M.H. Mendenhall
    Vanderbilt University, Nashville, Tennessee, USA
  • C.W. Lynn
    Swarthmore College, Swarthmore, Pennsylvania, USA
  • P. Piot, T. Sen
    Fermilab, Batavia, Illinois, USA
  • W.S. Wagner
    Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiation Physics, Dresden, Germany
 
  Funding: Work supported by the DARPA Axis program under contract AXIS N66001-11-1-4196
In this contribution we describe the technical details and experimental setup of our study aimed at producing high-brightness channeling radiation (CR) at Fermilab’s new user facility the Advanced Superconducting Test Accelerator (ASTA). In the ASTA photoinjector area electrons are accelerated up to 40-MeV and focused to a sub-micron spot on a ~40 micron thick carbon diamond, the electrons channel through the crystal and emit CR up to 80-KeV. Our study utilizes ASTA’s long pulse train capabilities and ability to preserve ultra-low emittance, to produce the desired high average brightness.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPME044  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPME056 Improving Ion and Electron Beam Characteristics within LA³NET laser, electron, acceleration, simulation 1495
 
  • C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
 
  Funding: This project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no 289191.
Lasers are widely used at accelerator and light source facilities for beam generation, acceleration and optimization. Research within LA³NET focuses on laser-based particle sources (photo injectors and laser ion sources), laser acceleration, and laser-based beam diagnostics. This project was recently selected as a ‘success story’ by the European Commission for its research achievements. This paper presents selected numerical and experimental results. From HZDR results of electron transport simulations in their new SRF gun II cavity, super-conductive solenoid and downstream accelerators are shown. The results from optimization studies into asymmetric grating structures obtained at the University of Liverpool are also presented, along with initial results from studies into novel diagnostics for high intensity proton beams at CERN and low energy electron beams at KIT. Finally, the events organized by the consortium to date and future plans are summarized.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPME056  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRI035 Measurement of Beam Size in Intrabeam Scattering Dominated Beams at Various Energies at CesrTA emittance, scattering, storage-ring, electron 1635
 
  • M. P. Ehrlichman, K.J. Blaser, A. Chatterjee, W. Hartung, B.K. Heltsley, D.P. Peterson, D. L. Rubin, D. Sagan, J.P. Shanks, S. Wang
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: This research was supported by NSF and DOE contracts PHY-0734867, PHY-1002467, PHYS-1068662, DE-FC02-08ER41538, DE-SC0006505.
Recent reports from CesrTA have shown measurement and calculation of beam size versus current in CesrTA beams at 2.1 GeV. Here, the effect of changing the energy of IBS-dominated beams is reported. IBS growth rates have roughly a γ-3 dependence. Measurements at 1.8, 2.1, 2.3, and 2.5 GeV are shown and compared with predictions from IBS theory.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI035  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRI081 Feed-forward and Feedback Schemes applied to the Diamond Light Source Storage Ring feedback, optics, storage-ring, undulator 1757
 
  • M.T. Heron, M.G. Abbott, M.J. Furseman, D.G. Hickin, E.C. Longhi, I.P.S. Martin, G. Rehm, W.A.H. Rogers, A.J. Rose, B. Singh
    DLS, Oxfordshire, United Kingdom
 
  Since initial operation for users in Jan 2007, Diamond Light Source has developed to support a suite of 22 experimental stations. These stations have resulted in the installation of 24 undulators and two superconducting wigglers in the storage ring. To preserve optics, tune and coupling with the operation of these devices has necessitated the implementation of a number of feed-forward and feedback schemes. The implementation and operation of these correction schemes will be described.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI081  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRI101 Measurement of Neutrons Generated by 345MeV/u U-238 Beam at RIKEN RIBF detector, neutron, target, simulation 1811
 
  • N. Nakao
    Shimizu Corporation, Institute of Technology, Tokyo, Japan
  • K. Tanaka, Y. Uwamino
    RIKEN, Wako, Saitama, Japan
 
  Neutrons generated by a 345 MeV/u uranium beam bombardment on a 3-mm-thick Be target were measured outside the target chamber using activation detectors of bismuth, aluminum and carbon at 60, 70 and 90 degrees from the beam axis. After a few days irradiation, the activation detectors were removed, and the energy spectra of photons from radionuclides generated by reactions of 209Bi(n, xn)210-xBi(x=4~10), 12C(n, 2n)11C and 27Al(n, alpha)24Na were measured using a germanium detector. Photo peak counts of corresponding photon energies were analyzed with considering detector efficiencies and a beam intensity fluctuation during the irradiation. The production rates of the radionuclides were obtained for all reactions. Monte Carlo simulation using the PHITS code was also performed. Fluxes of neutrons at the activation detectors were tallied and the energy spectra were obtained. Production rates of the radionuclides were obtained by folding the thus obtained energy spectra with activation cross section data. Comparisons with the measurements showed agreements within about 60%.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI101  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEOAA02 Development of the Very Short Period Undulators undulator, radiation, electron, vacuum 1845
 
  • S. Yamamoto
    KEK, Ibaraki, Japan
 
  We have been exploring a method to fabricate very short period undulators, a period length of which is one order-of-magnitude shorter than the ordinary period of several cm. We are developing a plate-type magnet some 100mm long with a period length of 4mm. We selected this period length since we can generate 12-keV radiation with the first harmonic of this undulator in the 2.5-GeV storage ring. A multi-pole magnetizing method was applied to magnetizing this plate: a periodic undulator field (of 4-mm period in this case) was generated by pulsed electro-magnets, and was transcribed into the plate. The magnetization procedure allows the undulator field to be obtained in a very short gap between the pair of opposing plates, which is also one order-of-magnitude shorter than a gap in the ordinary undulators. We report the magnetization method to obtain a very short period and present the test results. The calculated spectrum of the radiation from the measured field compares well with that from an ideal magnetic field in the region of the fundamental radiation in case of 2.5-GeV energy of the electron beam.  
slides icon Slides WEOAA02 [5.189 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEOAA02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEIB02 RF Sub-Systems for Cargo and Vehicle Inspection linac, detector, vacuum, scattering 1917
 
  • D.J. Mistry, T.A. Cross, C.R. Weatherup
    e2v, Chelmsford, Essex, United Kingdom
 
  X-ray screening for security is a well-established inspection technique. Whilst in terms of fielded systems the vast majority consist of low energy X-ray sources, typically used for hand baggage or mail screening. There is a smaller but high value niche market servicing the requirements for border security, and cargo and vehicle inspection (CVI). This latter application requires higher X-ray energies of up to 10 MeV using an electron linear accelerator (linac) source to penetrate fully loaded shipping containers. Increasingly, methods are required to improve throughput and provide a higher level of material discrimination during inspection. This paper will briefly review the elements required to make an effective X-ray source, whilst outlining the RF technology required to drive a linac-based X-ray security system. Following this, potential new developments in radiofrequency (RF) sub-systems will be discussed in the context of user benefits.
Abstract redrafted 10.6.14
Original abstract: redrafted 6.12.13. 'The purpose of this presentation is to provide an understanding of global industry security systems and the role of accelerators…'
 
slides icon Slides WEIB02 [5.892 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEIB02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO001 Effect of Beam Dynamics Processes in the Low Energy Ring ThomX simulation, scattering, synchrotron, synchrotron-radiation 1933
 
  • N. Delerue, C. Bruni, I. Chaikovska, I.V. Drebot, M. Jacquet, A. Variola, Z.F. Zomer
    LAL, Orsay, France
  • A. Loulergue
    SOLEIL, Gif-sur-Yvette, France
 
  Funding: This work is supported by the French "Agence Nationale de la Recherche" as part of the program "investing in the future" under reference ANR-10-EQPX-51 and by grants from Région Ile-de-France.
As part of the R&D for the 50 MeV ThomX Compton source project, we have studied the effect of several beam dynamics processes on the evolution of the beam in the ring. The processes studied include among others Compton scattering, intrabeam scattering, coherent synchrotron radiation. We have performed extensive simulations of a full injection/extraction cycle (400000 turns). We show how each of these processes degrades the flux of photons produced and how a feedback system contributes to recovering most of the flux.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO001  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO003 Construction of a Laser Compton Scattered Photon Source at cERL laser, electron, cavity, gun 1940
 
  • R. Nagai, R. Hajima, M. Mori, T. Shizuma
    JAEA, Ibaraki-ken, Japan
  • T. Akagi, Y. Honda, A. Kosuge, J. Urakawa
    KEK, Ibaraki, Japan
 
  A nondestructive assay system of isotopes by quasi-monochromatic gamma-rays and nuclear resonance fluorescence is under development in JAEA. The quasi-monochromatic gamma-rays are generated by laser Compton scattering (LCS) based on energy-recovery linac accelerator and laser technologies. In order to demonstrate the accelerator and laser performance required for the gamma-ray source, an LCS experiment is planned at Compact ERL (cERL) at KEK. A mode-locked fiber laser, laser enhancement cavity, beamline, and experimental hatch are under construction for the LCS experiment. Up-to-date construction status is presented in detail.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO003  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO005 Development of Superconducting Spoke Cavity for Laser Compton Scattered Photon Sources cavity, HOM, linac, brightness 1946
 
  • M. Sawamura, R. Hajima, R. Nagai
    JAEA, Ibaraki-ken, Japan
  • H. Fujisawa, Y. Iwashita, H. Tongu
    Kyoto ICR, Uji, Kyoto, Japan
  • T. Kubo
    KEK, Ibaraki, Japan
 
  Funding: This work is supported by Photon and Quantum Basic Research Coordinated Development Program.
We have launched a 5-year research program to develop superconducting spoke cavity for laser Compton scattered (LCS) photon sources. For realizing a wide use of LCS X-ray and gamma-ray sources in academic and industrial applications, we adopt 325-MHz superconducting spoke cavity to electron beam drivers for the LCS sources. The spoke cavity, originally invented for ion and proton acceleration, can be used for electron accelerators, in which we can make best use of features of spoke cavity: relative compactness in comparison with a TM cavity of the same frequency, robustness with respect to manufacturing inaccuracy due to its strong cell-to-cell coupling, couplers on outer conductor for the better packing in a linac, and so on. In this paper, we present our research plan and results of cavity shape optimization.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO005  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO013 Design Modifications and Installation of the Injection Girder System in the Taiwan Photon Source injection, septum, kicker, lattice 1968
 
  • K.H. Hsu, J.-R. Chen, Y.L. Chu, H.C. Ho, D.-G. Huang, W.Y. Lai, C.J. Lin, Y.-H. Liu, H.M. Luo, S.Y. Perng, P.L. Sung, T.C. Tseng, H.S. Wang, M.H. Wu
    NSRRC, Hsinchu, Taiwan
  • J.-R. Chen
    National Tsing Hua University, Hsinchu, Taiwan
 
  The prototype of TPS injection girder system was designed and installed in a temporary factory. As the leakage field of the kicker magnet in the prototype was found to be too large according to both simulation and measurement to be acceptable, the lattice was altered to fit the requirements. In this paper, we present the design modifications of the injection girder system due to the new lattice. The DC septum magnet is replaced by a pre-AC septum magnet, of which its adjustable stage must be redesigned. The positions of vacuum components in the injection girder are also altered; we add some new holes in the prototype girder. The prototype of an injection girder system after modification has been installed in the tunnel of Taiwan Photon Source. The accuracy of position of three girders installed, and the stages for the septum or kicker magnet are within 0.25 and 0.08 mm, respectively.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO013  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO024 Simulation of a Long-period EPU Operating in Universal Mode at the Canadian Light Source polarization, alignment, dynamic-aperture, simulation 1995
 
  • W.A. Wurtz, D. Bertwistle, L.O. Dallin, M.J. Sigrist
    CLS, Saskatoon, Saskatchewan, Canada
 
  The Canadian Light Source is implementing an elliptically polarizing undulator (EPU) with period 180 mm for the production of soft x-rays with variable polarization. Two issues arise from implementing such a device. First, a long-period EPU can cause significant loss of dynamic aperture due to strong dynamic focusing. Second, to compensate for polarization effects due to beamline optics, the EPU must be able to produce light with an arbitrary polarization at the source point, which is referred to as universal mode. We present a scheme for operating the EPU in universal mode and discuss the use of BESSY-style current strips in order to compensate for dynamic effects. Tracking simulations suggest that dynamic aperture can be sufficiently recovered for all required operating points in universal mode.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO024  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO027 W164: A Wiggler Dedicated to the PUMA Beamline and the FEMTOSLICING Project at SOLEIL wiggler, operation, laser, electron 1998
 
  • O. Marcouillé, H.B. Abualrob, P. Brunelle, L. Chapuis, M.-E. Couprie, T.K. El Ajjouri, M. Labat, J.L. Marlats, F. Marteau, A. Mary, A. Nadji, K. Tavakoli, M.-A. Tordeux, M. Valléau
    SOLEIL, Gif-sur-Yvette, France
 
  The W164 out-vacuum wiggler was designed and built at SOLEIL with the double goal of producing high energy photons for the PUMA beamline (10 keV to 70 keV) and to be used as a modulator for the FEMTOSLICING project. The insertion device requires simultaneously reaching low resonant energy (1.55 eV) and high critical energy of photons (above 10 keV), leading to the choice of high field and large periods. The 3.28 m long wiggler is composed of 20 periods of 164 mm made of NdFeB magnets and vanadium permendur poles. The required effective field for the FEMTOSLICING is 1.53 T and the maximum total field reaches 1.8T at the minimum gap of 14.5 mm. The small transverse size of the poles was optimized to minimize the magnetic forces (8 tons maximum) resulting, together with the large field produced at minimum gap, to a large vertical dynamic field integral (DFI) inside the horizontal physical aperture of the chamber. A dedicated permanent magnet system was designed, constructed and installed at both wiggler ends to cancel the DFI at minimum gap. The construction of the wiggler, the results of the magnetic measurements and the effects on dynamics measured on electron beam are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO027  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO041 Undulator Radiation Spectral Broadening Due To Radiation Energy Loss undulator, radiation, electron, simulation 2035
 
  • N.V. Smolyakov
    NRC, Moscow, Russia
 
  A relativistic electron passing through an undulator generates electromagnetic radiation at the expenses of its own kinetic energy. This effect is usually not taken into account if the number of periods of the undulator is relatively small (100 - 200). However, at FEL facilities, long installations have been built, planned or are under construction, where many undulators are installed one after another for a total of several thousand undulator periods. For instance, the SASE1 and SASE2 lines at the European XFEL will consist of 35 undulators with 124 periods each. In this case, because of the electron energy decrease along its trajectory, the radiation from different undulators will drop out of synchronism. As a result, the radiation spectral line will be much wider. In the presented report, this effect was analyzed analytically and numerically. An expression for the critical number of undulator periods, when the effect of electron energy loss should be properly taken into account, is derived. It is found that, for the case of the European XFEL, this number is about 1200 periods.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO041  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO049 Experience of Operating a Superconducting Undulator at the Advanced Photon Source undulator, operation, storage-ring, vacuum 2053
 
  • Y. Ivanyushenkov, K.C. Harkay
    ANL, Argonne, Ilinois, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357.
A superconducting test undulator SCU0 was installed into the storage ring of the Advanced Photon Source (APS) in December 2012 and has been in user operation since January 2013. The first year's experience of operating such a novel insertion device at the APS is summarized in this paper. The performance of the SCU0 as a photon source is presented. The measured heat load from the electron beam is described together with the observed cryogenic behavior of the device. The effect of the SCU0 on the APS electron beam is also presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO049  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO050 Cryogenically Cooled 1J, ps Yb:YAG Slab Laser for High-brightness Laser-Compton X-Ray Source laser, electron, booster, operation 2056
 
  • A. Endo, M. Chyla, T. Miura, T. Mocek, P. Sikocinski
    Czech Republic Academy of Sciences, Institute of Physics, Prague, Czech Republic
  • K. Sakaue, M. Washio
    RISE, Tokyo, Japan
 
  Funding: This work benefitted from the support of the Czech Republic’s Ministry of Education, Youth and Sports to the HiLASE and DPSSLasers projects cofinanced from the European Regional Development Fund.
Laser Compton X-ray source is studied as an accelerator-laser hybrid technology to realize a compact source from soft X-ray to gamma ray*. It is critical to design a solid state laser of 1J pulse energy with 1ps pulse length, and a high beam quality for 10 microμm diameter interaction. The required M2 is less than 1.5 in a standard normal incidence configuration. X-ray total photon number is ~109 with 1nC, 3ps 43MeV electron bunch for each shot. HiLASE project is committed to make a progress in the field of new generation solid state laser based on Yb-doped materials, to deliver 1J at 120Hz of 1-2ps with M2<1.5. The laser system consists of a seed fiber laser and two amplifier stages, an Yb:YAG thin disk regenerative amplifier, and a cryogenically cooled single slab booster amplifier. We have obtained output energy of 45mJ from the regenerative amplifier at 1 kHz with M2 <1.2. Booster amplifier is designed by a conduction cooling to build a compact system. Gain bandwidth was 1.2nm at 120K, enough to obtain 1-2ps pulses. Improvement of the crystal holder and the experimental results are presented to indicate the available pulse energy and M2.
*Endo, A. et.al. “Characterization of the monochromatic laser Compton X-ray beam with picosecond and femtosecond pulse widths”, Proceedings SPIE 4502, pp100-108 (2001)
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO050  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO056 Development of an Optical Resonant Cavity for the LCS Experiment at cERL cavity, laser, experiment, resonance 2072
 
  • T. Akagi, Y. Honda, A. Kosuge, J. Urakawa
    KEK, Ibaraki, Japan
  • R. Hajima, M. Mori, R. Nagai, T. Shizuma
    JAEA, Ibaraki-ken, Japan
 
  A nondestructive assay system of isotopes by quasi-monochromatic gamma-rays by laser Compton scattering (LCS) is under development. In order to demonstrate the accelerator and laser performance required for the gamma-ray source, an LCS experiment is planned at Compact ERL (cERL) at KEK. An optical resonant cavity is under construction for the LCS experiment. The new optical cavity is designed by combination of two bow-tie cavities to achieve fast optical polarization switching. The performance of the optical cavity is presented in detail.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO056  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO057 Effect of the Electron Beam Emittance on the ILSF Radiation of Sources and Beamline Design emittance, undulator, brilliance, electron 2075
 
  • A. Gholampour, S. Amiri, H. Ghasem, H. Khosroabadi, J. Rahighi
    ILSF, Tehran, Iran
  • H. Ghasem, M. Lamehi Rashti, J. Rahighi
    IPM, Tehran, Iran
 
  At the Iranian Light Source Facility (ILSF), two different storage ring options are being studied. The designs differ in emittance. In the first option the calculated emittance is 3.278 nm-rad whereas for the second option emittance is 0.937 nm-rad. In this paper the electron beam emittance effects on the source radiation properties from bending magnet, wiggler and undulator, X-ray optics and the beamline design are carefully studied. The present calculations demonstrate that in the case of 0.937 nm-rad brilliance of undulator is increased by a factor of about 5. For bending magnet, flux is reduced almost 1 order of magnitude for hard x-ray regime. Because of smaller size of the source for undulator at the case of 0.937 nm-rad, we can achieve to a smaller spot size and higher resolution with easier focusing systems and usual kind of monochromator than the emittance of 3.278 nm-rad and for the bending magnet hard x-ray beamline, size of the mirrors reduced 30% in the 0.937 nm-rad emittance case, so its result is shorter mirror, low cost and perhaps more challengeable heat load.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO057  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO058 Photoemission Electron Microscopy Branch of Spectromicroscopy Beamline of the Iranian Light Source Facility undulator, electron, focusing, brilliance 2078
 
  • S. Amiri, H. Ghasem, A. Gholampour, H. Khosroabadi, J. Rahighi
    ILSF, Tehran, Iran
  • H. Ghasem, M. Lamehi Rashti
    IPM, Tehran, Iran
 
  The Spectromicroscopy beamline is one of the day one beamlines of the Iranian Light Source Facility project in the field of soft x-ray spectroscopy. This beamline is designed to cover the 90-2500eV energy range with about 8000 resolving power, and the minimum spot size of about 10×4 micrometer 2 at sample position. Brilliance, flux and photon size and divergence in the whole range of energy has been calculated for a 4.3m linear undulator using SPECTRA code. This undulator has 1015 ph/s(0.1% B.W.) photon flux at 96 eV energy & 400 mA electron current. A circular pinhole with maximum diameter size of 2.52mm has been inserted in a distance of 10m from the source to pass 95% radiated. Primary layout of this branch includes a collimating mirror, a varied included-angle plane grating monochromator, and a KB bendable elliptical cylinder mirror. The ray tracing calculation by using computational software SHADOW has been done to determine and optimize of the important optical parameters. Three plane gratings with different uniform line density (700, 900, 1200 lines/mm) have been used to cover the whole energy range with the resolving power of 0.75-0.8×104 depending on the photon energy.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO058  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO078 Background Calculations for the High Energy Beam Transport Region of the European Spallation Source neutron, target, beam-losses, background 2137
 
  • R.J. Barlow, A.M. Toader
    University of Huddersfield, Huddersfield, United Kingdom
  • L. Tchelidze
    ESS, Lund, Sweden
  • H.D. Thomsen
    ISA, Aarhus, Denmark
 
  Expected backgrounds in the final accelerator-to-target region of the European Spallation Source, to be built in Lund, Sweden, have been calculated using the MCNPX program. We consider the effects of losses from the beam, both along the full length and localised at the bending magnets, and also backsplash from the target. The prompt background is calculated, and also the residual dose, as a function of time, arising from activation of the beam components. Activation of the air is also determined. The model includes the focussing and rasterising magnets, and shows the effects of the concrete walls of the tunnel. We give the implications for the design and operation of the accelerator.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO078  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO094 Synchrotron Radiation Test Validations of European XFEL MCP-based Detectors at DORIS Beamline BW1 detector, radiation, FEL, ion 2180
 
  • E. Syresin, A.Yu. Grebentsov, A.V. Shabunov, N.I. Zamiatin
    JINR, Dubna, Moscow Region, Russia
  • R. Basta, T. Fiala, P. Hedbavny
    Vakuum Praha, Prague, Czech Republic
  • O.I. Brovko
    JINR/VBLHEP, Moscow, Russia
  • W. Freund, J. Grünert, H. Sinn
    XFEL. EU, Hamburg, Germany
  • D. Novikov, M.V. Yurkov
    DESY, Hamburg, Germany
 
  Radiation detectors based onμchannel plates (MCP) are planned for installation at the European XFEL. Main purpose of these detectors is searching a signature of lasing and further fine tuning of the FEL process. Detectors operate in a wide dynamic range from the level of spontaneous emission to the saturation level (between a few nJ and 25 mJ), and in a wide wavelength range from 0.05 nm to 0.4 nm for SASE1 and SASE2, and from 0.4 nm to 4.43 nm for SASE3. The SR tests validation of the MCP-based detector applied for XFEL lines SASE1 and SASE2 were performed at the DORIS beamline BW1 at SR with photon energy of 8.5-12.4 keV. The absolute measurements of a photon pulse energy for hard X-ray radiation were performed with application of MCP and photodiode detectors. Pulse-to-pulse photon energy measurements with MCPs and silicon photo detector were done with 192 ns and 96 ns repetition intervals. The SR beam imaging measurement at X-ray irradiation was performed at test validation experiments.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO094  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO096 X-ray Radiation Source for Low Dose Angiography based on Channeling Radiation radiation, electron, optics, cavity 2186
 
  • S.M. Polozov, T.V. Bondarenko
    MEPhI, Moscow, Russia
 
  Angiography is one of the most reliable and contemporary procedure of the vascular system imaging. X-ray spectrums provided by all modern medical angiographs are too broad to acquire high contrast images and provide low radiation dose at the same time. The new method of narrow X-ray spectrum achieving is based on the idea of channelling radiation application. The X-ray filters used in this method allows eliminating the high energy part of the spectrum and providing dramatic dose reduction. The scheme of the facility including the X-ray filter is discussed. The results of the spectrum analysis for the channelling radiation source and typical angiography X-ray tube are discussed. Doses obtained by the water phantom and contrast of the iodine agent image are also provided for both cases.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO096  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO098 Producing Two-photon Planar Sources at an Electron Accelerator target, electron, radiation, simulation 2192
 
  • V.L. Uvarov, N.P. Dikiy, A.N. Dovbnya, Yu.V. Lyashko, Yu.V. Rogov, V.A. Shevchenko, A.Eh. Tenishev
    NSC/KIPT, Kharkov, Ukraine
 
  Gamma-sources with two-energy spectrum are used in industrial and medical diagnostics for quantitative introscopy (tomography). Commonly, such sources are obtained by a reactor technology (153Gd) or using an ultrastable X-ray tube with properly shaped spectrum of radiation. We suggested utilize the 179Ta isotope (Ex~ 55 keV, T1/2= 665 day) in combination with 57Co (Eγ=122 keV, T1/2=273 day). A soft technology for producing planar sealed 179Ta/57Co sources at an electron accelerator by X-ray irradiation of a target from natural tantalum and nickel was developed. The isotope yield and absorbed power of radiation in the target device vs electron beam energy were calculated using a modified transport code PENELOPE-2008. The results of experiment conducted to determine the yields of the target isotopes and by-products are in good agreement with the simulation data.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO098  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO104 Backscattering X-ray System by using 950 keV X-band Linac X-ray Source target, detector, linac, simulation 2209
 
  • C. Liu
    The University of Tokyo, Tokyo, Japan
  • T. Fujiwara, M. Uesaka
    The University of Tokyo, Nuclear Professional School, Ibaraki-ken, Japan
  • J. Kusano
    Accuthera Inc., Kawasaki, Kanagawa, Japan
 
  Recently several tunnel collapses have happened in the world. To prevent this kind of accidents, the non-destructive inspection for tunnel is seriously needed. Backscattering X-ray system which makes one-side operation possible is a very important way to solve this problem. But the backscattering X-ray systems using X-ray tubes could only get the superficial information of the concrete target*. Now we are using our 950 keV X-ray source to construct the backscattering X-ray system to detect the deeper part of the concrete target.
*D. Shedlok, T. Edwards, C.Toh, “X-ray Backscatter Imaging for Aerospace Applications”, Review of Progress in Quantitative Nondestructive Evaluation, Volume 30 AIP Conf. Proc. 1335, 509-516, (2011).
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO104  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO111 Fusion Based Neutron Sources for Security Applications: Neutron Techniques neutron, scattering, target, resonance 2227
 
  • S.C.P. Albright, R. Seviour
    University of Huddersfield, Huddersfield, United Kingdom
 
  The current reliance on X-Rays and intelligence for national security is insufficient to combat the current risks of smuggling and terrorism seen on an international level. There are a range of neutron based security techniques which have the potential to dramatically improve national security. Neutron techniques can be broadly grouped into neutron in/neutron out and neutron in/photon out techniques. The use of accelerator based fusion devices will potentially enable to wide spread application of neutron security techniques due to the potential for much safer operation than that offered by fission or sealed tube sources. In this paper we discuss some of the neutron security techniques available and the advantages they present.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO111  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO115 The Star Project laser, electron, linac, scattering 2238
 
  • A. Bacci, D.T. Palmer, L. Serafini, V. Torri
    Istituto Nazionale di Fisica Nucleare, Milano, Italy
  • R.G. Agostino, G. Borgese, M. Ghedini, F. Martire, C. Pace
    UNICAL, Arcavacata di Rende, Italy
  • D. Alesini, M.P. Anania, M. Bellaveglia, F.G. Bisesto, G. Di Pirro, A. Esposito, M. Ferrario, A. Gallo, G. Gatti, A. Ghigo, B. Spataro, C. Vaccarezza, F. Villa
    INFN/LNF, Frascati (Roma), Italy
  • A. Cianchi
    Università di Roma II Tor Vergata, Roma, Italy
  • G. D'Auria, A. Fabris, M. Marazzi
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • T. Levato
    Czech Republic Academy of Sciences, Institute of Physics, Prague, Czech Republic
  • V. Petrillo
    Universita' degli Studi di Milano, Milano, Italy
  • E. Puppin
    Politecnico/Milano, Milano, Italy
  • P. Tomassini
    Università degli Studi di Milano, Milano, Italy
 
  We present on overview of the STAR project (Southern european Thomson source for Applied Research), in progress at the Univ. of Calabria (Italy) aimed at the construction of an advanced Thomson source of monochromatic tunable, ps-long, polarized X-ray beams, ranging from 20 to 140 keV. The project is pursued in collaboration among: Univ. della Calabria, CNISM, INFN and Sincrotrone Trieste. The X-rays will be devoted to experiments of matter science, cultural heritage, advanced radiological imaging with micro-tomography capabilities. One S-band RF Gun at 100 Hz will produce electron bunches boosted up to 60 MeV by a 3m long S-band TW cavity. A dogleg will bring the beam on a parallel line, shielding the X-ray line from the background radiation due to Linac dark current. The peculiarity of the machine is the ability to produce high quality electron beams, with low emittance and high stability, allowing to reach spot sizes around 15-20 microns, with a pointing jitter of the order of a few microns. The collision laser will be based on a Yb:Yag 100 Hz J-class high quality laser system, synchronized to an external photo-cathode laser and to the RF system to better than 1 ps time jitter.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO115  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPME034 Soft X-ray Reflectivity and Photoelectron Yield of Technical Materials: Experimental Input for Instability Simulations in High Intensity Accelerators electron, optics, radiation, synchrotron 2335
 
  • R. Cimino
    INFN/LNF, Frascati (Roma), Italy
  • R. Cimino
    CERN, Geneva, Switzerland
  • F. Schäfers
    HZB, Berlin, Germany
 
  High luminosity particle accelerators can suffer from serious performance drop or limitations due to interaction of the synchrotron radiation produced by the accelerator itself with the accelerator walls. Such interaction may produce a number of photoelectrons, that can either seed electron cloud related instabilities and/or interact anyway with the beam itself, potentially causing its deterioration. To correctly take these effects into account simulation codes depends on the realistic knowledge of Reflectivity and Photoelectron Yield of technical material. In this work we present relevant experimental data for some of the mostly used technical surfaces in accelerators.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPME034  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPME037 Monte Carlo Simulations of Synchrotron Radiation and Vacuum Performance of the Max IV Light Source vacuum, simulation, radiation, synchrotron 2344
 
  • M. Ady, R. Kersevan
    CERN, Geneva, Switzerland
  • M.J. Grabski
    MAX-lab, Lund, Sweden
 
  In the MAX IV light-source in Lund, Sweden, the intense synchrotron radiation (SR) distributed along the ring generates important thermal and vacuum effects. By means of a Monte Carlo simulation package, which is currently developed at CERN, both thermal and vacuum effects are quantitatively analysed, in particular near the crotch absorbers and the surrounding NEG-coated vacuum chambers. Using SynRad+, the beam trajectory of the upstream bending magnet is calculated; SR photons are generated and traced through the geometry until their absorption. This allows an analysis of the incident power density on the absorber, and to calculate the photon induced outgassing. The results are imported to Molflow+, a Monte Carlo vacuum simulator that works in the molecular flow regime, and the pressure in the vacuum system and the saturation length of the NEG coating are determined using iterations.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPME037  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPME049 Coupled Simulations of the Synchrotron Radiation and Induced Desorption Pressure Profiles for the HiLumi-LHC Triplet Area and Interaction Points vacuum, simulation, electron, detector 2381
 
  • R. Kersevan, V. Baglin, G. Bregliozzi
    CERN, Geneva, Switzerland
 
  The HiLumi-LHC machine upgrade has officially started as an approved LHC project (see dedicated presentations at this conference on the subject). One important feature of the upgrade is the installation of very high-gradient triplet magnets for focusing the beams at the collision points of the two high-luminosity detectors ATLAS and CMS. Other important topics are new superconducting D1 magnets, installation of crab cavities, and re-shuffling of the dispersion suppression area. Based on the current magnetic lattice set-up and beam orbits, a detailed study of the emission of synchrotron radiation (SR) and related photon-induced desorption (PID) has been carried out. A significant amount of SR photons are generated by the two off-axis beams in the common vacuum chamber of the triplet area, about 57 m in length. Ray-tracing Montecarlo codes SYNRAD+ and Molflow+ have been employed in this study. The related PID pressure profiles will be shown, together with simulations using the code VASCO for the analysis of beam losses and background in the detectors, including electron cloud effects.
(*) The HiLumi LHC Design Study is partly funded by the European Commission within the Framework Programme 7 Capacities Specific Programme, Grant Agreement 284404
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPME049  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPME051 Development of the TPS Vacuum Interlock and Monitor Systems vacuum, controls, storage-ring, booster 2387
 
  • Y.C. Yang, B.Y. Chen, J.-R. Chen, Z.W. Chen, J. -Y. Chuang, G.-Y. Hsiung, T.Y. Lee
    NSRRC, Hsinchu, Taiwan
 
  The vacuum interlock and monitor systems of Taiwan Photon Source are designed to maintain the ultra-high vacuum condition and to protect the vacuum devices. The pressure readings of ionization gauges are taken as the judgment logic to control the opening and closing of sector gate valves so as to protect the ultra-high vacuum condition. Monitors of the water-cooling system and the chamber temperature serve to protect vacuum devices from radiation hazards. The preparation, installation and status of the interlock and monitor systems are presented in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPME051  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPME055 Residual Gas in the 14 m-long Aluminium Vacuum System of the Storage Ring of Taiwan Photon Source: toward Ultra-high Vacuum vacuum, ion, cathode, storage-ring 2396
 
  • T.Y. Lee, C.K. Chan, C.H. Chang, C.-C. Chang, S.W. Chang, Y.P. Chang, B.Y. Chen, J.-R. Chen, Z.W. Chen, C.M. Cheng, Y.T. Cheng, G.-Y. Hsiung, S-N. Hsu, H.P. Hsueh, C.S. Huang, Y.T. Huang, L.H. Wu, Y.C. Yang
    NSRRC, Hsinchu, Taiwan
 
  In the Taiwan Photon Source project, the storage ring includes 24 sectors (each of length 14 m) of an aluminium vacuum chamber system. The design, manufacture, cleaning, welding and assembly of the vacuum components were undertaken by the NSRRC vacuum group. The ultimate objective is to attain a leak-tight, ultra-high vacuum and a vacuum system with a small rate of outgassing. In this work, we used a residual-gas analyzer (RGA) to analyze the variation of residual gas during proceeding toward ultra-high vacuum. This process, which led the pressure down to ~10-11 torr, includes baking, operation of ion pumps, degassing of hot cathode gauges and activation of NEG pumps. When a sufficiently small low pressure is attained, the ion pumps are turned off to test the building up of pressure. The outgassing property and the variation of the residual gas of the aluminium chamber and the ion pumps can be measured.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPME055  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPME056 Further Optimisation of NEG Coatings for Accelerator Beam Chamber electron, vacuum, injection, experiment 2399
 
  • O.B. Malyshev, R. Valizadeh
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  The non-evaporable getter (NEG) coating, invented at CERN in 90s, is used nowadays in many accelerators around the world. The main advantages of using NEG coatings are evenly distributed pumping speed, low thermal outgassing rates and low photon and electron stimulated gas desorption. The only downside of the NEG is its selective pumping: it pumps H2, CO, CO2 and some other gas species, but does not pump noble gases and hydrocarbons. However, in the accelerators where NEG coating could be beneficial, there is synchrotron radiation and photoelectrons that bombard vacuum chamber walls, it was found in our study that hydrocarbons can be pumped by NEG coating under electron and, most likely, photon bombardment. The detail and the results of this study are reported in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPME056  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPME059 Conceptual Design of a Storage Ring Vacuum System Compatible with Implementation of a Seven Bend Achromat Lattice at the APS vacuum, radiation, storage-ring, synchrotron 2409
 
  • B.K. Stillwell, B. Brajuskovic, H. Cease, D.L. Fallin, J. R. Noonan, M.M. O'Neill
    ANL, Argonne, Ilinois, USA
 
  A conceptual design is presented for a storage ring vacuum system at the Advanced Photon Source (APS) which is compatible with a multi-bend achromat (MBA) lattice under development for the APS Upgrade (APS-U) project [1]. Together, the interface with the magnets, required quantity and stability of beam position monitors, synchrotron radiation loading, and beam physics requirements place a demanding set of constraints on the vacuum system design. However, the requirements can be satisfied with a hybrid system which combines conventional extruded aluminum chambers incorporating “antechambers” with a variety of simpler tubular chambers made variously of copper-plated stainless steel, NEG-coated copper, and bare aluminum. This hybrid system has advantages over an all NEG-coated copper system with regard to overall project risk, required installation time, and maintainability.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPME059  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRI024 Two-Dimensional Models of the Magnetic-Field Enhancement at Pit and Bumps cavity, SRF 2525
 
  • T. Kubo
    KEK, Ibaraki, Japan
 
  Analytical models of the magnetic field enhancement at pits were presented at SRF2013 last year*. Other simple models will be addressed in this paper.
* Proceedings of SRF2013, Paris, France (2013), p. 430
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRI024  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRO009 Harmonic Lasing in X-ray FELs undulator, FEL, electron, operation 2873
 
  • E. Schneidmiller, M.V. Yurkov
    DESY, Hamburg, Germany
 
  Contrary to nonlinear harmonic generation, harmonic lasing in a high-gain FEL can provide much more intense, stable, and narrow-band FEL beam which is easier to handle if the fundamental is suppressed. We perform a parametrization of the solution of eigenvalue equation for lasing at odd harmonics, and present explicit expression for FEL gain length, taking into account all essential effects. We propose and discuss methods for suppression of the fundamental. We also suggest a combined use of harmonic lasing and lasing at the retuned fundamental wavelength in order to reduce bandwidth and to increase brilliance of X-ray beam. We discover that in a part of the parameter space, corresponding to the operating range of soft X-ray beamlines of X-ray FEL facilities, harmonics can grow faster than the fundamental. We suggest that harmonic lasing can be widely used in the existing or planned X-ray FEL facilities. LCLS after a minor modification can lase at the 3rd harmonic up to the photon energy of 25-30 keV providing multi-gigawatt power level. At the European XFEL the harmonic lasing would allow to extend operating range up to 100 keV, to reduce bandwidth and increase brilliance.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRO009  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRO016 Stable Generation of High Power Self-seeded XFEL at SACLA radiation, electron, undulator, FEL 2888
 
  • T. Inagaki, N. Adumi, T. Fukui, T. Hara, Y. Inubushi, T. Ishikawa, H. Kimura, R. Kinjo, H. Maesaka, Y. Otake, H. Tanaka, T. Tanaka, K. Togawa, M. Yabashi
    RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo, Japan
  • S. Goto, T.K. Kameshima, T. Ohata, K. Tono
    JASRI/SPring-8, Hyogo, Japan
  • T. Hasegawa, S. Tanaka
    SES, Hyogo-pref., Japan
  • A. Miura, H. Ohashi, H. Yamazaki
    Japan Synchrotron Radiation Research Institute (JASRI/SPring-8), Hyogo, Japan
 
  A self-seeded XFEL system using a transmitted beam under Bragg diffraction has been developed at the first compact XFEL facility SACLA in order to generate a brilliant single-mode XFEL with high temporal coherence. High stability and unique beam characteristics of SACLA should significantly contribute to achieve reliable, high-quality seeded XFEL operation. In particular, the short-pulse property that has been achieved in routine operation enables us to switch SASE and seeded mode quickly, without changing the electron beam parameters. This is also useful for delivering different modes to multiple beamlines simultaneously. In the test experiments carried out in autumn 2013, spectral narrowing was observed at 10 keV using diamond 400 reflection. Systematic optimization on beam properties is now in progress towards experimental use of seeded XFELs in summer 2014. This talk gives the overview of the plan, achieved results and ongoing R&D.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRO016  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRO024 Progress of the EU-XFEL Laser Heater laser, undulator, vacuum, electron 2912
 
  • M. Hamberg, V.G. Ziemann
    Uppsala University, Uppsala, Sweden
 
  Funding: Swedish research council under Project number DNR-828-2008-1093 for financial support.
We describe the technical layout and report the status of the installation of the undulator, optical and vacuum systems of the laser heater for the EUXFEL. The laser heater is a device to increase the overall X-ray brightness stability. This is achieved by an optical laser system which induce an additional momentum spread in the electron bunches to reduce micro-bunching instabilities.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRO024  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME076 Oscillating Wire as a “Resonant Target” for Beam Transversal Gradient Investigation laser, experiment, target, scattering 3412
 
  • S.G. Arutunian, A.V. Margaryan
    ANSL, Yerevan, Armenia
 
  Measurements of reflected/generated on oscillating wire secondary particles/photons in synchronism with oscillating wire frequency are proposed to done. The differential signal on wire maximal deviations at oscillation process can provide a fast signal proportional to beam profile gradient. Idea of usage of such “Resonant Target” for beam transversal gradient investigation was tested with lightening the oscillating wire by a laser.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME076  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME086 Optical Fiber Beam Loss Monitor for the PHIL and ThomX Facilities beam-losses, radiation, vacuum, operation 3433
 
  • I. Chaikovska, L. Burmistrov, N. Delerue, A. Variola
    LAL, Orsay, France
 
  Fiber beam loss monitor (FBLM) is an attractive solution to measure intensity and position of the beam losses in the real time. It is a very useful tool, especially, for the commissioning and beam alignment. In this article we report on the development of the FBLM at PHIL (PHotoinjector at LAL, Orsay, France) as a prototype of the beam loss monitor for the ThomX machine, the compact Compton based X-ray source being in the construction phase in Orsay.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME086  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME090 Fast Luminosity Monitoring using Diamond Sensors for the Super Flavor Factory SuperKEKB luminosity, scattering, positron, simulation 3442
 
  • D. El Khechen, P. Bambade, D. Jehanno, C. Rimbault
    LAL, Orsay, France
 
  Super luminous flavor factories, as SuperKEKB in Japan, aim to achieve very high luminosity thanks to a newly employed concept, the nano-beam scheme, where ultra-low emittance beams collide at very large crossing angle . Luminosity optimisation and dynamic imperfections require fast luminosity measurements. The aimed precision, 10-3 in 10 ms, can be achieved thanks to the very large cross-section of the radiative Bhabha process at zero-photon scattering angle. As a result of huge particle fluxes, diamond sensors are chosen to be placed just outside the beam-pipe, downstream of the interaction point, at locations with event rates consistent with the aimed precision and small enough contamination by backgrounds from single-beam particle losses . We will present the results concerning the investigation of the optimal positioning of our diamond sensors, taking into account the rate of Bhabha particles, their interactions with the beam pipe material.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME090  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME091 Beam Halo Measurements using Wire Scanners at ATF2 background, detector, collimation, experiment 3445
 
  • S. Liu, P. Bambade
    LAL, Orsay, France
  • S. Bai, J. Gao, D. Wang
    IHEP, Beijing, People's Republic of China
  • A. Faus-Golfe, N. Fuster-Martínez
    IFIC, Valencia, Spain
  • T. Tauchi, N. Terunuma
    KEK, Ibaraki, Japan
 
  Funding: Chinese Scholarship Council, FPA2010-21456-C02-01 and i-link 0704
Beam halo hitting on the beam pipe after the Interaction Point (IP) can generate a large amount of background for the measurements of the nano meter beam size using the laser interferometer beam size monitor (Shintake monitor) at ATF2. In order to investigate the beam halo transverse distribution, a diamond detector will be installed downstream of the IP. A feasibility study of a transverse halo collimation system to reduce the background for these measurements is also in progress. Prior to the diamond detector installation, a first attempt of beam halo measurements have been performed in 2013 using the currently installed wire scanners. Modeling of the beam halo distribution in the extraction (EXT) line was done and compared with the old modeling for ATF. Beam halo measurements were also done using the post-IP wire scanner to investigate the beam halo distribution at post-IP.
Work supported by Chinese Scholarship Council, FPA2010-21456-C02-01 and i-link 0704
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME091  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME092 Status of Diamond Detector Development for Beam Halo Investigation at ATF2 electron, detector, vacuum, cathode 3449
 
  • S. Liu, P. Bambade, F. Bogard, J-N. Cayla, H. Monard, C. Sylvia, T. Vinatier
    LAL, Orsay, France
  • N. Fuster-Martínez
    IFIC, Valencia, Spain
  • I. Khvastunov
    National Taras Shevchenko University of Kyiv, The Faculty of Physics, Kyiv, Ukraine
  • T. Tauchi, N. Terunuma
    KEK, Ibaraki, Japan
 
  Funding: Chinese Scholarship Council
We are developing a diamond detector for beam halo and Compton spectrum diagnostics after the interaction point (IP) of ATF2, a low energy (1.3 GeV) prototype of the final focus system for ILC and CLIC linear collider projects. Tests of a 500 μm thick sCVD diamond detector with a dimension of 4.5 mm×4.5 mm have been carried out with radioactive sources and with electron beam from PHIL low energy (<10 MeV) photo-injector at LAL. The tests at PHIL were done with different beam intensities in air, just after the exit window at the end of the beam line, to test the response of the diamond detector and the readout electronics. We have successfully detected signals from single electrons, using a 40 dB amplifier, and from an electron beam of 108 electrons, using a 24 dB attenuator. A diamond sensor with 4 strips has been designed and fabricated for installation in the vacuum chambers of ATF2 and PHIL, with the aim to scan both the beam halo (with 2 strips of 1.5 mm×4 mm) and the beam core (with 2 strips of 0.1 mm×4 mm) transverse distributions.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME092  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME112 Design of a Compact Setup to Measure Beam Energy by Detection of Compton Backscattered Photons at ANKA electron, laser, background, detector 3494
 
  • C. Chang, D. Batchelor, E. Hertle, E. Huttel, V. Judin, A.-S. Müller, A.-S. Müller, A.-S. Müller, M.J. Nasse, M. Schuh, J.L. Steinmann
    KIT, Eggenstein-Leopoldshafen, Germany
 
  Funding: This work is funded by the European Union under contract PITN-GA-2011-289191
One of the most important parameters of accelerators is their beam energy. So far, the method of resonant depolarization was used to accurately determine the energy at 2.5 GeV of the ANKA electron storage ring, which, however, becomes cumbersome for lower energies. A good alternative is the detection of Compton backscattered photons, generated by laser light scattered off the relativistic electron beam. To achieve compactness and integration into the storage ring, the setup of transverse scattering is proposed instead of conventional head-on collision. The feasibility has been studied by comparison between simulations of Compton backscattered photons by AT and CAIN 2.35 and actual measurement of background radiation with an HPGe (High Purity Germanium) spectrometer. The layout of the setup is also included in the paper.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME112  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME115 EUV Radiation Generated by a 5.7 MeV Electron Beam in Multilayer Periodical Structure radiation, target, electron, experiment 3503
 
  • S.R. Uglov, A. Potylitsyn, L.G. Sukhikh, A.V. Vukolov
    TPU, Tomsk, Russia
  • G. Kube
    DESY, Hamburg, Germany
 
  Funding: This work was partly supported by the by the Ministry of Education Science of the Russian Federation, contract 2.1799.2011.
Recent experience from linac based FELs like LCLS or FLASH shows that transverse beam imaging based on optical transition radiation (OTR) might fail due to coherence effects in the OTR emission process. In order to overcome the problem it was proposed to use transition radiation (TR) in the EUV region*. For a reliable beam diagnostics however, an increase of the light output in the EUV region is required. One possibility to increase the radiation yield in the geometry of interest (target tilt angles 22.5 or 45 degrees) is to exchange the conventional monolayer target by a multilayer structure which acts as a multilayer X-ray mirror for EUV radiation. In this case, two radiation components are expected to contribute to the measured signal, diffracted transition radiation (DTR) and parametric radiation (PR)**. In this report we present results of an experimental investigation of EUV TR generated by a 5.7 MeV electron beam at monolayer and multilayer targets. The angular characteristics of the radiation was investigated and compared with theoretical models.
* L.G. Sukhikh, S. Bajt, G. Kube et al., in Proc. IPAC'12, MOPPR019, New Orleans, Louisiana, USA, p.819 (2012)
** N.Nasonov, V.Kaplin, S.Uglov, e al., Phys. Rev. E 68 (2003) 036504
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME115  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME118 A Freon-filled Bubble Chamber for Gamma-ray Detection in Strong Laser-plasma Interaction electron, laser, plasma, detector 3512
 
  • W.B. Zhao, J.E. Chen, C. Lin, L.H.Y. Lu, X.Q. Yan, Y.Y. Zhao, B.Y. Zou
    PKU, Beijing, People's Republic of China
 
  When a laser pulse with focused intensity exceeding 1018W/cm2 interacts with a solid target, electrons in the focal spot are accelerated to relativistic velocity and where they generate inner-shell vacancies and hard x-ray(>10 keV) spectral line and Bremsstrahlung radiation. In laser plasma interactions, the resonance between betatron motion of electrons and ultraintense laser pulses is an interesting phenomenon in both electron acceleration and gamma photon production. Even though the gamma-ray synchrotron is micron scale, the energy ranges from ~1 MeV to ~102MeV. To detect the energy of the gamma-ray accurately is particularly significant. Owing to a lot of various energy of gamma-ray are emitted in femtosecond scale, which are impossible distinguished from each other on the time. A small freon-filled bubble chamber is being built to measure the energy spectrum of high-energy photons. After that, we can calculate the electron’s energy and then offer the data for various of electron acceleration theories. It combines a good spatial resolution with a large depth of field, allowing a large number of tracks. This improves the statistical quality of the photon spectrum.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME118  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME128 Fast Beam Diagnostics for Third-Generation Synchrotrons by Means of Novel Diamond-based Photon BPMs electron, diagnostics, detector, radiation 3541
 
  • M. Antonelli, G. Cautero, I. Cudin, D.M. Eichert, D. Giuressi, W.H. Jark, E. Karantzoulis, S. Lizzit, R.H. Menk
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • A. De Sio, E. Pace
    Università degli Studi di Firenze, Firenze, Italy
  • M. Di Fraia
    Università degli Studi di Trieste, Trieste, Italy
 
  In the past years electron beam stability has been intensively addressed In new-generation Synchrotron Radiation (SR) sources. Many SR machines have been equipped with a Fast Orbit Feedback (FOFB) based on electron Beam-Position Monitors (eBPMs). Also photon Beam-Position Monitors (pBPMs) are a useful tool for keeping the electron beam under control by simultaneously monitoring position and intensity of the delivered radiation; the machine control system can take advantage of this information in order to improving the electron beam stability. At Elettra, a diagnostic beamline, which utilizes a couple of single-crystal CVD diamond detectors as fast pBPMs, has been built and inserted into a bending-magnet front end. Preliminary tests carried out during normal machine operations show that this system allows to monitor the beam position with sub-micrometric precision at the demanding readout rates required by the FOFB. Therefore, this diagnostic line represents a demonstrator for future implementation of pBPMs at several bending-magnet front ends of Elettra.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME128  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME162 Filling Pattern Measurements at ALBA using Time Correlated Single Photon Counting synchrotron, radiation, synchrotron-radiation, detector 3644
 
  • L. Torino, U. Iriso
    CELLS-ALBA Synchrotron, Cerdanyola del Vallès, Spain
 
  At the ALBA synchrotron light source, the filling pattern is measured using a Fast Current Transformer (FCT). Applying a data analysis the filling pattern is measured with a dynamic range in the order of 102, limited by the electronic noise in the device. A new experimental set-up for filling pattern measurements was implemented using the Time Correlated Single Photon Counting. The technique consists in the measurements of the temporal distribution of the produced synchrotron radiation using Electro-Optical devices, from where the filling pattern is inferred. Two different photomultipliers are used to perform the measurement and results are compared. A further comparison between results from the photomultipliers and the FCT is performed to verify the accuracy of the results.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME162  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME167 Development of Non-invasive Transverse Profile Monitors for the ESS Linac linac, proton, radiation, detector 3656
 
  • C. Roose, C. Böhme, I. Dolenc Kittelmann, A. Jansson, C.A. Thomas
    ESS, Lund, Sweden
  • A. Källberg
    Stockholm University, Stockholm, Sweden
 
  The European Spallation Source (ESS) consists of a partly superconducting linac which will deliver a 2 GeV proton beam to a rotating tungsten target. In this way, the ESS will be the world's most powerful neutron source. To measure the proton beams transverse profile at high intensity, the ESS develops two types of non-invasive profile devices. The first monitor is based on luminescence of the residual gas, the second one on ionization of the same gas. The latest developments of these profile monitors will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME167  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME180 Vibration Measurement Experiment at TLS interface, electron, operation, synchrotron 3697
 
  • C.C. Liang, C.K. Chou, S. Fann, C.K. Kuan, D. Lin, T.F. Lin, Y.-C. Liu, T.-C. Yu
    NSRRC, Hsinchu, Taiwan
  • Y.-C. Liu
    NTHU, Hsinchu, Taiwan
 
  The oncoming completion of Taiwan Photon Source is closely constructed beside Taiwan Light Source (TLS). Few civil works are continuously under construction. Building the measurement, recording and analysis platform of software and hardware is the one of the main directions of operation group. To diagnose the instability problem of the light source, the external influence must be eliminated. One of the factors causing the instability is the physical vibration. Vibration measurement helps to evaluate if newly installed equipments are suited for adding on or the influence of the earthquake to the stability of TLS and to improve the light source quality for users. Software has been developed to provide assistance to do some preliminary diagnoses at TLS. In this article, some actual cases in routine operation are also presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME180  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME184 Improvement of Beam Imaging Systems through Optics Propagation Simulations simulation, radiation, optics, FEL 3709
 
  • B. Bolzon, T. Lefèvre, S. Mazzoni
    CERN, Geneva, Switzerland
  • A.S. Aryshev
    KEK, Ibaraki, Japan
  • B. Bolzon, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  • B. Bolzon, C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • P. Karataev, K.O. Kruchinin
    Royal Holloway, University of London, Surrey, United Kingdom
  • P. Karataev, K.O. Kruchinin
    JAI, Egham, Surrey, United Kingdom
 
  Optical Transition Radiation (OTR) is emitted when a charged particle crosses the interface between two media with different dielectric properties. It has become a wide-spread method for beam profile measurements. However, there are no tools to simulate the propagation of the OTR electric field through an optical system. Simulations using ZEMAX have been performed in order to quantify optical errors, such as aberrations, diffraction, depth of field and misalignment. This paper focuses on simulations of vertically polarized OTR photons with the aim of understanding what limits the resolution of realistic beam imaging systems.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME184  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME196 Low Energy Coded Aperture Performance at the CesrTA x-Ray Beam Size Monitor detector, electron, synchrotron, operation 3741
 
  • D.P. Peterson, J.P. Alexander, A. Chatterjee, M. P. Ehrlichman, B.K. Heltsley, A. Lyndaker, N.T. Rider, D. L. Rubin, R.D. Seeley, J.P. Shanks
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • J.W. Flanagan
    KEK, Ibaraki, Japan
 
  Funding: U.S. National Science Foundation PHY-0734867, PHY-1002467, PHYS-1068662, U.S. Department of Energy DE-FC02-08ER41538, DE-SC0006505
We report on the design and performance of coded aperture optics elements in the CesrTA x-ray beam size monitor (xBSM). Resolution must be sufficient to allow single-turn measurements of vertical beam sizes of order 10um by imaging synchrotron radiation photons onto a one-dimensional photodiode array. Measurements with beam energies above 2.1GeV and current above 0.1mA can be performed with a single-slit (pinhole) optic. At lower energy or current, small beam size measurements are limited by the diffractive width of a pinhole image and counting statistics. A coded aperture is a multi-slit mask that can improve on the resolution of a pinhole in two ways: higher average transparency improves counting statistics; and the slit pattern and masking transparency can be designed to obtain a diffractive image with narrower features. We have previously implemented coded apertures that are uniform redundant arrays (URA). A new coded aperture design is optimized for imaging with 1.8 GeV beam energy (1.9keV average x-ray energy) and with beam sizes below 20um. Resolution measurements were made in December 2013. Performance of the new coded aperture is compared to the pinhole and the URA.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME196  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRI004 FCC-ee/CepC Beam-beam Simulations with Beamstrahlung simulation, luminosity, radiation, collider 3766
 
  • K. Ohmi
    KEK, Ibaraki, Japan
  • F. Zimmermann
    CERN, Geneva, Switzerland
 
  Beamstrahlung, namely synchrotron radiation emitted during the beam-beam collision, can be an important effect for circular high-energy lepton colliders such as FCC-ee (TLEP). In this paper we study beam-beam effects in the presence of energy spreading and bunch lengthening due to beamstrahlung.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRI004  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRI060 Conceptual Design of an Electromagnetic Driven Undulator Based Positron Target System for ILC target, gun, positron, vacuum 3908
 
  • W. Gai, W. Liu
    ANL, Argonne, Illinois, USA
 
  There have been intense activities on development of the fast spinning Ti wheel positron target for ILC in the last few years. As in many high power target design, it requires solutions for many technical challenges, such as vacuum, thermal stress and radiation damage control, just to name a few. Due to the unique beam timing structure, in this paper, we present a target system based on a electromagnetic mechanical system that drives a bullet type Ti slug (~ 1.4x1.4x10 cm, weigh ~ 50 g) as the target system. The mechanism is similar to a reloadable EM rail gun driven projectiles. The system can be compact, vacuum isolated, and ease of cooling. Conceptual design layout and parameter estimations are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRI060  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRI098 Brazing and Helium Leaking Test for High Heat Load Components in the Taiwan Photon Source vacuum, synchrotron, synchrotron-radiation, radiation 4004
 
  • P.A. Lin, C.K. Kuan, T.Y. Lee, H.Y. Lin, I.C. Sheng
    NSRRC, Hsinchu, Taiwan
 
  Taiwan Photon Source is the second accelerator constructed by National Synchrotron Radiation Research Center (NSRRC). With 3GeV, 500mA, this facility will generate extremely high synchrotron radiation and most of the power load will be shadowed at front end in order to shape final confining beam size for beam lines users. The high heat load components are known to be the critical parts to absorb the unwanted energy. In order to practically distribute high density power along each high heat load components, several absorbers are introduced. Namely, primary mask, main mask, photon absorber and slits. The manufacturing process such as UHV chemical cleaning, brazing and helium leaking test will be described in this report.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRI098  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRI099 Constructing and Installation of TPS Front End synchrotron, radiation, controls, synchrotron-radiation 4007
 
  • Y.T. Cheng, Y.T. Cheng, J. -Y. Chuang, C.K. Kuan, T.Y. Lee, H.Y. Lin, P.A. Lin, Y.K. Liu
    NSRRC, Hsinchu, Taiwan
 
  National Synchrotron Radiation Research Center (NSRRC) in Taiwan is completing the construction of Taiwan Photon Source (TPS) synchrotron accelerator project. This 3GeV, 500mA beam current 3rd generation synchrotron accelerator will have total of 7 insertion device beam lines at day one. Corresponding front ends have been design and fabricated. Installation and craning is underway. Current status of frond end are reported and presented in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRI099  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)