Paper | Title | Other Keywords | Page |
---|---|---|---|
WEPMW034 | First Operational Experience with Embedded Collimator BPMs in the LHC | alignment, embedded, collimation, pick-up | 2510 |
|
|||
During Long Shutdown 1, 18 Large Hadron Collider (LHC) collimators were replaced with a new design, in which beam position monitor (BPM) pick-up buttons are embedded in the collimator jaws. The BPMs provide a direct measurement of the beam orbit at the collimators, and therefore can be used to align the collimators more quickly than using the standard technique which relies on feedback from beam losses. Online orbit measurements also mean that margins in the collimation hierarchy placed specifically to cater for unknown orbit drifts can be reduced, therefore increasing the beta-star and luminosity reach of the LHC. In this paper, the first operational results are presented, including a comparison with the standard alignment technique and a fill-to-fill analysis of the measured orbit in different machine modes in the first year of running after the shutdown. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMW034 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMW012 | The Fast Interlock Controller for High Power Pulse Modulator at PAL-XFEL | PLC, controls, operation, vacuum | 3561 |
|
|||
Funding: This work is supported by Ministry of Science, ICT(Information/Communication Technology) and Future Planning. The modulator control system for PAL-XFEL consists of a PLC unit (Programmable Logic Controller) and FPSCM (Fast Pulse Signal Conditioning Module). There are two kinds of interlock, which are dynamic and static interlocks categorized as analogue monitor and control signals, digital monitor and control signals. In case of dynamic interlocks, the internal interface of the PLC unit had to be modified due to operating within 10 ms time response from the interlock event. The fast pulse signal conditioning module is adopted for preconditioning the fast pulse and DC signals that inherently have high noise levels generated from a beam voltage, a beam current and EOLC current. Those EM (Electro-Magnetic) noises are generated by thyratron switching. The amplitude of the thyratron noise is large which causes the problem at the control devices, frequently. In this paper, the test results of the interlock control system will be described. |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMW012 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPOY030 | Dependability Studies for CERN PS Booster RF System Upgrade | electronics, PLC, booster, operation | 4159 |
|
|||
Radio frequency systems are a vital part of almost all accelerators. The request for a higher beam bright-ness from the injector chain of CERN's Large Hardon Collider, as demanded by the future High-Luminosity program, has motivated, among many other upgrades, the construction of new RF equipment in the PS Boost-er. Because availability and reliability have an im-portant impact on the luminosity production in a col-lider environment, dependability studies have been performed on the new design of the RF system assum-ing different maintenance strategies. This paper will present the model, made with the commercial software Isograph, for dependability studies. In addition, a comparative study will be presented between the re-sults obtained from Isograph and from an analytical analysis. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOY030 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPOY042 | Evolution and Perspectives of Second Generation Magnet Interlock Systems at CERN | PLC, operation, radiation, dipole | 4192 |
|
|||
The CERN accelerator complex relies on thousands of superconducting and normal conducting magnets to guide the particle beams on their trajectories throughout the accelerator chain. In order to protect magnet and powering equipment from damage, complex magnet interlock systems are deployed and operated in the LHC and its injectors. Despite a very good track record during the first 10 years of operation, important consolidation activities are ongoing and planned to further increase the dependability of the injector chain and enhance the sys-tem functionality where required. This paper reviews the performance of the various magnet interlock systems at CERN during the past years of operation and presents the ongoing renovation projects carried out in the LHC in-jector complex to achieve the high level of dependability and maintainability required for long term operation. Finally, some design aspects of the existing LHC magnet interlocks will be discussed and possibilities to further enhance the dependability and functionality of the mag-net powering system will be presented in view of the High Luminosity LHC. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOY042 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||