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Coherent	synchrotron	radia&on	(CSR)	

•  When	a	source	parBcle	enters	a	dipole,	it	emits	radiaBon.	
•  RetardaBon	condiBon	must	be	met		
						for	test	parBcle	receiving	radiaBon	within	dipoles.	
•  Longitudinal	field	acBng	on	the	head	parBcle	
						from	rigid	line	bunch:	
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CSR	effects	on	the	beam	
•  Transverse:	Emi-ance	Growth	

	
	
	
	
•  Longitudinal:	Microbunching	Instability	(MBI)	

•  An)iniGal)density)modulaGon)can)induce)energy)modulaGon)due)to)the)
presence)of)(high&frequency))impedance)Z(k),)e.g.)LSC)or)CSR.)

•  Such)energy)modulaGon)can)then)convert)to)further)density)modulaGon)via)
the)momentum#compac:on#R56)downstream)and)possibly)induce)emiMance)
growth)in)the)dispersive)region.)

•  The)above)process)can)accumulate)over)and)over)along)the)beamline,)resulGng)
in)possible)density)enhancement,)called)microbunching#instability.)

Z.)Huang)and)J.)Wu,)Beam)Dynamics)NewsleMer,)No.)38)
10)

G(s) ≡ gk (s)
gk
(0)(s = 0)

= 10%
1%

= 10

Mechanism&of&microbunching&instability)(MBI))
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0.25	MeV	
wakes engender transverse coordinate and angular dis-
placements via nonzero R16ðs; s2Þ and R26ðs; s2Þ induced
in the chicane. At the end of the chicane, the transverse
displacement and the angle deviation will be

!xðs2; zÞ ¼
1

E0

Z s2

s1

d½!Eðz; sÞ%R16ðs; s2Þ
ds

ds ! 0; (1)

!x0ðs2; zÞ ¼
1

E0

Z s2

s1

d½!Eðz; sÞ%R26ðs; s2Þ
ds

ds ! 0: (2)

The coordinate and the angular displacement that
depend on longitudinal position of the particle result
in a smearing in the transverse phase space, and also
in the growth of the projected emittance. Figure 5
illustrates this smearing effect, comparing the plots

of the transverse phase space before and after the
chicane.

IV. ZIGZAG CHICANE WITH CSR
COMPENSATION

As a remedy for the above problem, i.e., the displace-
ment in the transverse plane due to the longitudinal energy
variation induced by CSR wakes, we propose to use two
consequent chicanes with reversed bending directions, i.e.,
a zigzag-type compressor [26]. The opposite signs of the
dispersion functions should allow us to decouple the
longitudinal and transverse degrees of freedom. This tech-
nique is similar to that proposed to compensate the emit-
tance growth in ERL mergers caused by the longitudinal
space-charge forces [27]. We expect that in our scheme the
transverse phase-space displacement caused by CSR in the
1st chicane could be, at least, partially reversed in 2nd
chicane. By controlling optics between the two reversing
chicanes, we can suppress the correlated emittance growth
due to photon emission along the dispersive path [28].
Thus, the resulting emittance growth due to CSR effects
could be greatly reduced. Since bunch length is shorter,
correspondingly CSR wake is stronger in the second chi-
cane, and the energy change also is larger. The cancella-
tion of the CSR effect naturally requires a weaker second
chicane compared to the first one. Figure 6 is a sketch of
the energy variation caused by CSR wake in a zigzag
chicane. In addition, we could better align the transverse
phase-space displacements originating from two chicanes
by adjusting phase advance between them. We now
employ quadrupoles located between two chicanes
for this purpose, using them to minimize the resulting
projected emittance. For optimization, we adopted the
same simulation setup in ELEGANT and the same total
R56 for the case of a single chicane (described in the
previous section). A recurrent process of optimizing the
compensation scheme is done in scanning the dipoles
angles, the distances between dipoles, the phase advance

FIG. 5. Phase-space distribution before (top) and after (bot-
tom) the bunch compressor. The longitudinal energy variation
induced by CSR wakes is coupled to the coordinate and angular
displacements through R16 and R26 induced in the chicane. This
results in smearing of the transverse phase space.

FIG. 6. A sketch of expected energy variation along the two-
chicane compressor. Because of the higher peak current, the CSR
wakes in the second chicane are stronger and a larger energy
change is expected.
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MiEgaEon	of	CSR	effects	on	beam	dynamics	
Dimension	 MiBgaBon	schemes	 Note	

Transverse	 Cell-to-cell	phase	matching	(Douglas,	Di	Mitri	et	al.)	 opBcs	adjustment	

Beam	envelope	matching	(Hajima)	

CombinaBon	of	the	above	concepts,	applicaBon	to	DBA/TBA	
(Jiao	et	al.)	or	bunch	compressor	system	(Jing	et	al.)	

Longitudinal	bunch	shaping	(Mitchell	et	al.)	 tailoring	iniBal	
condiBons	

Longitudinal	 Laser	heaEng	(Saldin	et	al.,	Huang	et	al.)	 Landau	damping	
enhancement	via	σδ	

MagneBc	mixing	chicane	(Di	Mitri	et	al.)	

Reversible	electron	beam	heaEng	(Behrens	et	al.)	

InserBon	of	dipole	pair	in	an	accelerator	system	(Qiang	et	al.)	 take	advantage	of	εx	
via	R51	and	R52	

Overview	of	mi&ga&on	schemes	
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Vlasov	treatment	-	a	kine&c	model	
•  ParBcle	tracking:	straigheorward,	subject	to	numerical	noise	(posing	computaBonal	load).	
•  Vlasov	method:	more	efficient	in	numerical	simulaBon,	free	from	numerical	noise.	

•  Vlasov	equaBon	+	single-parBcle	equaBons	of	moBon:	

4	S.	Heifets	et	al.,	PRSTAB	5,	064401	(2002).	
Z.	Huang	and	K.	Kim,	PRSTAB	5,	074401	(2002)	
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Including	verEcal	bending	is	parBcularly	useful	for	recirculaBon	machines		
because	such	lakces	usually	contain	spreader	and	recombiner	parts.	
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Vlasov	treatment	-	a	kine&c	model	

•  LinearizaBon	of	Vlasov	equaBon	
•  Transform	this	problem	into	frequency	domain	

–  modulaBon	of	a	bunch	(i.e.	bunching	factor)	is	Fourier	component	of	its	bunch	distribuBon	

•  Track	the	evoluBon	of	the	bunching	factor,	which	is	used	to	characterize	MBI	
•  Take	into	account	the	relevant	collecBve	effects	(impedances)	

5	TUOAB02	

Vlasov	equaBon	

Linearized	Vlasov	equaBon	
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    Next, we apply the standard perturbation technique by assuming f = f0 + f1  where

 f1 ≪ f0 , in order to obtain the linearized Vlasov equation for f1 , due to the wakefield 
effect. We further consider a sinusoidal dependence of the small perturbed quantity, i.e. 
f1 x0,θ x0, y0,θ y0, z0,δ ;s( ) = fk x0,θ x0, y0,θ y0,δ ;s( )eikz0 . Using the method of characteristics 

to solve this linearized equation and introducing the definition gk (s) as a complex 
bunching factor (here k is the wavenumber, defined as k = 2π λ  where λ  is the 
modulation wavelength before compression),   

 
gk (s) = dx0 dθ x0 dy0 dθ y0 dδ 0 fke

− ikC (s ) R51(s )x0+R52 (s )θx 0+R53 (s )y0+R54 (s )θy0+R56 (s )δ0⎡⎣ ⎤⎦
−∞

∞

∫  
 

 
with C(s) = 1

1−hR56 (s )  defined as the compression factor. 
 
By substituting the explicit expression of f = f0 + f1  into Eq. (1) and keeping only the 
linear term of f1 , the linearized Vlaosv equation can be rewritten as a general form of 
Volterra integral equation in terms of gk (s) [18], 
 

gk (s) = gk
(0)(s)+ K(s, s ')gk (s ')ds '0

s

∫  
(3) 

 
where gk

(0)(s) is the bunching factor in the absence of wakefield effect and the kernel 
function K is 
 

K(s, s ') = ik
γ
I(s)
IA

C(s ')R56 (s '→ s)Z kC(s '), s '( )× [Landau damping]

= ikrenb
γ

C(s)C(s ')R56 (s '→ s)Z kC(s '), s '( )× [Landau damping]
 

(4) 

 
where I(s) is the beam current at s and IA is the Alfven current, and R56 (s '→ s)  is 
 
R56 (s '→ s) = R56 (s)− R56 (s ')+ R51(s ')R52 (s)− R51(s)R52 (s ')

+R53(s ')R54 (s)− R53(s)R54 (s ')  
(5) 

 
Here the Landau damping term can be expressed as 
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Vlasov	treatment	-	a	kine&c	model	
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•  Transform	this	problem	into	frequency	domain	

–  modulaBon	of	a	bunch	(i.e.	bunching	factor)	is	Fourier	component	of	its	bunch	distribuBon	

•  Track	the	evoluBon	of	the	bunching	factor,	which	is	used	to	characterize	MBI	
•  Take	into	account	the	relevant	collecBve	effects	(impedances)	
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					of	parBcular	concern)	
3.	graphical	user	interface	

A	numerical	code	has	been	developed	
for	the	study	and	was	benchmarked	
against	ELEGANT.	See,	for	detail,		
JLAB-TN-14-016	and	JLAB-TN-15-019.	
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In Eq. (6), the terms in the first round bracket indicate the transverse horizontal 
contribution of Landau damping, the terms in the second round bracket the transverse 
vertical contribution, through transverse beam emittances, and the R56 term the 
longitudinal  contribution, through finite energy spread. In Eq. (6), R5i (s, s ')  is defined as 
 

R5i (s, s ') = C(s)R5i (s)−C(s ')R5i (s ')  for i = 1, 2, 3, 4, 6
 

(7) 

 
    The general physical meaning of CSR-induced microbunching can be clarified as 
follows [17]: the density modulation at s '  would induce energy modulation at the same 
location via CSR impedance Z kC(s '), s '( )within an individual dipole, and such energy 
modulation would be subsequently converted into density modulation downstream at s  
through R56 (s '→ s) [see Eq.(4)]. 
  
   The CSR microbunching gain is characterized by the gain function G(s), as the 
magnitude of ratio of complex bunching factor at present location s to the initial bunching 
factor at s = 0 with a given wave number k (or, given a modulation wavelength k = 2π λ
), i.e. 
 
 

 
!G(s,λ) = gk (s) / gk

(0)(s),     and   G(s) = !G(s,λ)
 

(8) 

  
    For later convenience, we also define another useful quantity, 

 
Gf (λ) ≡ G(s = s f ) = !G(s = s f ,λ) , as the gain spectrum at the exit of a lattice. 
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Proceeding to the second order of iterative solutions, the authors of Ref. [17] explored the 
concept of stage gain to quantify the CSR effects at the final compression Gf , i.e. at low 
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1!From Eq. (4), in an individual dipole, the energy modulation is induced via the CSR 
impedance and then could be readily converted to density modulation within the same 
dipole. 
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In Eq. (6), the terms in the first round bracket indicate the transverse horizontal 
contribution of Landau damping, the terms in the second round bracket the transverse 
vertical contribution, through transverse beam emittances, and the R56 term the 
longitudinal  contribution, through finite energy spread. In Eq. (6), R5i (s, s ')  is defined as 
 

R5i (s, s ') = C(s)R5i (s)−C(s ')R5i (s ')  for i = 1, 2, 3, 4, 6
 

(7) 

 
    The general physical meaning of CSR-induced microbunching can be clarified as 
follows [17]: the density modulation at s '  would induce energy modulation at the same 
location via CSR impedance Z kC(s '), s '( )within an individual dipole, and such energy 
modulation would be subsequently converted into density modulation downstream at s  
through R56 (s '→ s) [see Eq.(4)]. 
  
   The CSR microbunching gain is characterized by the gain function G(s), as the 
magnitude of ratio of complex bunching factor at present location s to the initial bunching 
factor at s = 0 with a given wave number k (or, given a modulation wavelength k = 2π λ
), i.e. 
 
 

 
!G(s,λ) = gk (s) / gk

(0)(s),     and   G(s) = !G(s,λ)
 

(8) 

  
    For later convenience, we also define another useful quantity, 

 
Gf (λ) ≡ G(s = s f ) = !G(s = s f ,λ) , as the gain spectrum at the exit of a lattice. 

 
    So far we have outlined the general linearized equation governing the microbunching 
gain in terms of the complex bunching factor [Eq. (3)]. To obtain the gain function G(s) 
in Eq. (8) through the solution of Eq. (3), we can apply numerical integration methods 
[27] to directly solve Eq. (3), as was done in Ref. [18]. As an alternative way, we can 
analytically iterate the same equation from the lowest-order solution (i.e. gk

(0)(s) ) while 
approximate the transport functions Eqs. (5) and (7) in analytical forms provided the 
lattice optics is simple, as was derived in Ref. [17]. Although the analytical approach is 
not exact, the results are satisfactory for the case of three- or four-dipole chicane 
configuration when the central two dipoles are close enough compared with drift sections 
aside and when the intra-dipole1 CSR interaction is negligible. An advantage of the 
analytical solution [17] is that it provides a clear interpretation of the physical process of 
CSR interaction during the beam transport through bunch compressor chicanes. 
Proceeding to the second order of iterative solutions, the authors of Ref. [17] explored the 
concept of stage gain to quantify the CSR effects at the final compression Gf , i.e. at low 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1!From Eq. (4), in an individual dipole, the energy modulation is induced via the CSR 
impedance and then could be readily converted to density modulation within the same 
dipole. 

intrinsic	beam	spread:										{transverse	emiqances}																																			{energy	spread}			

u  Integral	form	of	the	linearized	Vlasov	equaBon:	



Summary	of	mathema&cal	formulas	
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G(s) = gk (s)
gk
(0)(s = 0)

R56 (s '→ s) = R56 (s)− R56 (s ')+
R (s ')R (s) R (s)

(s ')+ R51(s ')R52 (s)− R51(s)R52 (s ')
(s)R (s ')  

56 56 51

+R53(s ')R54 (s)− R53(s)R54 (s ')

R5i (s, s ') = C(s)R5i (s)−C(s ')R5i (s ')  for i = 1, 2, 3, 4, 6
 

u  Integral	form	of	the	linearized	Vlasov	equaBon:	

  R56(s '→ s)

We	aim	to	make	this	relaEve	momentum	compacEon	small	around	isochronous	arc.	
Small																									small																				small	  R56(s '→ s)⇒              K(s,s ')⇒             gk



Linear	op&cs	analysis	

•  Linear	transport	matrix	from	emission	site	(si)	to	receiving	site	(sf)	

•  Consider	the	simplest	case:	{dipole-achromat/straight-dipole}	
•  The	momentum	compacBon	term	

							where	we	have	made	thin-dipole	approximaBon	and	assumed	achromaBcity	of	the		
							in-between	secBon.	
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Linear	op&cs	analysis	

•  Linear	transport	matrix	from	emission	site	(si)	to	receiving	site	(sf)	

•  Consider	the	simplest	case:	{dipole-achromat/straight-dipole}	
•  The	momentum	compacBon	term	

							where	we	have	made	thin-dipole	approximaBon	and	assumed	achromaBcity	of	the		
							in-between	secBon.	
•  Our	goal	is	to	make	the	momentum	compacEon	small	along	isochronous	arc.		
•  Sufficient	condiBons	to	achieve	the	goal:		

–  (1)	small	β	funcBons	are	preferred	within	dipoles		
–  (2)	but	try	to	avoid	small	α	funcBons	within	dipoles	
–  (3)	choose	ψfi	close	to	~π	(or	its	integer	mulBple)	
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Condi&ons	for	CSR	Gain	Suppression	
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(1)	small	β	funcBons	are	preferred	(within	dipoles)		

 
R56 (si → s f ) α ,β,ψ fi( ) ! si−Lb

ρb
2 βiβ f +

siLbα i

ρb
2

β f
βi( )sinψ fi +

siLb
ρb
2

β f
βi( )cosψ fi

⎡
⎣⎢

⎤
⎦⎥
s f

  	
Note :		shaded		area		for R56(si → s f ) < 0.025 m.		More		shaded		area		give		more		flexibility		for		arc		design.
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(1)	small	β	funcBons	are	preferred	(within	dipoles)		
(2)	small	α	funcBons	should	be	avoided	(within	dipoles)	
(3)	choose	ψfi	close	to	~π	(or	its	integer	mulBple)		



Condi&ons	for	CSR	Gain	Suppression	

•  At	the	moment	we	limit	ourselves	to	the	special	case	of		
						{dipole-achromat/straight-dipole}.		
•  The	relaBon	between	the	proposed	condiBons	and	the	suppression	of	MBI	

for	general	beamline	lakce	sBll	needs	further	invesBgaBon.	
•  A	heurisBc	connecBon	comes	from	our	previous	work	on	mulB-stage	

behavior	of	MBI:	the	microbunching	gain	always	develops	and	gets	
amplified	from	lower-stage	interacBons.	
–  MOP087,	FEL	15;	TUICLH2034,	ERL	Workshop	2015	

•  Work	is	underway.	

10	
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Examples	

•  Below	we	examine	the	proposed	condiBons	by	the	following	two	sets	of	
comparaBve	example	lakces.	

Example	1	 Example	2	 Example	3	 Example	4	

ψfi	descripBon	 (see	next	slides)	 ~0 or ~ π 
between	dipoles	

~ π/2 
between	dipoles	

~0 or ~ π 
between	dipoles	

R56	descripBon	 larger	R56	
global	isochronous	

smaller	R56	
local	isochronous	

larger	R56	
local	isochronous	

smaller	R56	
local	isochronous	
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resultant CSR-induced microbunching gains for the two 1.3 GeV high-energy transport 
arcs are shown in Figs. 2-5. Figures 2 and 4 demonstrate the evolution of the gain 
function G(s) from direct solutions for three different modulation wavelengths. One can 
see in Fig. 2 the shorter wavelengths enhance the Landau damping through Eq. (6) while 
the longer wavelengths feature negligible CSR effect. Figures 3 and 5 show the gain 
spectra Gf (λ)  [Eq. (8)] and Gf

(M )(λ)  [Eq. (11)] at the exits of the lattices as a function of 
modulation wavelength λ , from which one can obviously see the difference: at beam 
current Ib ≈ 65 A the maximum gain of Example 1 reaches around 300 while for Example 
2 the gain is all around unity (i.e. almost no gain), so Example 1 is much more vulnerable 
to CSR effect while Example 2 is not. 
 
    To validate our results obtained from the direct solutions as well as iterative solutions, 
we benchmarked some specific cases by ELEGANT tracking. We note here that, because 
of very high gain for Example 1 lattice, particle tracking simulation (e.g. ELEGANT) 
indeed poses a big challenge for microbunching gain calculation: the initially imposed 
density modulation needs to be small enough so that the assumption of the linearized 
Vlasov equation is valid while such modulation requires to be large enough to surpass 
numerical noises. Later, we would see a similar but more severe situation occurred in our 
last example, MEIC CCR (see discussion below). After a systematic scan of various 
numerical parameters has been done and procedures have been established for obtaining 
convergent and solid results of the microbunching gain analyses from ELEGANT, we 
achieved good agreement of the results between our semi-analytical approaches and 
ELEGANT tracking [24]. For the two example lattices, both the gain functions and 
spectra from ELEGANT show good agreement with our results (see dots in Figs. 2-5). 
From the numerical iterative approach in Eq. (10), we also find an interesting feature of 
microbunching gain in the two example arcs: in contrast to the two-stage amplification 
exhibited in a typical three- or four-dipole bunch compressor chicane [19], the CSR-
induced microbunching gain here in the high energy transport arcs (each consisting of 24 
dipoles) requires up to 6th stage amplification, as shown in Figs. 3 and 5. 
 
 
TABLE 1. Initial beam and Twiss parameters for the two 1.3 GeV high-energy transport 
arcs 
 
Name Example 1 

(large R56) 
Example 2 
(small R56) 

Unit 

Beam energy 1.3 1.3 GeV 
Beam current 65.5 65.5 A 
Normalized emittance 0.3 0.3 µm 
Initial beta function 35.81 65.0 m 
Initial alpha function 0 0  
Relative energy spread (uncorrelated) 1.23 × 10-5 1.23 × 10-5  
Chirp 0 0 m-1 
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Example	1	 Example	2	

large	R56	
global	isochronous	

small	R56	
local	isochronous	
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Example	2:	good	εnx	preserva&on,	good	gain	suppression	

avoid	small	
|α|	funcBon	

β	funcBons	as		
small	as	possible	

phase	difference		
close	to	mπ	
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emiqance	grows	up	

14	TUOAB02	

Example	1:	bad	εnx	preserva&on,	bad	gain	suppression   �
Example	2:	good	εnx	preserva&on,	good	gain	suppression	
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Example	1:	bad	εnx	preserva&on,	bad	gain	suppression   �
Example	2:	good	εnx	preserva&on,	good	gain	suppression	



Ø  Microbunching	gain	spectrum	at	the	end	of	the	arc		
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large	CSR	gain	 CSR	gain	≈	1	

Ø  Microbunching	gain	development	along	the	arc	

15	

Example	1:	bad	εnx	preserva&on,	bad	gain	suppression   �
Example	2:	good	εnx	preserva&on,	good	gain	suppression	

Up	to	70M	macroparBcles	are	used	for	pELEGANT	tracking	for	Example	1.		
Each	dot	in	Gf	even	takes	several	hours	awer	careful	numerical	convergence	is	obtained.	



Example	3	&	4:	mid-energy	recircula&on	arcs	

Name	 Example	3	 Example	4	 Unit	

beam	energy	 150	 120	 MeV	

chirp	 0	 0	 m-1	

bunch	current	(peak)	 80	 80	 A	

normalized	emiqance	(H/V)	 0.4/0.4	 0.4/0.4	 μm	

relaBve	rms	energy	spread	 1.33	×	10-5	 1.33	×	10-5	
	

rms	bunch	length	 ~2.5	 ~2.5	 ps	

bending	radius	 1.5	 0.5	 m	

S.	Di	Mitri,	PRSTAB	17,	074401	(2014)	

The initial current profile is parabolic and the peak
current is 65 A. We generated the initial beam with a
fractional energy spread ≈0.2% at 150 MeV, linearly
correlated with the longitudinal coordinate along the bunch
(linear energy chirp). Such energy spread is taken into
account by the ELEGANT code to compute optical
chromatic aberrations. The initial slice energy spread is
approximately the total one divided by the number of slices.
With 150 slices, the slice energy spread turns out to be
≈2 × 10−3 × 1.5 × 105 keV=150 ≅ 2 keV, a value consis-
tent with the incoherent energy spread in Table I. Thus, we
need to bin the bunched beam in at least 150 slices to
investigate the incoherent heating induced by IBS in the
presence of the aforementioned energy chirp. We actually
chose the conservative value of 300 slices in ELEGANT
and 5000 particles per slice. The input charge distribution
was generated in ELEGANT and properly smoothed in the
six-dimensional phase space to reduce the numerical
sampling noise [3].
The incoherent energy spread induced by IBS along the

FODO channel is shown in Fig. 3. Its final rms value,
averaged over the bunch slices, is 4.5 keV for the sliced
beam and 6.0 keV for the unsliced one. Such a discrepancy
is due to the nonuniform heating of the sliced beam because
of the lower charge density at the bunch edges. The
simulations confirm that the bunch length remains sub-
stantially unchanged in the presence of IBS (not shown).
The IBS transverse and longitudinal growth rate is shown in
Fig. 4. In agreement with the low IBS transverse growth
rate, the beam transverse emittances change by less than
0.01 μm due to momenta transfer. A similarly negligible
effect is also from optical aberrations (not shown). By
scaling the sliced beam result with Eq. (3), we estimate a
FODO channel as long as ∼100 m to achieve
σE;IBS ∼ 10 keV. At this point, the scheme would start
having a large impact on the machine design and cost.
Alternatively, while keeping the 30 m long FODO channel,

a beam charge density ∼4 times higher than in Table I
should be provided, which seems to be out of the horizon of
present facilities. We can therefore conclude that a rela-
tively compact single-pass low-beta FODO channel could
only about double the incoherent energy spread of typical
high brightness electron beams produced by nowadays
photoinjectors. This is not sufficient for best performance
of x-ray FELs, although it might be suitable, e.g., for longer
wavelength FELs driven by shorter linacs, lower peak
current and/or requiring weaker magnetic compression than
in FERMI and LCLS, i.e., having a lower MBI gain.

IV. RECIRCULATING IBS

As an alternative to the single-pass FODO channel, we
investigated a recirculating IBS beam line (RIBS) to
cumulate a larger σE;IBS and minimize the impact on the
total linac length. The bunch is injected into and extracted
from the RIBS by fast kicker magnets. After M turns into
the RIBS, the beam has passed through a low-beta FODO
channel 2Mþ 1 times. A sketch of the RIBS at 150 MeV
with realistic sizes is shown in Fig. 5. The two arcs
are a copy of the design by Douglas et al. [35]. In the
present arrangement, the arcs are achromatic and quasi-
isochronous (R56 ¼ 2 × 10−4 m, T566 ¼ 4 × 10−3 m) and
connected to the FODO channels by matching sections
made of additional quadrupole magnets. An ultrarelativistic
bunch takes approximately 360 ns to make one turn in the
RIBS. Kickers with rise and fall time pulse duration of a
few tens of nanosecond are therefore adequate for our
purposes.
Beam dynamics in RIBS was studied with the

ELEGANT code, testing several initial beam charges in
the range 100–500 pC. The initial beam parameters were
defined according to the aforementioned scaling rule with
beam charge, for the transverse emittance and the bunch
length. As an example, we show in Fig. 6(a) 150 MeV,

FIG. 5. Schematic layout of the recirculating IBS beam line (not to scale).

INTRABEAM SCATTERING IN HIGH BRIGHTNESS … Phys. Rev. ST Accel. Beams 17, 074401 (2014)
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Example	3:	good	εnx	preserva&on,	bad	gain	suppression   �
Example	4:	good	εnx	preserva&on,	good	gain	suppression	
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avoid	small	
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Example	3:	good	εnx	preserva&on,	bad	gain	suppression   �
Example	4:	good	εnx	preserva&on,	good	gain	suppression	
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Example	3:	good	εnx	preserva&on,	bad	gain	suppression   �
Example	4:	good	εnx	preserva&on,	good	gain	suppression	



Ø  Microbunching	gain	development	along	the	arc	

Ø  Microbunching	gain	spectrum	at	the	end	of	the	arc		

0 50 100 150 2000

5

10

15

h (µm)

G
f

0 50 100 150 2000

0.5

1

1.5

2

h (µm)

G
f

Example	3	 Example	4	

moderate	CSR	gain	 CSR	gain	≈	1	
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Example	3:	good	εnx	preserva&on,	bad	gain	suppression   �
Example	4:	good	εnx	preserva&on,	good	gain	suppression	



Outline	

q  IntroducBon	and	Overview	
q  TheoreBcal	formulaBon	of	CSR	microbunching	in	a	single-pass	system	
q  CondiBons	for	CSR	microbunching	gain	suppression	
q  Examples	
q  Summary	and	Conclusion	
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Example	1	 Example	2	 Example	3	 Example	4	

ψfi	descripBon	 ~0 or ~ π 
between	dipoles	

~ π/2 
between	dipoles	

~0 or ~ π 
between	dipoles	

R56	descripBon	 larger	R56	
global	isochronous	

smaller	R56	
local	isochronous	

larger	R56	
local	isochronous	

smaller	R56	
local	isochronous	

transverse	emiqance	 bad	 good	 good	 good	

longitudinal	
microbunching	gain	

bad	 good	 bad	 good	

                           
! "## $##

                           
! "## $##



Summary	and	Conclusion	

ü  Transverse:	emiqance	growth;	Longitudinal:	MB	gain	enhancement	
ü  Linear	Vlasov	solver	for	study	of	MBI	for	general	linear	beamline	lakces	
ü  Sufficient	condiBons	for	CSR	microbunching	suppression	

Ø  prefer	small	β	(within	dipoles)	
Ø  avoid	small	α (within	dipoles)	
Ø  keep	ψ	close	to	mπ 	(between	dipoles) 

ü  IllustraBon	of	two	sets	of	comparaBve	examples	to	confirm	the	condiBons	
ü  OpBcs	impact	on	microbunching	development	
ü  More	systemaBc	study	under	way	

TUOAB02	 20	
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