A   B   C   D   E   F   G   H   I   K   L   M   N   O   P   Q   R   S   T   U   V   W    

electron

                                                                
Paper Title Other Keywords Page
MOYCH01 The TESLA XFEL Project linac, photon, undulator, laser 11
 
  • H. Weise
    DESY, Hamburg
  The overall layout of the X-Ray FEL to be built in international collaboration at DESY will be described. This includes the envisaged operation parameters for the linear accelerator which will use TESLA technology. Main emphasis is put on the specification of the superconducting accelerator modules. Other linac components will be described as well. Work packages needed to finalize the linac design will be presented. A summary of the status of the preparation work will be given.  
Video of talk
Transparencies
 
MOYCH02 Physics Challenges for ERL Light Sources linac, emittance, brightness, synchrotron 16
 
  • L. Merminga
    Jefferson Lab, Newport News, Virginia
  We present an overview of the physics challenges encountered in the design and operation of Energy Recovering Linac (ERL) based light sources. These challenges include the generation and preservation of low emittance, high-average current beams, manipulating and preserving the transverse and longitudinal phase space, control of the multipass beam breakup instability, efficient extraction of higher order mode power and RF control and stability of the superconducting cavities. These key R&D issues drive the design and technology choices for proposed ERL light sources. Simulations and calculations of these processes will be presented and compared with experimental data obtained at the Jefferson Lab FEL Upgrade, a 10 mA ERL light source presently in commissioning, and during a 1 GeV demonstration of energy recovery at CEBAF.  
Video of talk
Transparencies
 
MOYCH03 Superconducting RF Cavities for Synchrotron Light Sources damping, storage-ring, insertion, synchrotron 21
 
  • P. Marchand
    SOLEIL, Gif-sur-Yvette
  Superconducting (sc) RF systems are already operational or planned in several third generation synchrotron light sources. In these machines, which require relatively low RF accelerating voltage and high beam loading, the advantage of using the sc technology essentially resides in the fact that one can achieve an efficient damping of the cavity Higher Order Modes (HOM) while still maintaining a high fundamental shunt impedance. The strong HOM damping practically is realised following two approaches : a) use of absorber material, located inside the cavity tube cut-off, through which the HOM propagate and then are damped (Cornell/KEK designs); b) two-cell cavity with coaxial HOM dampers located on the tube connecting the two cells (SOLEIL design). Third harmonic idle sc cavities (1.5 GHz) of the SOLEIL type are already operational in the Swiss Light Source and ELETTRA. The main RF system (500 MHz) of these machines consist of normal conducting cavities and the purpose of the third harmonic sc system is to lengthen the bunches in order to improve the beam lifetime and stability (additional Landau damping). Recently, several third generation synchrotron light sources have also planned to use sc cavities as main accelerating RF systems. The operational conditions of the existing systems as well as the status of the planned ones are reported here.  
Video of talk
Transparencies
 
MOZCH01 Technologies for Electron-positron Linear Colliders linear-collider, collider, luminosity, klystron 26
 
  • S.D. Holmes
    Fermilab, Batavia, Illinois
  High energy electron-positron Linear Collider designs based on room temperature and superconducting technologies have been developed and are currently under consideration by the International Technology Recommendation Panel. This paper will review the requirements and state of development of technologies required to support a linear collider meeting the performance goals outlined by the world high energy physics community. In addition it will summarize the cold/warm comparative study completed in the U.S. with particular emphasis on unique aspects related to availability and risk analysis.  
Video of talk
Transparencies
 
MOPKF005 Preliminary Results on a Low Emittance Gun Based on Field Emission cathode, emittance, gun, free-electron-laser 306
 
  • R. Ganter, A.E. Candel, M. Dehler, G.J. Gobrecht, C. Gough, S.C. Leemann, K.L. Li, M. Paraliev, M. Pedrozzi, J.-Y. Raguin, L. Rivkin, V. Schlott, L. Schulz, A. Streun, A. Wrulich
    PSI, Villigen
  The development of a new electron gun with the lowest possible emittance would help reducing the total length and cost of a free electron laser. Recent progresses in vacuum nanoelectronics make field emitter arrays (FEAs) an attractive technology to explore for high brightness sources. Indeed, several thousands of microscopic tips can be deposited on a 1 mm diameter area. Electrons are then extracted by a first grid layer close to tip apex and focused by a second grid layer one micrometer above the tip apex. The typical aperture diameter of this focusing layer is also in the range of one micrometer. The big challenge with FEA, is to achieve good emission homogeneity, we hope to achieve this with diverse conditioning techniques. However if we can achieve a low emittance with FEAs another challenge will be to preserve the emittance during the beam acceleration.  
 
MOPKF008 The BESSY Soft X-ray FEL User Facility undulator, photon, simulation, laser 312
 
  • D. Krämer
    BESSY GmbH, Berlin
  A FEL User Facility for the VUV to soft X-ray spectral range is planned at the BESSY site based on a cascaded HGHG-FEL scheme. Simultaneous operation of 3 - later 5 - FELs fed by a superconducting 2.3 GeV CW linac generates most flexible pulse structures for experiments, while the seeding scheme utilizing Ti:Sa fs-lasers results in ultrashort reproducible circular polarized FEL pulses on a shot to shot basis at a pulse-duration < 20 fs. Peak brilliances in the 1·1031 ph/(s mm2 mrad2 0.1% bw)-regime are feasible. All necessary hardware for the FEL is within existing technology. Future upgrade options, e.g. a superconducting photoinjector, seeding with short wavelength HHG lasers of about 1 fs pulse duration have been considered. A status on the design aspects is given.  
 
MOPKF009 Photoinjector Studies for the BESSY Soft X-ray FEL gun, emittance, linac, focusing 315
 
  • F. Marhauser
    BESSY GmbH, Berlin
  A linac driven soft X-Ray FEL facility has been proposed at BESSY with the aim to produce high brilliance photon beams within the energy range of 20eV to 1keV. The driver linac is based on superconducting (sc) L-Band rf-technolgy to enable cw operation of the FEL. As the electron beam emittance directly influence the photon beam characteristics, transverse slice emittances of 1.5pimmmrad are envisaged as a target goal. This demands for a high brilliance laser driven photoinjector rf-gun as electron source. For the first years of operation it is intended to use well known normal conducting (nc) L-Band rf-gun technology thereby restricting the macropulse repetition rate to 1 kHz to cope with the thermal power dissipation. At a later stage the nc rf-gun shall be replaced by a sc rf-gun, which is favoured conceptually as it allows to generate outmost flexible bunch patterns according to the needs of the experiments by fully exploiting the capabilities of the sc linac. This paper details the design considerations for a high power nc rf-gun complemented by results of beam dynamic studies up to the exit of the booster linac using ASTRA. Perspectives for the use of a sc photoinjector gun cavity are addressed.  
 
MOPKF010 The Output Performance of the BESSY Multi-stage HGHG-FEL bunching, undulator, polarization, laser 318
 
  • A. Meseck, M. Abo-Bakr, B.C. Kuske
    BESSY GmbH, Berlin
  The BESSY soft X-ray FEL is planned as a High Gain Harmonic Generatio(HGHG) FEL multi-user facility covering the VUV to soft X-ray spectral range(0.02 keV - 1. keV). A photoinjector and a superconducting 2.3GeV CW linac will feed three independent HGHG-FEL-lines. As the efficiency of the interaction between the radiation and the electron beam is higher in a helical undulator, one would tend to prefer such a device for the HGHG scheme. Also a higher K-value of the modulators seems to be advantageous. This is not necessarily the case. We present simulation studies for the BESSY-HGHG-FELs and discuss the output performance for ‘‘helical stages'' and increased K value of the modulators.  
 
MOPKF011 Output Variability of the BESSY Soft X-ray FEL bunching, radiation, undulator, simulation 321
 
  • A. Meseck, M. Abo-Bakr, B.C. Kuske
    BESSY GmbH, Berlin
  The BESSY soft X-ray FEL is planned as a High Gain Harmonic Generation HGHG) FEL multi-user facility covering the VUV to soft X-ray spectral rang(0.02 keV - 1 keV). A photoinjector and a superconducting $2.3\,GeV$ CW linac will feed three independent HGHG-FEL-lines. Depending on the optimisation criteria, it is possible to obtain either maximum output power or pure spectrum from the same HGHG-line. We present simulation studies for the BESSY-HGHG-FELs and discuss the possible variability of the output performance.  
 
MOPKF013 The Influence of the Main Coupler Field on the Transverse Emittance of a Superconducting RF Gun gun, emittance, linac, pick-up 327
 
  • D. Janssen
    FZR, Dresden
  • M. Dohlus
    DESY, Hamburg
  For the Rossendorf superconducting RF gun project the influence of the additional RF field, created in the cavity by the RF power flow at the main coupler, is discussed. One end of the gun cavity is occupied by the cathode insert, so all flanges are concentrated on the other end. In the "flange plane" of the cavity two HOM coupler, the pic up and the main coupler are located. If we normalize the RF field in the cavity by the condition Eacc = 25MV/m and assume a beam power of 10kW (CW mode), we obtain an quality factor Qext = 2.2*10**7. A three dimensional field calculation using the MAFIA code, gives the field perturbation near the main coupler. Tracking calculation with ASTRA show,that this perturbation increases the transversel emittance between 1 and 4%, nearly independent from the bunch charge. This result shows, that for average beam powers in the vicinity of 10kW effects, connected with the assymetric input of RF power can be neglected.  
 
MOPKF014 Emittance Compensation of a Superconducting RF Photoelectron Gun by a Magnetic RF Field emittance, cathode, gun, superconducting-RF 330
 
  • D. Janssen
    FZR, Dresden
  • V. Volkov
    BINP SB RAS, Novosibirsk
  For compensation of transverse emittance in normal conducting RF photoelectron guns a static magnetic field is applied. In superconducting RF guns the application of a static magnetic field is impossible. Therefore we put instead of a static field a magnetic RF field (TE - mode) together with the corresponding accelerating mode into the superconducting cavity of the RF gun. For a 3 _ cell cavity of the superconducting gun with frequencies f = 1.3GHz for the accelerating mode and f = 3.9 GHz for the magnetic mode and a bunch charge of 1 nC a transversal emittance of 0.5 mm mrad has been obtained. In this case the maximal field strength on the axis were Ez = 50 MV/m for the accelerating mode and Bz = 0.34 T for the magnetic mode.(This corresponds to Bs(max) = 0.22T on the surface of the cavity). Possibilities for the technical realization (input of RF power for the TE mode, tuning of two frequencies in one cavity, phase stability) are discussed.  
 
MOPKF015 A Superconducting Photo-Injector with 3+1/2- Cell Cavity for the ELBE Linac gun, cathode, laser, pick-up 333
 
  • J. Teichert, H. Buettig, P. Evtushenko, D. Janssen, U. Lehnert, P. Michel, Ch. Schneider
    FZR, Dresden
  • W.-D. Lehmann
    IfE, Dresden
  • J. Stephan
    IKST, Drsden
  • V. Volkov
    BINP SB RAS, Novosibirsk
  • I. Will
    MBI, Berlin
  After successful tests of an SRF gun with a superconducting half-cell cavity [*], a new SRF photo-injector for CW operation at the ELBE linac has been designed. In this report the design layout of the SRF photo-injector, the parameters of the superconducting cavity and the expected electron beam parameters are presented. The SRF gun has a 31/2-cell niobium cavity working at 1.3 MHz and will be operated at 2 K. The three full cells have TESLA-like shapes. In the half-cell the photocathode is situated which will be cooled by liquid nitrogen.

* D. Janssen et. al., First operation of a superconducting RF-gun, Nucl. Instr. and Meth. A507(2003)314

 
 
MOPKF020 Proposal for a Sub-100 fs Electron Bunch Arrival-time Monitor for the VUV-FEL at DESY laser, polarization, simulation, undulator 345
 
  • H. Schlarb, S. Düsterer, J. Feldhaus, J. Hauschildt, R. Ischebeck, K. Ludwig, B. Schmidt, P. Schmüser, S. Simrock, B. Steffen, F. Van den Berghe, A. Winter
    DESY, Hamburg
  • P.H. Bucksbaum, A. Cavalieri, D. Fritz, S. Lee, D. Reis
    Michigan University, Ann Arbor, Michigan
  For pump-probe experiments at the VUV-Free Electron Laser at DESY, an external optical laser system will be installed, capable of delivering ultra-short pulses of high intensity. The laser pulses with a center wavelength of 800 nm are synchronized with the VUV-FEL beam which covers the wavelength range between 6 nm and 80 nm. The expected pulse durations are typically 100 fs FWHM or below. For high-resolution pump-probe experiments a precise knowledge of the time difference between both pulses is mandatory. In this paper we describe the layout and the design of a high-precision electron bunch arrival time monitor based on an electro-optic technique. We present the numerical results of simulations that include: the laser propagation in a specifically designed demanding optical system, the laser transport through a 150 m long optical fibre, the electro-optically induced effect in different types of crystals and for different electron bunch shapes as well as the effects of wake fields on the co-propagating electric-fields and their impact on the observable signals.  
 
MOPKF022 Commissioning of the VUV-FEL Injector at TTF emittance, gun, laser, simulation 351
 
  • S. Schreiber
    DESY, Hamburg
  The VUV-FEL at the TESLA Test Facility (TTF) at DESY is being upgraded to an FEL user facility serving high brilliance beams in the wavelength range from the VUV to soft X-rays. The photoinjector has been redesigned to meet the more demanding beam parameters in terms of transverse emittance, peak current, and energy spread. The first phase of the injector upgrade has been finished in spring 2004. We report on its commissioning, including first measurements of beam parameters.  
 
MOPKF026 Conditioning and High Power Test of the RF Guns at PITZ gun, cathode, vacuum, klystron 357
 
  • J.H. Han, K. Abrahamyan, J. Bähr, H.-J. Grabosch, M. Krasilnikov, D. Lipka, V. Miltchev, A. Oppelt, B. Petrosyan, D. Pose, L. Staykov, F. Stephan
    DESY Zeuthen, Zeuthen
  • I. Bohnet, J.-P. Carneiro, K. Floettmann, S. Schreiber
    DESY, Hamburg
  • M.V. Hartrott, R. Richter
    BESSY GmbH, Berlin
  • P. Michelato, L. Monaco, D. Sertore
    INFN/LASA, Segrate (MI)
  This paper describes the recent results of conditioning and high power tests of the photocathode RF guns at the Photo Injector Test Facility at DESY Zeuthen (PITZ). For successful operation of high gain SASE FELs, high phase space density of the electron beam is required. A high gradient in the gun has to be applied to improve the quality of the space charge dominated beams. In addition, long RF pulses and high repetition rate should be achieved to provide a high average power of FEL radiation. The first PITZ RF gun has been successfully tested at a mean power of 27 kW (900μseconds, 10 Hz, and 3 MW) and has been installed at the VUV-FEL at DESY Hamburg. Another RF gun has been installed at PITZ in January 2004 and is being conditioned for high power tests. The dark current behavior for various cathodes and for all operating schemes is also presented.  
 
MOPKF027 Optimizing the PITZ Electron Source for the VUV-FEL emittance, laser, simulation, cathode 360
 
  • M. Krasilnikov, J. Bähr, U. Gensch, H.-J. Grabosch, J.H. Han, D. Lipka, V. Miltchev, A. Oppelt, B. Petrosyan, D. Pose, L. Staykov, F. Stephan
    DESY Zeuthen, Zeuthen
  • K. Abrahamyan
    YerPhI, Yerevan
  • W. Ackermann, R. Cee, W.F.O. Müller, S. Setzer, T. Weiland
    TEMF, Darmstadt
  • G. Asova, G. Dimitrov, I. Tsakov
    INRNE, Sofia
  • I. Bohnet, J.-P. Carneiro, K. Floettmann, S. Riemann, S. Schreiber
    DESY, Hamburg
  • M.V. Hartrott, E. Jaeschke, D. Krämer, R. Richter
    BESSY GmbH, Berlin
  • P. Michelato, L. Monaco, C. Pagani, D. Sertore
    INFN/LASA, Segrate (MI)
  • J. Rossbach
    Uni HH, Hamburg
  • W. Sandner, I. Will
    MBI, Berlin
  The goal of the Photo Injector Test Facility at DESY Zeuthen (PITZ) is to test and optimize electron sources for Free Electron Lasers and future linear colliders. At the end of 2003 the first stage of PITZ (PITZ1) has been successfully completed, resulting in the installation of the PITZ RF gun at the Vacuum Ultra Violet - Free Electron Laser (VUV-FEL) at DESY Hamburg. The main results achieved during the PITZ1 extensive measurement program are discussed in this paper. A minimum normalized beam emittance of about 1.5 pi mm mrad for 1 nC electron bunch charge has been reached by optimizing numerous photo injector parameters, e.g. longitudinal and transverse profiles of the photocathode laser, RF phase, main and bucking solenoid current. The second stage of PITZ (PITZ2), being a large extension of the facility and its research program, has started now. Recent progress on the PITZ2 developments will be reported as well.  
 
MOPKF029 Seeding High Gain Harmonic Generation with Laser Harmonics produced in Gases simulation, undulator 363
 
  • G. Lambert, B. Carré, M.-E. Couprie, D. Garzella
    CEA/Saclay, Gif-sur-Yvette
  • A. Doria, L. Giannessi
    ENEA C.R. Frascati, Frascati (Roma)
  • T. Hara, H. Kitamura, T. Shintake
    RIKEN Spring-8 Harima, Hyogo
  Free electron lasers employing High Gain Harmonic Generation (HGHG) schemes are very promising coherent light sources for the soft X-ray regime. They offer both transverse and longitudinal coherence, inversely to Self Amplified Spontaneous Emission schemes, where the longitudinal coherence is limited. We propose here to seed HGHG with high harmonics produced by a Ti:Sa femtosecond laser focused on a gas jet, tuneable in the 100-10 nm spectral region. Specifities concerning the implementation of this particular laser source as a seed for HGHG are investigated. Theoretical ad numerical calculations (using PERSEO in particular) are given, for the cases of the SCSS and ARC-EN-CIEL projects.  
 
MOPKF030 "ARC-EN-CIEL" a Proposal for a 4th Generation Light Source in France laser, radiation, gun, linac 366
 
  • M.-E. Couprie, D. Garzella, B. Gilquin, P. Monot, L. Nahon
    CEA/DSM, Gif-sur-Yvette
  • O.V. Chubar, A. Loulergue
    SOLEIL, Gif-sur-Yvette
  • M. Desmons, M. Jablonka, F. Meot, A. Mosnier
    CEA/DSM/DAPNIA, Gif-sur-Yvette
  • J.-R. Marquès
    LULI, Palaiseaux
  • J.-M. Ortega
    LURE, Orsay
  • A. Rousse
    LOA, Palaiseau
  An accelerator based 4th generation source is proposed to provide the user community with coherent femtosecond light pulses in the UV to X ray range. The project is based on a CW 700 MeV superconducting linac delivering high charge, subpicosecond, low emittance electron bunches with high repetition rate. This facility allows for testing High Gain Harmonic Generation seeded with high harmonics in gases, as well as the standard SASE mode, covering a spectral range down to 0.8 nm and 5 nm respectively. In addition, two beam loops are foreseen to increase the beam current in using the energy recovery technique. They will accommodate undulators for the production of femtosecond synchrotron radiation in the IR, VUV and X ray ranges together with a FEL oscillator in the 10 nm range.  
 
MOPKF035 Stabilization of the Pulsed Regimes on Storage Ring Free Electron Laser: The Cases of Super-ACO and Elettra laser, feedback, storage-ring, undulator 381
 
  • C. Bruni, D. Garzella, G. Lambert, G.L. Orlandi
    LURE, Orsay
  • E. Allaria, R. Meucci
    INOA, Firenze
  • S. Bielawski
    PhLAM/CERCLA, Villeneuve d'Ascq Cedex
  • M.-E. Couprie
    CEA/DSM, Gif-sur-Yvette
  • M. Danailov, G. De Ninno, B. Diviacco, M. Trovò
    ELETTRA, Basovizza, Trieste
  • D. Fanelli
    KTH/NADA, Stockholm
  • L. Giannessi
    ENEA C.R. Frascati, Frascati (Roma)
  In a Storage Ring Free Electron Laser (SRFEL) a relativistic electron beam interacts with the magnetostatic periodic field of an undulator, thus emitting synchrotron radiation. The light is stored in an optical cavity and amplified during successive turns of the particles in the ring. The laser intensity may appear as a "continuous wave (cw)" or show a stable pulsed behaviour depending on the value of the temporal detuning, i.e. the difference between the electron beam revolution period and the round trip of the photons in the cavity. It was recently shown, that the loss of stability in a SRFEL occurs through an Hopf bifurcation [*]. This observation opens up the perspective of introducing a derivative self-controlled feedback to suppress locally the bifurcation and enlarge the region of stable signal. A feedback of this type has been implemented on Super-ACO and shown to produce a significant and reproducible extension of the stable "cw" region. We review here these results and discuss new experiments performed on the Super-ACO and ELETTRA SRFELs.

* G. De Ninno and D. Fanelli, Phys. Rev. Lett. in press; M.E. Couprie et al. Nucl. Instrum.and Meth. A., in press

 
 
MOPKF036 Wideband Infrared FEL undulator, vacuum, laser, simulation 384
 
  • J.-M. Ortega, F. Glotin, R. Prazeres
    LURE, Orsay
  The infrared free-electron laser offers the advantage of a potential large tunability since the FEL gain itself remains subtantially high throughout the infrared spectral range, provided that the electron beam quality remains sufficient at low energy. Moreover, the reflectivity of metal mirrors used in the optical cavity remains close to unity from the near infrared up to the microwave range. The main limitation comes from the diffraction of the optical beam due to the finite size of the vacuum chamber of the undulator and other optical cavity elements. The undulator magnetic gap, and thus magnetic chamber inner heigth, cannot be made arbitrarily large since one needs a K parameter sufficiently large to produce a large wavength tunability (typically K > 2). The diffraction losses can however be further reduced by using an elliptical vacuum chamber inside the undulator and elliptical, instead of spherical, mirrors. Then the optical beam is partially guided inside the chamber. Working in this regime at CLIO, we have obtained an FEL tunable from 3 to 120 μm by operating the accelerator between 50 and 14 MeV. This is the largest spectral range ever obtained with a single optical cavity. We plan to use larger mirrors to further reduce the diffraction produced at the edges of the undulator chambers in order to increase the maximum wavelength to approximately 200 μm  
 
MOPKF037 FERMI@ELETTRA: 100 nm - 10 nm Single Pass FEL User Facility linac, undulator, radiation, laser 387
 
  • R.J. Bakker, C. Bocchetta, P. Craievich, G. D'Auria, M. Danailov, G. De Ninno, S. Di Mitri, B. Diviacco, G. Pangon, L. Rumiz, L. Tosi, V. Verzilov, D. Zangrando
    ELETTRA, Basovizza, Trieste
  The FERMI@ELETTRA project is an initiative from ELETTRA, INFM and other Italian institutes, to construct a single-pass FEL user-facility for the wavelength range from 100 nm (12 eV) to 10 nm (124 eV), to be located next to the third-generation synchrotron radiation facility ELETTRA in Trieste, Italy. The project is concentrated around the existing 1.2-GeV S-band linac, i.e., the injector for the storage ring. Presently the linac is only operational for approximately 2 hours per day. The remaining time is available for the construction and operation of an FEL but modifications and operation must be planned such that operation of the storage ring can be guaranteed until the completion of a new full-energy injector (spring 2006). At this moment the FEL project evolves from a conceptional design stage towards a technical design and the actual implementation. Key issues are: incorporation of the free-electron laser in the infrastructure of the Sincrotrone Trieste, adjustments of the linac to facilitate FEL operation, required additional civil engineering, undulator design, FEL seeding options, and beamline design. This paper serves as an overview of the project in combination with a discussion of the critical issues involved.  
 
MOPKF039 The ELETTRA Superconducting Wiggler dynamic-aperture, wiggler, insertion, insertion-device 390
 
  • L. Tosi, C. Knapic, D. Zangrando
    ELETTRA, Basovizza, Trieste
  A 3.5 Tesla 64 mm period superconducting wiggler has been installed in the ELETTRA storage ring as a photon source for a future X-ray diffraction beamline. After several technological upgrades, a series of measurements were carried out to characterize the device and its effects on the electron beam, such as optics distortion and dynamic aperture. A description of the upgrades and measurements are presented.  
 
MOPKF040 Effect of Electron-beam Feedbacks on the ELETTRA Storage-ring Free-electron Laser feedback, laser, free-electron-laser, storage-ring 393
 
  • M. Trovò, D. Bulfone, M. Danailov, G. De Ninno, B. Diviacco, V. Forchi', M. Lonza
    ELETTRA, Basovizza, Trieste
  • L. Giannessi
    ENEA C.R. Frascati, Frascati (Roma)
  As is well known, the stability of a storage-ring free-electron laser is strongly related to that of the electron beam. With respect to second-generation devices, such as Super ACO and UVSOR, the free-electron laser at ELETTRA is characterized by a noticeably higher gain and, consequently, shows to be much more sensitive to electron-beam instabilities. In order to counteract the impact of such instabilities, both a longitudinal multibunch and a local orbit feedbacks have been implemented for free-electron laser operation. Aim of this paper is to report on the beneficial effect of these feedback systems on the laser performance.  
 
MOPKF043 An Ultra-high Brightness, High Duty Factor, Superconducting RF Photoinjector emittance, brightness, gun, simulation 402
 
  • M. Ferrario
    INFN/LNF, Frascati (Roma)
  • J. Rosenzweig
    UCLA, Los Angeles, California
  • J. Sekutowicz
    DESY, Hamburg
  Recent advances in superconducting rf technology, and an improved understanding of rf photoinjector design optimization make if possible to propose a specific design for a superconducting rf gun which can simultaneously produce both ultra-high peak brightness, and high average current. Such a device may prove to be a critical component of next generation x-ray sources such as self-amplified spontaneous emission free-electron lasers (SASE FEL) and energy recovery linac (ERL) based systems. The design presented is scaled from the present state-of-the-art normal conducting rf photoinjector that has been studied in the context of the LCLS SASE FEL. Issues specific to the superconducing rf photoinjector, such as accelerating gradient limit, rf cavity design, and compatibility with magnetic focusing and laser excitation of a photocathode, are discussed.  
 
MOPKF045 Cesium Telluride and Metals Photoelectron Thermal Emittance Measurements Using a Time-of-flight Spectrometer emittance, laser, cathode, gun 408
 
  • D. Sertore, D. Favia, P. Michelato, L. Monaco, P. Pierini
    INFN/LASA, Segrate (MI)
  The thermal emittance of photoemitted electrons in an RF gun is a crucial parameter for short wavelength FELs and future high luminosity electron colliders. An estimate of the thermal emittance of semiconductor and metal samples, commonly used as photocathodes, has been assessed using a Time-Of-Flight spectrometer. In this paper we present the analysis, based on angle resolved photoemission measurements, of both the cesium telluride (Cs2Te) photocathode films as used at the TESLA Test Facility, and polycrystalline metals. These latter measurements, at different laser wavelengths, are used to validate both our experimental apparatus and the thermal emittance reconstruction technique developed.  
 
MOPKF046 Photoelectron RF Gun Designed as a Single Cell Cavity gun, linac, emittance, cathode 411
 
  • H. Dewa, T. Asaka, H. Hanaki, T. Kobayashi, A. Mizuno, S. Suzuki, T. Taniuchi, H. Tomizawa, K. Yanagida
    JASRI/SPring-8, Hyogo
  • J. Sasabe
    Hamamatsu Photonics K.K., Hamakita, Shizuoka
  • M. Uesaka
    UTNL, Ibaraki
  The paper describes the recent improvements of S-band RF-gun at SPring-8. The cavity of the gun is a single-cell pillbox, and the copper inner wall is used as a cathode. The electron beam from the cathode was accelerated up to 4.1 MeV at an electric field of 175 MV/m. For emittance compensation, two solenoid magnets were used. A 3m linac and a quadrupole scan emittance diagnostic were added after the RF-gun. The beam energy spread and beam emittance after the linac is presented. The beam emittance measured with quadrupole scan is compered to that measured with double slits just after the RF-gun. For high quantum efficiency, Cs2Te cathode was also tested. It is vacuum sealed in a cartridge-type electric tube and four tubes can be installed in a vacuum chamber behind the cavity. Although the quantum efficiency after RF conditioning for two hours to achieve 90MV/m was 3%, it decreased to 1% after the 28 hours RF conditioning.  
 
MOPKF054 Generation of Femtosecond Electron Pulses cathode, simulation, radiation, linac 431
 
  • S. Rimjaem, V. Jinamoon, K. Kusoljariyakul, J. Saisut, C. Thongbai, T. Vilaithong
    FNRF, Chiang Mai
  • S. Chumphongphan
    Mae Fah Luang University, Chiang Rai
  • M.W. Rhodes, P. Wichaisirimongkol
    IST, Chiang Mai
  • H. Wiedemann
    SLAC/SSRL, Menlo Park, California
  Femtosecond electron pulses have become an interesting tool for basic and applied applications, especially in time-resolved experiments and dynamic studies of biomolecules. Intense, coherent radiation can be generated in a broad far-infrared spectrum with intensities, which are many orders of magnitude higher than conventional sources including synchrotron radiation sources. At the Fast Neutron Research Facility (FNRF), Chiangmai University (Thailand), the SURIYA project has been established with the aim to produce femtosecond pulses utilizing a combination of a S-band thermionic rf-gun and an alpha-magnet as the magnetic bunch compressor. A specially designed rf-gun has been constructed to obtain the optimum beam characteristics for best bunch compression. Simulation results show that the bunch lengths as short as 50 fs rms can be expected at the experimental station. This rf- gun, an alpha-magnet and a 20 MeV linac with beam transport system were installed and are being commissioned to generate femtosecond electron bunches. To measure the bunch length of the electron pulses, a Michelson interferometer will be used to observe the spectrum of coherent FIR transition radiation via optical autocorrelation. The main results of numerical simulations and experimental results will be discussed in this paper.  
 
MOPKF056 Injector Design for the 4GLS Energy Recovery Linac Prototype laser, booster, emittance, cathode 437
 
  • C. Gerth, F.E. Hannon
    CCLRC/DL/ASTeC, Daresbury, Warrington, Cheshire
  Daresbury Laboratory has been given funding for the construction of an Energy Recovery Linac Prototype (ERLP) that operates at a target electron beam energy of 35 MeV and drives an IR oscillator FEL. The ERLP serves as a test-bed for the study of beam dynamics and accelerator technology important for the design and construction of the proposed 4th Generation Light Source (4GLS). A key component of the ERLP is a high-brightness injector. The injector consists of a DC photocathode gun, which is currently being built at Daresbury Laboratory and based on the design of the gun for the IR demonstrator FEL at Thomas Jefferson National Accelerator Facility. The gun section is followed by a conventional buncher cavity, a super-conducting booster and a transfer line to the main linac. In this paper, the design of the ERLP injector is discussed. The performance of the injector has been studied using the particle tracking code ASTRA.  
 
MOPKF061 Optics Layout for the ERL Prototype at Daresbury Laboratory linac, extraction, injection, beam-transport 449
 
  • B.D. Muratori, H.L. Owen, J.A. Varley
    CCLRC/DL/ASTeC, Daresbury, Warrington, Cheshire
  The overall optics for the Energy Recovery Linac Prototype (ERLP) at Daresbury Laboratory is summarised. This includes the layout of the injector line, all chicanes used, as well as details of both the outward and return TBA arcs. The tunability in several sections of the machine is examined under different operational modes and starting parameters from the end of the booster to the dump.  
 
MOPKF063 4GLS and the Prototype Energy Recovery Linac Project at Daresbury linac, gun, booster, brightness 455
 
  • M.W. Poole, E.A. Seddon
    CCLRC/DL/ASTeC, Daresbury, Warrington, Cheshire
  The 4GLS project is a novel next generation solution for a UK national light source proposed to be sited at Daresbury. It is based on an energy recovery linac (ERL) operating at high average beam currents up to 100mA and with compression schemes producing pulses in the 10-100 fs range. This would provide a unique spontaneous emission source with high average brightness output both from undulators and bending magnets. In addition to this operating regime a high peak current mode would also be possible at lower duty cycle, enabling a high gain FEL amplifier to generate XUV radiation. Longer wavelength FELs are also planned. This challenging accelerator technology, new to Europe, necessitates a significant R&D programme and as a major part of this a low energy prototype, the ERLP, is being constructed at Daresbury. The paper summarises the ERLP design specification, describes the component solutions adopted and explains the 4GLS project status and plans.  
 
MOPKF064 Design Considerations for a Helical Undulator for the Production of Polarised Positrons for TESLA undulator, photon, positron, permanent-magnet 458
 
  • D.J. Scott, S.C. Appleton, J.A. Clarke, B. Todd
    CCLRC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • E. Baynham, T.W. Bradshaw, S.C. Carr, Y. Ivanyushenkov, J. Rochford
    CCLRC/RAL/ASTeC, Chilton, Didcot, Oxon
  An efficient and simple method for the production of positrons, in the necessary quantities, is one of the problems facing proposals for any future e+ e- Linear Collider project. The possibility of colliding polarised beams would also be an advantage. One method to produce a polarised positron beam uses circularly polarised radiation generated by the main electron beam passing through a helical undulator. Design considerations and calculations for two undulators, based on super-conducting and pure permanent magnet technologies, for the TESLA machine, are presented.  
 
MOPKF065 Magnet Block Sorting for Variably Polarising Undulators undulator, insertion-device, simulation, insertion 461
 
  • D.J. Scott
    CCLRC/DL/ASTeC, Daresbury, Warrington, Cheshire
  Effective sorting of permanent magnet blocks for undulators can reduce the adverse effects of magnetic in-homogeneities and engineering tolerances on the electron beam. For variably polarising undulators the number of different modes of operation make defining the objective function of a particular permutation more difficult than for a planar device. Factors required in defining a good objective function for a new APPLE-II type helical undulator for the SRS are discussed. These factors include calculating the magnetic field integrals, the particle trajectory and rms optical phase error. The effects of different weighting of these functions in the objective function are also discussed. A comparison of different optimisation techniques, including simulated annealing and Monte Carlo methods is also made.  
 
MOPKF066 Magnetic Design of a Focusing Undulator for ALPHA-X undulator, focusing, permanent-magnet, quadrupole 464
 
  • B.J.A. Shepherd, J.A. Clarke
    CCLRC/DL/ASTeC, Daresbury, Warrington, Cheshire
  ALPHA-X is a four-year project shared between several research groups in the UK to build a laser-plasma accelerator and produce coherent short-wavelength radiation in an FEL. The FEL undulator will be a 1.5m long, 100 period permanent magnet device with a minimum gap of 3.5mm and a peak field of 0.7T. To focus the beam inside the undulator, several schemes were examined. In the scheme that was selected, the magnet blocks are designed so that the pole face is an approximation of a parabola. This focuses the beam horizontally and vertically. The magnetic design of the undulator is complete; design of the support structure is well under way. Test pieces have been built to ensure that the clamping arrangement is strong enough to cope with the magnetic forces involved. The complete undulator will be built in late 2004 at Daresbury Laboratory, and tested on-site in the new magnet test facility.  
 
MOPKF072 Towards Attosecond X-ray Pulses from the FEL laser, wiggler, radiation, lattice 482
 
  • A. Zholents, J.M. Byrd, W. Fawley, Z. Hao, M.C. Martin, D. Robin, F. Sannibale, R.W. Schoenlein, M. Venturini, M.S. Zolotorev
    LBNL, Berkeley, California
  The ability to study ultrafast phenomena has been recently advanced by the demonstrated production and measurement of a single, 650-attosecond, soft x-ray pulses precisely synchronized to the pump laser pulse consisted of just few optical cycles. The next frontier is a production of attosecond x-ray pulses at even shorter wavelengths. Here we propose the method of ?seeded attosecond x-ray radiation? where an isolated, attosecond duration, short-wavelength x-ray pulse is radiated by electrons selected by their previous interaction with a few-cycle, intense laser pulse. In principle this method allows excellent synchronization between the attosecond x-ray probe pulse and a pump source that can be the same few-cycle laser pulse or another signal derived from it.  
 
MOPKF073 Design Study of the Bending Sections between Harmonic Cascade FEL Stages sextupole, dipole, quadrupole, simulation 485
 
  • W. Wan, J.N. Corlett, W. Fawley, A. Zholents
    LBNL, Berkeley, California
  The present design of LUX (linac based ultra-fast X-ray facility) includes a harmonic cascade FEL chain to generate coherent EUV and soft X-ray radiation. Four cascade stages, each consisting of two undulators acting as a modulator and a radiator, respectively, are envisioned to produce photons of approximate wavelengths 48 nm, 12 nm, 4 nm and 1 nm. Bending sections may be placed between the modulator and the radiator of each stage to adjust and maintain bunching of the electrons, to separate, in space, photons of different wavelengths and to optimize the use of real estate. In this note, the conceptual design of such a bending section, which may be used at all four stages, is presented. Preliminary tracking results show that it is possible to maintain bunch structure of nm length scale in the presence of errors, provided that there is adequate orbit correction and there are 2 families of trim quads and trim skew quads, respectively, in each bending section.  
 
MOPKF074 Harmonic Cascade FEL Designs for LUX laser, undulator, radiation, simulation 488
 
  • G. Penn, J.N. Corlett, W. Fawley, M. Reinsch, W. Wan, J.S. Wurtele, A. Zholents
    LBNL, Berkeley, California
  LUX is a proposed facility for ultrafast X-ray science, based on an electron beam accelerated to GeV energies in a recirculating linac. Included in the design are short duration (200 fs or shorter FWHM) light sources using multiple stages of higher harmonic generation, seeded by a 190–250 nm laser of similar duration. This laser modulates the energy of a group of electrons within the electron bunch; this section of the electron bunch then produces radiation at a higher harmonic after entering a second, differently tuned undulator. Repeated stages in a cascade yield increasing photon energies up to 1 keV. Most of the undulators in the cascade operate in the low-gain FEL regime. Harmonic cascades have been designed for each pass of the recirculating linac up to a final electron beam energy of 3.1 GeV. For a given cascade, the photon energy can be selected over a wide range by varying the seed laser frequency and the field strength in the undulators. We present simulation results using the codes GENESIS and GINGER, as well as the results of analytical models which predict FEL performance. We discuss lattice considerations pertinent for harmonic cascade FELs, as well as sensitivity studies and requirements on the electron beam.  
 
MOPKF077 Reducing the Synchrotron Radiation on RF Cavity Surfaces in an Energy-recovery Linac radiation, synchrotron, synchrotron-radiation, linac 494
 
  • G. Hoffstaetter, M. Liepe, T. Tanabe
    Cornell University, Laboratory for Elementary-Particle Physics, Ithaca, New York
  In Energy Recovery Linac (ERL) light sources, a high energy, high current beam has to be bend into a superconducting linac to be decelerated. The synchrotron radiation produced in the last bending magnet before the linac shines into the superconducting structures if not collimated appropriately. Due to the length of the linac, the radiation cannot be completely guided through the superconducting structure, as in existing SRF storage rings. For the example of an ERL extension to the existing CESR storage ring at Cornell we estimate the magnitude of this problem by quantifying the heat load that can be accepted on a superconducting surface and by analyzing how much radiation is deposited on the cavity surfaces for different collimation schemes.  
 
MOPKF078 ERL Upgrade of an Existing X-ray Facility: CHESS at CESR linac, emittance, optics, undulator 497
 
  • G. Hoffstaetter, M. Liepe, R.M. Talman, M. Tigner
    Cornell University, Laboratory for Elementary-Particle Physics, Ithaca, New York
  • I. Bazarov, H. Bilderback, M. Billing, S. Gruner, D. Sagan, C.K. Sinclair
    Cornell University, Department of Physics, Ithaca, New York
  CORNELL has proposed an Energy-Recovery Linac (ERL) based synchrotron-light facility which can provide improved x-ray radiation due to the high beam quality that can be available from a linac. To additionally utilize beam currents that are competitive with ring-based light sources, the linac has to operate with the novel technique of energy recovery, the feasibility of which CORNELL plans to demonstrate in a downscaled prototype ERL. Here we present an ERL upgrade of the existing 2nd generation light source CHESS at CESR. This proposed upgrade suggests how existing storage rings can be extended to ERL light sources with much improved beam qualities.  
 
MOPKF080 Controlling Emittance Growth in an FEL Beam Conditioner emittance, undulator, quadrupole, lattice 503
 
  • P. Emma, G.V. Stupakov
    SLAC, Menlo Park, California
  It has been proposed [*] to 'condition' an electron beam prior to the undulator of a Free-Electron Laser (FEL) by increasing each particle's energy in proportion to the square of its transverse betatron amplitude. This conditioning enhances FEL gain by reducing the axial velocity spread within the electron bunch. Previosly [**] we presented a system that allows conditioning of the beam on a relatively short distance, however, it suffers from projected beam emittance growth to the extent that makes it impractical for application for X-ray FELs. In this paper we extend analysis proposed by A. Wolski for general requirements to the conditioner which does not have such emittance growth. We also present a possible implementation of a beam conditioner consisting of multiple solenoid cells in combination with quadrupole magnets. Simulations show that in such a system the emittance growth can be suppressed to acceptable level, albeit in a longer system.

* A. Sessler et al., Phys. Rev. Lett., 68, 309 (1992).** P. Emma and G. Stupakov. PRSTAB, 6, 030701 (2003).

 
 
MOPKF083 Inverse Free Electron Laser Heater for the LCLS laser, undulator, linac, gun 512
 
  • R. Carr, L.D. Bentson, P. Bolton, D. Dowell, P. Emma, A. Gilevich, Z. Huang, J.J. Welch, J. Wu
    SLAC, Menlo Park, California
  The LCLS Free Electron Laser employs an RF photocathode gun that yields a 1 nC charge bunch a few picoseconds long, which must be further compressed to yield the high current required for SASE gain. The very cold electron beam from the RF photocathode gun is quite sensitive to microbunching instabilities such as coherent synchrotron radiation (CSR) in the compressor chicanes and longitudinal space charge (LSC) in the linac. These effects can be Landau damped by adding energy spread to the electron bunch prior to compression. We propose to do this by interacting an infrared laser beam with the electron bunch in an undulator added to the LCLS gun-to-linac injector. The undulator is placed in a 4-bend chicane to allow the IR laser beam to propagate co-linearly with the e-beam while it oscillates in the undulator. The IR laser beam is derived from the photocathode gun laser. Simulations presented elsewhere in these proceedings show that the laser interaction damps the microbunching instabilities to a very great extent. This paper is a description of the implementation of the laser heater  
 
MOPKF084 Beam Instabilities in Lepton Ring of eRHIC lepton, impedance, positron, ion 515
 
  • D. Wang, M. Farkhondeh, C. Tschalaer, J. Van der Laan, F. Wang, A. Zolfaghari, T. Zwart
    MIT/BLAC, Middleton, Massachusetts
  • M. Blaskiewicz, Y. Luo, L. Wang
    BNL, Upton, Long Island, New York
  The eRHIC is a high luminosity lepton-hadron collider planned to be built in Brookhaven National Lab, Upton, New York, USA. The lepton machine of eRHIC is a completely newly designed machine complex to provide highly polarized lepton beams at up to 10 GeV energy for the high luminosity lepton-hadron collisions. This paper decribes major issues of collective effects in this lepton storage ring. Besides conventional impedance-driven instabilities, the electron cloud effects in positron operation and fast beam-ion effects in electron operation are of major conserns. The analytical and numerical estimats for major collective effects are made with different machine operation conditions.  
 
MOPKF085 Design Optimizations of X-ray FEL Facility at MIT linac, laser, simulation, gun 518
 
  • D. Wang, M. Farkhondeh, W. Graves, J. Van der Laan, F. Wang, T. Zwart
    MIT/BLAC, Middleton, Massachusetts
  • P. Emma
    SLAC, Menlo Park, California
  MIT is exploring the construction of a linac-based x-ray laser user facility on the campus of the Bates Linear Accelerator Center. The facility under consideration would span the wavelength range from 100 to 0.3 nm in the fundamental, move into the hard X-ray region in the third harmonic, and preserve the possibility of an upgrade to even shorter wavelengths. The accelerator configuration would include a high brightness electron gun, a superconducting electron linac and multiple undulators and beam lines to support a growing user community. This paper will present the recent progress on the start-to-end simulations including the parameter optimizations and sensativity analysis.  
 
MOPLT001 Acceleration of Electrons by Spatially Modulated Laser Wave acceleration, laser, vacuum, injection 527
 
  • R.A. Melikian, M.L. Petrosyan, V.S. Pogosyan
    YerPhI, Yerevan
  We study the acceleration of electrons in a system of linearly polarized laser wave, propagating at small angles to the direction of electron motion. The parameters of electron bunch and laser wave are chosen so, that during driving electrons in a band of a wave, the electric field of a wave has not changed the direction. The requirements of deriving of maximum rate of acceleration are found depending on parameters of electronic bunch and laser wave. It is shown, that the dependence of growth of electrons energy from number of light bands has nonlinear character. The influence of light diffraction on process of acceleration is considered. It is shown, that the discussed scheme of acceleration allows a possibility of deriving of high acceleration rate owing to existence of modern powerful lasers.  
 
MOPLT023 Electron Model of an FFAG Muon Accelerator acceleration, lattice, resonance, simulation 587
 
  • E. Keil
    CERN, Geneva
  • J.S. Berg
    BNL, Upton, Long Island, New York
  • A. Sessler
    LBNL, Berkeley, California
  Parameters are derived for the lattice and RF system of electron models of a non-scaling FFAG ring for accelerating muons. The models accelerate electrons from about 10 to about 20 MeV, and have circumferences between 10 and 17 m. Magnet types and dimensions, spacings, half apertures, about 12~mm by 20~mm,and number of cells are presented. The magnetic components are compared to existing magnets. The tune variation with momentum covers several integers, similar to that in a full machine, and allows the study of resonance crossing. The consequences of misaligned magnets are studied by simulation. The lattices are designed such that transition is at about 15 MeV. The variation of orbit length with momentum is less than 36~mm, and allows the study of acceleration outside a bucket. A 100~mm straight section, in each of the cells, is adequately long for an RF cavity operating at 3 GHz. Hamiltonian dynamics in longitudinal phase space close to transition is used to calculate the accelerating voltage needed. Acceleration is studied by simulation. Practical RF system design issues, e.g. RF power, and beam loading are estimated.  
 
MOPLT039 QCD Explorer Based on LHC and CLIC-1 proton, luminosity, emittance, simulation 632
 
  • F. Zimmermann, D. Schulte
    CERN, Geneva
  Colliding 7-TeV LHC super-bunches with 75-GeV CLIC bunch trains can provide electron-proton collisions at very high centre-of-mass energies, opening up a new window into QCD. At the same time, this QCD explorer would employ several key components required for both an LHC upgrade and CLIC. We here present a possible parameter set of such a machine, study the consequences of the collision for both beams, and estimate the attainable luminosity.  
 
MOPLT041 Production of Superconducting Accelerator Modules for High Current Electron Storage Rings storage-ring, vacuum, instrumentation, damping 638
 
  • M. Pekeler, S. Bauer, B. Griep, M. Knaak, H.P. Vogel, P. vom Stein
    ACCEL, Bergisch Gladbach
  For Diamond Light Source, ACCEL was awarded to produce three more superconducting 500 MHz accelerator modules of the Cornell CESR design. With the already 6 modules produced for Cornell, NSRRC and CLS, this module can now be considered as a kind of standard product. In this paper we describe the basic parameters and guaranteed values of this module and will also report on the performance of delivered modules.  
 
MOPLT052 Emittance Growth and Beam Lifetime Limitations due to Beam-beam Effects in e+e- Storage Ring Colliders emittance, beam-beam-effects, luminosity, factory 668
 
  • J. Gao
    LAL, Orsay
  In this paper we give analytical expressions for the maximum beam-beam parameter and related beam-beam limited beam lifetime in e+e- storage ring colliders. After analysing the performances of existing or existed machines, we make some discussions on the parameter choice for the Super-B factory design.  
 
MOPLT061 Design Study for Advanced Acceleration Experiments and Monochromatic X-ray Production @ SPARC laser, photon, plasma, acceleration 695
 
  • L. Serafini, S. Cialdi, R. Pozzoli, M. Romé
    INFN-Milano, Milano
  • D. Alesini, S. Bertolucci, M.E. Biagini, C. Biscari, R. Boni, M. Boscolo, M. Castellano, A. Clozza, G. Di Pirro, A. Drago, A. Esposito, M. Ferrario, V. Fusco, A. Gallo, A. Ghigo, S. Guiducci, M. Incurvati, C. Ligi, F. Marcellini, M.  Migliorati, C. Milardi, L. Palumbo, L. Pellegrino, M.A. Preger, P. Raimondi, R. Ricci, C. Sanelli, M. Serio, F. Sgamma, B. Spataro, A. Stecchi, A. Stella, F. Tazzioli, C. Vaccarezza, M. Vescovi, C. Vicario, M. Zobov
    INFN/LNF, Frascati (Roma)
  • F. Alessandria, A. Bacci, F. Broggi, C. De Martinis, D. Giove, M. Mauri
    INFN/LASA, Segrate (MI)
  • R. Bonifacio, I. Boscolo, C. Maroli, V. Petrillo, N. Piovella
    Universita' degli Studi di Milano, MILANO
  • A. Mostacci
    Rome University La Sapienza, Roma
  We present a design study for an upgrade of the SPARC photo-injector system, whose main aim is the construction of an advanced beam test facility for conducting experiments on high gradient plasma acceleration and for the generation of monochromatic X-ray beams to be used in advanced medical applications and condensed matter physics studies. Main components of the proposed plan of upgrade are: two additional beam lines with interaction regions for synchronized high brightness electron and high intensity photon beams and the upgrade of the SPARC Ti:Sa laser system to reach a multi-TW power level (in excess of 1 J in pulse energy). Results of numerical simulations modeling the interaction of the SPARC electron beam and the counter-propagating laser beam are presented with detailed discussion of the monochromatic X-ray beam spectra generated by Compton backscattering: X-ray energies are tunable in the range 20 to 500 keV, with pulse duration from sub-ps to 30 ps. Preliminary simulations of plasma acceleration of the SPARC electron beam, generated in ultra-short bunches, via the LWF mechanism and with external injection are also shown: experiments of self-injection are also foreseen and illustrated.  
 
MOPLT062 The Design of a Prototype RF Compressor for High Brightness Electron Beams bunching, RF-structure, extraction, injection 698
 
  • D. Giove, F. Alessandria, A. Bacci, C. De Martinis, M. Mauri
    INFN/LASA, Segrate (MI)
  • D. Alesini, M. Ferrario, A. Gallo, F. Marcellini
    INFN/LNF, Frascati (Roma)
  • L. Serafini
    INFN-Milano, Milano
  The generation of sub-ps electron bunches with low transverse emittance at nC charge level is a crucial requirement in the design of injectors for short wavelength FEL's. The technique of velocity bunching has been by now experimentally proven in various laboratories, where bunches below the ps bunch length were obtained: however, preservation of a low transverse emittance after the bunch compression is still to be demonstrated. To this aim, the use a slow wave RF structure as a rectilinear compressor has been proposed in the past to overcome the inherent difficulties of magnetic compressors. In this paper we will review the work carried out in the last 2 years and focused on the design a RF compressor based on a 3 GHz slow-wave copper structure. The rationale of the conceptual design along with a description of the main experimental activities will be presented and the future application of such a scheme to the SPARC project will be discussed.  
 
MOPLT067 KEKB Performance luminosity, injection, vacuum, positron 707
 
  • Y. Funakoshi, K. Akai, K. Ebihara, K. Egawa, A. Enomoto, J. Flanagan, H. Fukuma, K.  Furukawa, T. Furuya, J. Haba, S. Hiramatsu, T. Ieiri, N. Iida, H. Ikeda, T. Kageyama, S. Kamada, T. Kamitani, S. Kato, M. Kikuchi, E. Kikutani, H. Koiso, M. Masuzawa, T. Mimashi, A. Morita, T. Nakamura, H. Nakayama, Y. Ogawa, K. Ohmi, Y. Ohnishi, N. Ohuchi, K. Oide, M. Shimada, S. Stanic, M. Suetake, Y. Suetsugu, T. Sugimura, T. Suwada, M. Tawada, M. Tejima, M. Tobiyama, S. Uehara, S. Uno, S.S. Win, N. Yamamoto, Y. Yamamoto, Y. Yano, K. Yokoyama, M. Yoshida, M. Yoshida, S.I. Yoshimoto
    KEK, Ibaraki
  • F. Zimmermann
    CERN, Geneva
  The KEKB B-Factory is an electron-positron double ring collider working at KEK. Its peak luminosity surpassed 1034 /cm2/sec in May 2003 for the first time in the history of colliders. In this report, we summarize the history of KEKB with an emphasis of recent progress.  
 
MOPLT072 Effects of Positrons on Relativistic Solitons in Laser-Plasma Interactions ion, positron, plasma, laser 719
 
  • J.B.  Kim, I.S. Ko
    POSTECH, Pohang, Kyungbuk
  • H. Suk
    KERI, Changwon
  An extended 1D kinetic model of relativistic solitons by high power lasers in three species plasmas is suggested and it is applied to analysis on the effects of electron-positron pairs on the solitons. Stability condition of the solitons is derived. The range of parameters for the stable solitons are specified in the frequency-temperature plane. With the creation of electron-positron pairs, relativistic solitons appear stable in wider range of frequencies and temperatures. The regions are expanded toward higher values in overall ranges in the frequency-temperature plane. The stability conditions are affected by the density of positrons. The variation of shapes, peak E-field, and width of the solitons by varying the positron density are analyzed. We discuss the implications of the variation in the soliton on the ion accelerations by it.  
 
MOPLT073 Picosecond High Voltage Switching for Pulsed DC Acceleration laser, acceleration, plasma, pulsed-power 722
 
  • J. Hendriks, G.J.H. Brussaard
    TUE, Eindhoven
  Laser wakefield acceleration promises the production of high energy electrons from table-top accelerators. External injection of a (low energy) electron bunch into a laser wakefield requires acceleration gradients of the order GV/m. In principle DC acceleration can achieve GV/m acceleration gradients. If high voltage pulses of the order MV can be switched with picosecond precision, the performance of such an accelerator would be greatly enhanced and even multistage DC acceleration would become feasible. Presently risetime and jitter of high voltage pulses in high voltage laser triggered spark gaps are limited to the nanosecond regime by the initial stochastic breakdown process in the gap. A way to overcome this limitation is to create a line focus between the electrodes with an intensity above 1018 W/m2 using a high power femtosecond Ti:Sapphire laser. Because of the instantaneous ionization and high degree of ionization in the plasma channel, picosecond switching precision can be achieved and jitter is reduced significantly. A spark gap test setup with 3 mm interelectrode distance has been build and the first measurements have been done. Femtosecond diagnostics for characterization of the laser induced plasma and electro-optic diagnostics for the high voltage pulse have been developed.  
 
MOPLT075 Ideal Waterbag Electron Bunches from an RF Photogun acceleration, emittance, cathode, simulation 725
 
  • O.J. Luiten, M.J. Van der Wiel, S.B. van der Geer
    TUE, Eindhoven
  • F. Kiewiet
    FOM Rijnhuizen, Nieuwegein
  • M.J. de Loos
    PP, Soest
  With the implementation of fs mode-locked Ti:Sapphire lasers in high-gradient RF photoguns, a new charged particle acceleration regime has emerged, the so-called pancake regime. Pancake bunches have by definition a restframe length which is much smaller than the bunch radius. This geometry allows a relatively simple, but effective analytical description of the space-charge dominated, critical initial part of the acceleration trajectory. In high-gradient RF photoguns the pancake regime can be relevant up to several MeV. The general opinion is that extremely short bunches should be avoided during the initial stages of the acceleration process, because high space charge densities are always detrimental to the final beam quality. We show that this is not necessarily true: shorter bunches may even lead to better beams.  
 
MOPLT088 Experimental Plasma Wake-field Acceleration Project at the VEPP-5 Injection Complex plasma, acceleration, injection, positron 740
 
  • A.V. Petrenko, A. Burdakov, A.M. Kudryavtsev, P.V. Logatchev, K.V. Lotov, A.N. Skrinsky
    BINP SB RAS, Novosibirsk
  The project of an experimental facility based on the VEPP-5 injection complex is described. Due to a good quality of electron or positron beams and special beam preparation system, the facility opens several possibilities for studies of the plasma wakefield acceleration: high peak beam currents, arbitrary beam profiles, long term beam-plasma interaction (up to the full driver depletion), and precise beam diagnostics. Various wakefield regimes can be experimentally demonstrated and studied: the efficient blow-out regime with a low energy spread and high acceleration rate (up to several GeV per meter); multibunch regime; long bunch instabilities; beam self-organization in plasma; plasma lens. If successfully realized, this experiment becomes a solid argument for feasibility of a high-energy collider based upon the plasma wakefield acceleration.  
 
MOPLT089 SOS-diode Based Pulser for the Injection System of the Collider VEPP-2000 injection, kicker, collider, positron 743
 
  • F.V. Podgorny, B.I. Grishanov, A.S. Kasaev
    BINP SB RAS, Novosibirsk
  We describe high voltage pulsers for supplying of kickers of the collider VEPP-2000 injection system. The high voltage pulse is formed as a result of a sharp break of a high current, accumulated previously in storage elements, by means SOS-diode. Pulse forming lines or inductances could be used as the storage elements. The generators form the quasi-rectangular pulses on the 50-Ohm load. The generator scheme is described also.  
 
MOPLT091 Accelerator Physics Issues of the VEPP-4M at Low Energy luminosity, polarization, wiggler, diagnostics 749
 
  • V.V. Smaluk
    BINP SB RAS, Novosibirsk
  The VEPP-4M electron-positron collider is being prepared for a new high-energy physics run in the 1.5 - 2.0 GeV energy range. During the first run (2001-2002), precision mass measurements of the J/psi and psi' mesons using the KEDR detector have been carried out with a record accuracy. To provide high performance, efforts for investigation and further development of the machine have been done. The most important results are described. A record absolute accuracy of energy measurement was achieved using the resonant depolarization method. A possibility to use this method for the absolute energy calibration in tau-lepton mass measurements is studied. For the first time, the Moeller polarimeter based on an internal polarized gas jet target has been developed and successfully used at the VEPP-3 booster storage ring. A system of energy measurement using Compton back-scattering has been put into operation. To increase the machine luminosity, operation with dipole wigglers is studied, and a project of turn-by-turn feedback system to suppress beam instabilities has been started. For beam diagnostics, a multi-anode photomultiplier tube and a white light coronograph were installed. The VEPP-4M operation experience with the longitudinal magnetic field within the KEDR detector is also described.  
 
MOPLT099 NSC KIPT Accelerator on Nuclear and high Energy Physics quadrupole, dipole, target, injection 761
 
  • I.S. Guk, A. Dovbnya, S.G. Kononenko, A.S. Tarasenko
    NSC/KIPT, Kharkov
  • J.I.M. Botman, M.J. Van der Wiel
    TUE, Eindhoven
  One of the main reasons for the outflow of experts in nuclear physics and adjacent areas of science from Ukraine is the absence of modern accelerating facilities, for conducting research in the present fields of interest worldwide in this area of knowledge. A qualitatively new level of research can be achieved by the construction of a new generation accelerator applying the latest developments in the field of electron beam acceleration, in particular on the basis of superconducting accelerating structures of the TESLA type. Such structures may be used for continuous, polarized electron beams, which is crucial e.g. for thin(?) experiments checking modern theoretical models of interactions of nuclear substance, and for beams with high current and extremely short pulses for research in free electron laser and neutron physics. Such a facility will create an opportunity for carrying out research representing the interest of scientists from other countries, which will promote the integration of Ukrainian science into European and worldwide research.  
 
MOPLT100 Magnetic Structure of the NSC KIPT Nuclear-and-high-energy-physics Electron Accelerator storage-ring, injection, quadrupole, dipole 764
 
  • I.S. Guk, A. Dovbnya, S.G. Kononenko, F.A. Peev, A.S. Tarasenko
    NSC/KIPT, Kharkov
  • J.I.M. Botman, M.J. Van der Wiel
    TUE, Eindhoven
  Design options of the magnetic structure of a new proposed accelerator facility at NSC KIPT with a continuous-wave electron beam are described. The accelerator represents a recirculator, based on standard TESLA superconducting accelerating sections in one or two straight sections with a length of 5 or 19 meters. The magnetic system is designed on the basis of the magnetic elements of storage ring EUTERPE, transferred by Eindhoven University to NSC KIPT. The focusing and dispersion functions for several design choices of the magnetic structure are reported. Modeling of the beam movement in the accelerator has been carried out; the beam parameters during acceleration and on accelerator output have been calculated.  
 
MOPLT101 Performances of the Beam Generated by Metal-Dielectric Cathodes in RF Electron Guns cathode, gun, plasma, acceleration 767
 
  • I.V. Khodak, I.V. Khodak, V.A. Kushnir
    NSC/KIPT, Kharkov
  The paper describes results of the experimental research of the metal-dielectric cathode operation in RF electron gun. Application of these cathodes permits RF guns to generate intense beams with nanosecond current pulse duration. Electron beam is extracted from plasma sheath developed during the surface vacuum flashover dielectric. Simulated and experimental parameters of the beam obtained at the single-cavity RF gun output are summarized in the paper. The beam formation and its interaction with microwave field of high strength are analyzed qualitatively. Results are compared with experimental results obtained before in the 1.5-cavity RF electron gun. First experimental results on electron beam generation by the RF gun with a ferroelectric cathode are discussed in the paper.  
 
MOPLT102 To the Problem of Wake-field Excitation for Advanced Accelerator Concept radiation, acceleration, plasma, laser 770
 
  • I.N. Onishchenko, V. Kiselev, A. Linnik, N. Onishchenko, G. Sotnikov
    NSC/KIPT, Kharkov
  • V. Ushkov
    RRC Kurchatov Institute, Moscow
  The advanced accelerator concept to use the wake-fields exited in dielectric by a sequence of electron bunches for high-gradient particle acceleration has been proposed and investigated in [*-***]. Two essential merits are being exploited. First of them [**] is the excitation by a regular sequence of electron bunches that allows superposing coherently the wake-fields excited by each bunch. The second one [***] concludes to multi-mode operation that leads to peaking of the resulting HF-field that is represented by a sequence of spikes of alternative signs with essentially higher amplitude comparatively to only principle mode excitation. The recent works performed in NSC/KIPT on theoretical studies, simulation, and experimental investigations of the wake-fields excitation by a train of 2 MeV electron bunches in a dielectric waveguide are presented. Transition and Cerenkov radiation excited by short bunches in a limited dielectric medium was theoretically investigated. The measurements of wake-fields output power and the electron energy spectrum were experimentally performed.

* W.Gai, P.Schoessow, B.Cole et al. Phys. Rev. Lett. 61, 2756 (1988) ** I.N.Onishchenko, V.A.Kiselev, G.V.Sotnikov et al. Proc. 1995 Particle Accelerator Conf., p. 782-3*** T.B.Zhang, J.L.Hirshfield, T.C.Marshall et al Proc. 1997 Particle Accelerator Conf., V.42, No.3, p.1341

 
 
MOPLT103 Radiation Resistant Magnetic Sensors for Accelerators radiation, permanent-magnet, monitoring, background 773
 
  • I. Bolshakova, R. Holyaka
    LPNU, Lviv
  • S. Kulikov
    JINR, Dubna, Moscow Region
  • M. Kumada
    NIRS, Chiba-shi
  • C. Leroy
    Université de Montréal, Groupe de la Physique des Particules, Montréal, Québec
  The technology of obtaining the radiation resistant magnetic sensors, which characteristics remain stable under the irradiation with high dose of fast neutrons was designed. Radiation resistant sensors are developed on the base of InSb. While irradiation with neutron flux of 1010 n*cm-2*c-1 with energies 0.1…13?MeV, with the thermal neutrons part in the general flux of 20% and intermediate fluxes of 25%, the main sensors’ characteristics, that is their sensitivity to the magnetic field, change no more than for 0.05% up to the fluence of 1*1015 n*cm-2 and no more than for 1% up to the fluence of 3*1016 n*cm-2. Radiation resistant sensors are used for development of magnetic field monitoring system with measuring channels accuracy of 0,01%, which have a function of temperature measurement with the accuracy of 0.1?С at the place of sensor location, moreover, it has self diagnostics and self correction functions. This system passed the long-term testing of continuous 3 months operation at the Neutron Physics Laboratory, JINR, Dubna at the IBR-2 neutron reactor.  
 
MOPLT110 Stochastic Cooling in Barrier Buckets at the Fermilab Recycler pick-up, antiproton, betatron, emittance 794
 
  • D.R. Broemmelsiek, M. Hu, S. Nagaitsev
    Fermilab, Batavia, Illinois
  The Fermilab Recycler is a fixed 8-GeV kinetic energy storage ring located in the Fermilab Main Injector tunnel near the ceiling. The role of stochastic cooling in the Recycler is to pre-cool the transverse phase-space of injected antiprotons for efficient electron cooling. This requires a gated stochastic cooling system working on beam confined in a barrier bucket. The performance of this system is reviewed. In addition, a study of the cooling rates and asymmptotic emittances as a function of beam intensity is presented.  
 
MOPLT111 On using NEA Cathodes in an RF Gun gun, ion, cathode, vacuum 797
 
  • M. Huening
    Fermilab, Batavia, Illinois
  RF guns have been proven to deliver high brightness beams and therefore appear attractive as electron source for a linear collider. Only so far no polarized beams have been produced. To create a polarized electron beam GaAs NEA cathodes are used. Operating rf guns with a NEA cathode poses concerns in three areas, oxidation by residual gas, ion bombardment, and electron bombardment. In this paper we report about an attempt to reduce the vacuum pressure inside the gun by cooling it to cryogenic temperatures. Furthermore the energy deposition by ions and electrons will be quantified.  
 
MOPLT112 Optimizing Non-Scaling FFAG Lattices for Rapid Acceleration acceleration, lattice, quadrupole, factory 800
 
  • C. Johnstone
    Fermilab, Batavia, Illinois
  • S.R. Koscielniak
    TRIUMF, Vancouver
  A linear approach to fixed field acceleration was first proposed [*,**] and successfully developed to support the rapid and large-emittance acceleration of muons for a Neutrino Factory or Muon Collider. Lattices have evolved from a simple F0D0-cell base as first proposed to a slightly more complex layout that has been referred to as a triplet configuration. In this work a methodology is developed for optimizing nonscaling lattices which demonstrates that the appropriate description is minimum momentum compaction, alpha=(dL/L)/(dp/p). Further, the triplet configuration is not used conventionally as a focusing telescope, but rather its optics is shown to resemble that of a F0D0-cell. This methodology is then used to propose and compare lattices for muon acceleration. Specifically a 2.5-5, 5-10, and 10-20 GeV/c lattice is proposed for muon acceleration and also one for a small, 10-20 MeV/c electron prototype machine.

* C. Johnstone, "FFAG Non-scaling Lattice Design", talk, Proc 4th Int Conf on the Physics Potential and Development of the m+ m- Colliders, San Francisco, CA Dec.10-12, 1997, pgs 696-698** F. Mills, "Linear Orbit Recirculators", ibid, pgs 693-696

 
 
MOPLT117 An Electron Front End for the Fermilab Multi-species 8 GeV SCRF Linac linac, emittance, injection, laser 809
 
  • P. Piot, G.W. Foster
    Fermilab, Batavia, Illinois
  Fermilab is considering 8 GeV superconducting linac whose primary mission is to serve as an intense H- injector for the main injector. This accelerator is also planned to be used for accelerating various other species (e.g. electrons and muons). In the present paper we investigate the possibility of such a linac to accelerate a high brightness electron beam to ~7 GeV. We propose a design for the electron front end, based on a photoinjector, and consider the electron beam dynamics along the linac. Start-to-end simulations of the full accelerator for electrons are presented. Finally the potential applications of the such an electron beam are discussed.  
 
MOPLT130 Bunch Pattern with More Bunches in PEP-II luminosity, injection, beam-losses, positron 842
 
  • F.-J. Decker, S. Colocho, A. Novokhatski, M.K. Sullivan, U. Wienands
    SLAC, Menlo Park, California
  The number of bunches in the PEP-II B-Factory has increased over the years. The luminosity followed roughly linear that increase or even faster since we also lowered the spot size at the interaction point. The recent steps from 933 in June of 2003 to about 1320 in February 2004 should have been followed by a similar rise in luminosity from 6.5·1033 1/cm2 1/s to 9.2·1033 1/cm2 1/s. This didn?t happen so far and a peak luminosity of only 7.3·1033 1/cm2 1/s was achieved. By filling the then partially filled by-3 pattern to a completely filled by-3 pattern (1133 bunches) should even give 7.9·1033 1/cm2 1/s with scaled currents of 1400 mA (HER) and 1900 mA (LER). We are typically running about 1300 mA and 1900 mA with 15% more bunches. The bunch pattern is typically by-2 with trains of 14 bunches out of 18. The parasitic beam crossings or electron cloud effects might play a role in about a 10% luminosity loss. Also the LER x-tune could be pushed further down to the ? integer in the by-3 pattern. On the other hand we might not push the beam-beam tune shift as hard as in June of 2003 since we started trickle injection and therefore might avoid the highest peak luminosity with a higher background. A mixed pattern with a by2-by3 setup (separation of 2, 3, 2, 3 ?) would give totally filled a slightly higher number of bunches (1360), but near the interaction point there would be only one parasitic crossing per beam lowering the tune shift by two.  
 
MOPLT143 Results and Plans of the PEP-II B-Factory luminosity, injection, positron, beam-beam-effects 875
 
  • J. Seeman, J. Browne, Y. Cai, S. Colocho, F.-J. Decker, M.H. Donald, S. Ecklund, R.A. Erickson, A.S. Fisher, J.D. Fox, S.A. Heifets, R.H. Iverson, A. Kulikov, A. Novokhatski, M.T.F. Pivi, M.C. Ross, P. Schuh, T.J. Smith, K. Sonnad, M. Stanek, M.K. Sullivan, P. Tenenbaum, D. Teytelman, J.L. Turner, D. Van Winkle, U. Wienands, M. Woodley, Y.T. Yan, G. Yocky
    SLAC, Menlo Park, California
  • M.E. Biagini
    INFN/LNF, Frascati (Roma)
  • J.N. Corlett, C. Steier, A. Wolski, M.S. Zisman
    LBNL, Berkeley, California
  • W. Kozanecki
    CEA/DSM/DAPNIA, Gif-sur-Yvette
  • G. Wormser
    IPN, Orsay
  PEP-II is an e+e- B-Factory Collider located at SLAC operating at the Upsilon 4S resonance. PEP-II has delivered, over the past four years, an integrated luminosity to the BaBar detector of over 175 fb-1 and has reached a luminosity over 7.4x1033/cm2/s. Steady progress is being made in reaching higher luminosity. The goal over the next few years is to reach a luminosity of at least 2x1034/cm2/s. The accelerator physics issues being addressed in PEP-II to reach this goal include the electron cloud instability, beam-beam effects, parasitic beam-beam effects, trickle injection, high RF beam loading, lower beta y*, interaction region operation, and coupling control.  
 
MOPLT148 Progress of the eRHIC Electron Ring Design emittance, polarization, luminosity, proton 887
 
  • F. Wang, M. Farkhondeh, W. Franklin, W. Graves, R. Milner, C. Tschalaer, J. Van der Laan, D. Wang, A. Zolfaghari, T. Zwart
    MIT/BLAC, Middleton, Massachusetts
  • D.P. Barber
    DESY, Hamburg
  • C. Montag, S. Peggs, V. Ptitsyn
    BNL, Upton, Long Island, New York
  • A.V. Otboev, Y.M. Shatunov
    BINP SB RAS, Novosibirsk
  • J. Shi
    KU, Lawrence, Kansas
  Over the past year, a baseline design of the electron ring for the eRHIC hadron-lepton collider has been developed.This site-specific design is based on the understanding of the existing RHIC machine performance and its possible upgrades.The design includes a full energy polarized electron beam injector to ensure operational reliability and to provide high integrated luminosity.The electron ring energy range is 5 to 10 GeV.The electron beam emittance, the electron beam path length and the interaction region optics have to be adjusted over a wide range to match the hadron beam of various species and variable energies.We describe the expected machine perfomance, the interaction region and the lattice design. We also discuss the possible approaches leading to the 1033 cm-2s-1 luminosity for the collisions between 10 GeV polarized electron beam and 250 GeV polarized proton beam.  
 
MOPLT151 Study of Arc-related RF Faults in the CEBAF Cryomodules vacuum, ion, linac, laser 890
 
  • E. Daly, D. Curry, J. Musson, G. Myneni, T. Powers, H. Wang, T.E. Whitlatch
    Jefferson Lab, Newport News, Virginia
  • I.E. Campisi
    ORNL/SNS, Oak Ridge, Tennessee
  A series of measurements has been conducted on two superconducting radio-frequency cavity pairs, installed in cryomodules and routinely operated in the Continuous Electron Beam Accelerator Facility, in order to study the RF-vacuum interaction during an RF fault. These arc-related fault rates increase with increasing machine energy, contribute to system downtime and directly affect the accelerator?s availability. For this study, the fundamental power coupler waveguides have been instrumented with vacuum gauges, additional arc detectors, additional infrared sensors and temperature sensors in order to measure the system response during both steady-state operations and RF fault conditions. Residual gas analyzers have been installed on the waveguide vacuum manifolds to monitor the gas species present during cooldown, RF processing and operation. Simultaneous measurements of the signals are presented, a comparison with analysis is shown and results are discussed. The goal of this study is to characterize the RF-vacuum interaction during normal operations. With a better understanding of the installed system response, methods for reducing the fault rate may be devised, ultimately leading to improvements in availability.  
 
MOPLT153 Electron-Ion Collider at CEBAF: New Insights and Conceptual Progress ion, luminosity, collider, proton 893
 
  • Y.S. Derbenev, A. Afanasev, K. Beard, S.A. Bogacz, P. Degtiarenko, J.R. Delayen, A. Hutton, G.A. Krafft, R. Li, L. Merminga, M. Poelker, B.C. Yunn, Y. Zhang
    Jefferson Lab, Newport News, Virginia
  • P.N. Ostroumov
    ANL/Phys, Argonne, Illinois
  We report on progress in conceptual development of the proposed high luminosity (up to 1035/cm2s) and efficient spin manipulation (using figure 8 boosters and collider rings) Electron-Ion Collider at CEBAF based on use of polarized 5-7 GeV electrons in superconduction energy recovering linac (ERL with circulator ring, kicker-operated) and 30-150 GeV ion storage ring (polarized p, d. He3, Li and unpolarized nuclei up to Ar, all totally stripped). Ultra-high luminosity is envisioned to be achievable with short ion bunches and crab-crossing at 1.5 GHz bunch collision rate interaction points. Our recent studies concentrated on simulation of beam-beam interaction, preventing the electron cloud instability, calculating luminosity lifetime due to Touschek effect in ion beam and background scattering of ions, experiments on energy recovery at CEBAF, and other. These studies have been incorporated in the development of the luminosity calculator and in formulating minimum requirements to the polarized electron and ion sources  
 
MOPLT156 High Brightness Electron Guns for Next-Generation Light Sources and Accelerators gun, cathode, emittance, linac 899
 
  • H. Bluem, M.D. Cole, J. Rathke, T. Schultheiss, A.M.M. Todd
    AES, Princeton, New Jersey
  • I. Ben-Zvi, T. Srinivasan-Rao
    BNL, Upton, Long Island, New York
  • P. Colestock, D.C. Nguyen, R.L. Wood, L. Young
    LANL, Los Alamos, New Mexico
  • D. Janssen
    FZR, Dresden
  • J. Lewellen
    ANL, Argonne, Illinois
  • G. Neil, H.L. Phillips, J.P. Preble
    Jefferson Lab, Newport News, Virginia
  Advanced Energy Systems continues to develop advanced electron gun and injector concepts. Several of these projects have been previously described, but the progress and status of each will be updated. The project closest to completion is an all superconducting RF (SRF) gun, being developed in collaboration with the Brookhaven National Laboratory, that uses the niobium of the cavity wall itself as the photocathode material. This gun has been fabricated and will shortly be tested with beam. The cavity string for a closely-coupled DC gun and SRF cavity injector that is expected to provide beam quality sufficient for proposed ERL light sources and FELs will be assembled at the Jefferson Laboratory later this year. We are also collaboration with Los Alamos on a prototype CW normal-conducting RF gun with similar performance, that will undergo thermal testing in late 2004. Another CW SRF gun project that uses a high quantum efficiency photocathode, similar to the FZ-Rossendorf approach, has just begun. Finally, we will present the RF design and cold test results for a fully axisymmetric, ultra-high-brightness x-band RF gun.  
 
MOPLT163 Luminosity Optimization Using Automated IR Steering at RHIC luminosity, background, feedback, coupling 911
 
  • K.A. Drees, T. D'Ottavio
    BNL, Upton, Long Island, New York
  The goal of the RHIC 2004 Au-Au run was to maximize the achieved integrated luminosity. One way is to increase beam currents and minimize beam transverse emittances. Another important ingredient is the minimization of time spent on activities postponing the declaration of 'physics conditions', i.e. stable beam conditions allowing the experimental detectors to take data. Since collision rates are particularly high in the beginning of the store the integrated luminosity benefits considerably from any minute saved early in the store. In the RHIC run 2004 a new IR steering application uses luminosity monitor signals as a feedback for a fully automated steering procedure. This report gives an overview of the used procedure and summarizes the achieved results.  
 
MOPLT164 Bunch Patterns and Pressure Rise in RHIC simulation, vacuum, injection, background 914
 
  • W. Fischer, U. Iriso
    BNL, Upton, Long Island, New York
  The RHIC luminosity is limited by pressure rises with high intensity beams. At injection, the dominating cause for the pressure rise was shown to be electron clouds. We discuss the distributions of bunches along the circumference that minimize the electron cloud effect in RHIC. Experimental data are compared with simulation results, and experiences at the B-factories.  
 
MOPLT165 Luminosity Increases in Gold-gold Operation in RHIC luminosity, vacuum, power-supply, background 917
 
  • W. Fischer, L. Ahrens, J. Alessi, M. Bai, D. Barton, J. Beebe-Wang, M. Blaskiewicz, J.M. Brennan, D. Bruno, J. Butler, R. Calaga, P. Cameron, R. Connolly, T. D'Ottavio, J. DeLong, K.A. Drees, W. Fu, G. Ganetis, J. Glenn, T. Hayes, P. He, H.-C. Hseuh, H. Huang, P. Ingrassia, U. Iriso, R. Lee, Y. Luo, W.W. MacKay, G. Marr, A. Marusic, R. Michnoff, C. Montag, J. Morris, T. Nicoletti, B. Oerter, C. Pearson, S. Peggs, A. Pendzick, F.C. Pilat, V. Ptitsyn, T. Roser, J. Sandberg, T. Satogata, C. Schultheiss, A. Sidi-Yekhlef, L. Smart, S. Tepikian, R. Tomas, D. Trbojevic, N. Tsoupas, J. Tuozzolo, J. Van Zeijts, K. Vetter, K. Yip, A. Zaltsman, S.Y. Zhang, W. Zhang
    BNL, Upton, Long Island, New York
  After an exploratory phase, during which a number of beam parameters were varied, the RHIC experiments now demand high luminosity to study heavy ion collisions in detail. Presently RHIC operates routinely above its design luminosity. In the first 4 weeks of its current operating period (Run-4) the machine has delivered more integrated luminosity that during the 14 weeks of the last gold-gold operating period (Run-2). We give an overview of the changes that increased the instantaneous luminosity and luminosity lifetime, raised the reliability, and improved the operational efficiency.  
 
MOPLT170 eRHIC, Future Electron-ion Collider at BNL ion, luminosity, linac, proton 923
 
  • V. Ptitsyn, L. Ahrens, M. Bai, J. Beebe-Wang, I. Ben-Zvi, M. Blaskiewicz, J.M. Brennan, R. Calaga, X. Chang, E.D. Courant, A. Deshpande, A.V. Fedotov, W. Fischer, H. Hahn, J. Kewisch, V. Litvinenko, W.W. MacKay, C. Montag, S. Ozaki, B. Parker, S. Peggs, T. Roser, A. Ruggiero, B. Surrow, S. Tepikian, D. Trbojevic, V. Yakimenko, S.Y. Zhang
    BNL, Upton, Long Island, New York
  • D.P. Barber
    DESY, Hamburg
  • M. Farkhondeh, W. Franklin, W. Graves, R. Milner, C. Tschalaer, J. Van der Laan, D. Wang, F. Wang, A. Zolfaghari, T. Zwart
    MIT/BLAC, Middleton, Massachusetts
  • A.V. Otboev, Y.M. Shatunov
    BINP SB RAS, Novosibirsk
  The paper reviews the progress made lately in the design of eRHIC, proposed future electron-ion collider on the basis of the existing RHIC machine. The eRHIC aims to provide collisions of electrons and positrons on ions and protons in center mass energy range of 25-70 GeV. The goal luminosities are in 1032-1033 1/(s*cm2) values for e-p and in 1030-1031 1/(s*cm2) values for e-Au collisions. An essential design requirement is to provide longitudinally polarized beams of electrons and protons (and, possibly lighter ions) at the collision point. The eRHIC ZDR has been recently developed which considers various aspects of the accelerator design. An electron accelerator, which delivers about 0.5A polarized electron beam current in the electron energy range of 5 to 10 GeV, should be constructed at the BNL near existing ion rings of the RHIC collider and should intersect an ion ring at least in one of the available ion ring interaction regions. In order to reach the luminosity goals some upgrades in ion rings also would be required. Ways to reach lower beam emmittances (electron cooling) and higher beam intensities have to be realized.  
 
MOPLT174 Electron Acceleration for e-RHIC with the Non-scaling FFAG acceleration, emittance, synchrotron, collider 932
 
  • D. Trbojevic, M. Blaskiewicz, E.D. Courant, J. Kewisch, T. Roser, A. Ruggiero, N. Tsoupas
    BNL, Upton, Long Island, New York
  A non-scaling FFAG lattice design to accelerate electrons from 3.2 to 10 GeV is described. This is one of the possible solutions for the future electron-ion collider (eRHIC) at Relativistic Heavy Ion Collier (RHIC) at Brookhaven National Laboratory (BNL). This e-RHIC proposal requires acceleration of the low emittance electrons up to energy of 10 GeV. To reduce a high cost of the full energy super-conducting linear accelerator an alternative approach with the FFAG is considered. The report describes the 1277 meters circumference non-scaling FFAG ring. The Courant-Snyder functions, orbit offsets, momentum compaction, and path length dependences on momentum during acceleration are presented.  
 
MOPLT176 Mechanism of Electron Multipacting with a Long Bunch Proton Beam dipole, quadrupole, proton, simulation 938
 
  • L. Wang, M. Blaskiewicz, J. Wei
    BNL, Upton, Long Island, New York
  • R.J. Macek
    LANL/LANSCE, Los Alamos, New Mexico
  The mechanism of electron multipacting in long bunched proton machine has been quantitatively described by the electron energy gain and electron motion. Some important parameters related to electron multipacting are investigated in detail. It is proved that multipacting is sensitive to beam intensity, longitudinal beam profile shape and transverse beam size. Agreement is achieved among our analysis, simulation and experiment.  
 
MOPLT178 RHIC Pressure Rise ion, background, beam-losses, luminosity 944
 
  • S.Y. Zhang, J. Alessi, M. Bai, M. Blaskiewicz, P. Cameron, K.A. Drees, W. Fischer, R.P. Fliller III, D. Gassner, J. Gullotta, P. He, H.-C. Hseuh, H. Huang, U. Iriso, R. Lee, Y. Luo, W.W. MacKay, C. Montag, B. Oerter, S. Peggs, F.C. Pilat, V. Ptitsyn, T. Roser, T. Satogata, L. Smart, P. Thieberger, D. Trbojevic, J. Van Zeijts, L. Wang, J. Wei, K. Zeno
    BNL, Upton, Long Island, New York
  Beam induced pressure rise remains an intensity limit at the RHIC for both heavy ion and polarized proton operations. The beam injection pressure rise at warm sections has been diagnosed due to electron cloud effect. In addition, pressure rise of heavy ion operation at the beam transition has caused experiment background problem in deuteron-gold run, and it is expected to take place in gold-gold run at high intensities. This type of pressure rise is related to beam momentum spread, and the electron cloud seems not dominant. Extensive approaches for both diagnosis and looking-for-remedies are undergoing in the current gold operation, RUN 4. Results of beam scrubbing, NEG pipe in RHIC ring, beam scraping test of ion desorption, beam momentum effect at the transition, beam gap effect, solenoid effect, and NEG pipe ion desorption test stand will be presented.  
 
MOPLT179 Beam Scrubbing for RHIC Polarized Proton Opearation proton, injection, interaction-region, monitoring 947
 
  • S.Y. Zhang, W. Fischer, H. Huang, T. Roser
    BNL, Upton, Long Island, New York
  One of the intensity limiting factor of RHIC polarized proton beam is the electron cloud induced pressure rise. During the 2003 polarized proton run, a beam scrubbing study was performed. Actual beam scrubbing time was much less than the planned 2 hours. However, a non-trivial beam scrubbing effect was observed not only in the locations with highest pressure rise, but also in most of the single beam straight sections. This not only confirmed that beam scrubbing is indeed a countermeasure to the electron cloud, but also showed the feasibility of applying beam scrubbing in RHIC proton beam operation to allow for higher beam intensities. In this article, the results will be reported.  
 
TUYBCH01 Design Criteria and Technology Challenges for the Undulators of the Future undulator, radiation, synchrotron, vacuum 59
 
  • H. Kitamura, T. Hara, X. Maréchal, T. Tanaka
    RIKEN Spring-8 Harima, Hyogo
  • T. Bizen, T. Seike
    JASRI/SPring-8, Hyogo
  Nowadays, undulators are essential devices for synchrotron radiation (SR) facilities since they generate a quasi-monochromatic radiation with various features, high brightness , high energy and special polarization characteristics. Particularly, demands for high-energy radiation in the X-ray region have become much stronger in many research fields. Accordingly, a short-period undulator design has been developed, because they increase the number of periods in a unit undulator length and as a consequence, they generate brilliant synchrotron radiation. Also, short undulator periodicity enables emission of high-energy photons, and it opens the way for X-ray beamline operation in medium size synchrotron radiation facilities, such as SLS, NSLS, PLS, CLS, ALS, SOLEIL, DIAMOND, SPEAR-III and so on. From the same reason, a short-period undulator is very attractive for SASE-FEL or ERL facilities, since it lowers the electron beam energy necessary for X-ray operation. As a result this design makes a whole facility design compact and economic. In the talk, I will review the status of the development on short-period undulators of various types (in-vacuum, superconducting and cryogenic types) and describe the future direction.  
Video of talk
Transparencies
 
TUYBCH02 Technological Challenges for High Brightness Photo-injectors laser, gun, vacuum, brightness 64
 
  • G. Suberlucq
    CERN, Geneva
  Many applications, from linear colliders to free-electron lasers, passing through light sources and many other electron sources, require high brightness electron beams, usually produced by photo-injectors. Because certain parameters of these applications differ by several orders of magnitude, various solutions were implemented for the design and construction of the three main parts of the photo-injectors: lasers, photocathodes and guns. This paper summarizes the different requirements, how they lead to technological challenges and how R&D programs try to overcome these challenges. Some examples of state-of-the-art parts are presented.  
Video of talk
Transparencies
 
TUZACH01 Positron Source Options for Linear Colliders positron, target, photon, radiation 69
 
  • K. Floettmann
    DESY, Hamburg
  Linear colliders require sources delivering particle intensities much higher than sources for storage rings and even several orders of magnitude larger than the SLC positron source, the highest intensity positron source operated so far. A fundamental limitation for the intensity of a positron source is set by the thermal stress in the target. Besides improvements of conventional positron sources, i.e. sources where an electron beam creates electron position pairs in an electromagnetic cascade, new concepts based on the direct conversion of gamma radiation offer possibilities for increased particle intensities. In these sources the hard gamma radiation has to be produced either in an undulator or by backscattering of laser light off an electron beam. An additional advantage of gamma radiation based sources is the possibility to produce polarized positrons. The talk will give an overview of the developments of high intensity unpolarized and polarized positron sources for linear colliders.  
Video of talk
Transparencies
 
TUZACH02 Ultra-high Gradient Compact Accelerator Developments plasma, laser, acceleration, injection 74
 
  • G.J.H. Brussaard, M.J. Van der Wiel
    TUE, Eindhoven
  Continued development of relatively compact, although not quite 'table-top', lasers with peak powers in the range up to 100 TW has enabled laser-plasma-based acceleration experiments with amazing gradients of up to 1 TV/m. In order to usefully apply such gradients to 'controlled' acceleration, various hurdles need to be overcome. The main one is that of well-synchronized injection into a sub-mm to micron wavelength plasma wave. The talk will describe the various physics regimes of laser wakefield acceleration, and the two classes of experiments being pursued. One is that of atmospheric-density plasmas, non-linear wakefields with extreme gradients (hundreds of GV/m)and 'internal injection' of few-femtosecond electron bunches. A second class involves modest-density plasmas,wakefields of order 1 GV/m and external injection of (sub)-ps bunches. The state-of-the-art of these experiments will be covered, including the progress on plasma waveguiding of TW pulses over many diffraction lengths. The talk will also provide an outlook for the coming few years. This part includes proposed schemes for improvements in the area of injection, such as 'all-optical' injection and injection based on GV/m 'pulsed-DC' photoguns.  
Video of talk
Transparencies
 
TUZBCH01 Beam Quality Preservation in the CERN PS-SPS Complex emittance, injection, impedance, extraction 78
 
  • G. Arduini
    CERN, Geneva
  The LHC will require beams of unprecedented transverse and longitudinal brightness. Their production imposes tight constraints on the emittance growth in each element of the LHC injector chain, namely the PS-SPS Accelerator Complex. The problems encountered at the different stages of the acceleration in the complex span a wide range of topics, such as injection matching, RF gymnastics, space charge, transverse and longitudinal single- and coupled-bunch instabilities, and electron cloud effects. The measurement techniques developed and applied to identify and study the various sources of emittance dilution to the high precision required for the LHC beams and the solutions found to control such phenomena are illustrated.  
Video of talk
Transparencies
 
TUZBCH02 Beam Dynamics Challenges for Future Circular Colliders luminosity, emittance, simulation, proton 83
 
  • F. Zimmermann
    CERN, Geneva
  The luminosity of circular colliders rises with the beam intensity, until some limit is encountered, mostly due to head-on and long-range beam-beam interaction, due to electron cloud, or due to conventional impedance sources. These limitations can be alleviated, if not overcome, by a proper choice of beam parameters and by dedicated compensation schemes. Examples include the alternating crossing at several interaction points, electromagnetic wires, super-bunches, electron lenses, clearing electrodes, and nonlinear collimation. I illustrate the benefit from such mitigating measures for the Tevatron, the LHC, the LHC Upgrade, the VLHC, the super e+e- factories, or other projects, and I describe related research efforts at FNAL, KEK, BNL and CERN.  
Video of talk
Transparencies
 
TUXLH03 RHIC Performance and Plans Towards Higher Luminosity and Higher Polarization luminosity, proton, ion, polarization 98
 
  • T. Satogata
    BNL, Upton, Long Island, New York
  RHIC is the first hadron collider consisting of two independent rings. It is designed to operate over a wide range of beam energies and species, including polarized protons, heavy ions, and asymmetric beam collisions. RHIC has produced physics data at four experiments since 1999 in runs that include gold-on-gold collisions at design beam energy (100 GeV/u), high-energy polarized proton-proton collisions (100 GeV on 100 GeV), and deuteron-gold collisions (100 GeV/u). Recent machine performance will be reviewed for high-luminosity gold-gold operations and polarized proton operations, including causes and solutions for known operational limits. Plans and progress for luminosity and polarization improvements, electron cooling, and the electron-ion collider eRHIC will be discussed.  
Video of talk
Transparencies
 
TUYLH03 Challenges facing the Generation of MW Proton Beams using Rapid Cycling Synchrotrons injection, proton, extraction, quadrupole 113
 
  • Y. Irie
    KEK, Ibaraki
  The MW proton source using rapid cycling synchrotron (RCS) has many challenging aspects, such as (1) large aperture magnets and much higher RF voltages per turn due to a low energy injection and a large and rapid swing of the magnetic field, (2) field tracking between many magnet-families under slightly saturated conditions, (3) RF trapping with fundamental and higher harmonic cavities, (4) H- charge stripping foil, (5) large acceptance injection and extraction straights, (6) beam loss collection, and (7) beam instabilities. These are discussed in details mainly on the basis of the J-PARC 3GeV RCS, which is under construction in Japan. Issues (3) to (7) are common with another scheme of MW spallation neutron source, i.e. full-energy linac + accumulator ring. Comparisons with the SNS design in the US are then made. Reliability/availability of these machines is very important theme which finally determines the successful operations. From the experiences in the existing machines, we will discuss the factors necessary toward the better performance.  
Video of talk
Transparencies
 
TUPKF003 Industrial Production of the Eight Normal-conducting 200 MHz ACN Cavities for the LHC vacuum, simulation, beam-losses, controls 956
 
  • R. Losito, E. Chiaveri, R. Hanni, T.P.R. Linnecar, S. Marque, J. Tuckmantel
    CERN, Geneva
  The LHC-ACN RF system consists of 8 normal-conducting cavities and is designed to reduce beam losses in the LHC when injecting beams with longitudinal emittance > 0.7 eVs from the CERN SPS. The cavity design took into account the possibility of recuperating all the "ancillary" equipment (tuners, fundamental mode damper, High Order Mode (HOM) couplers) from the old CERN SPS 200MHz system. The cavities are made from OFE copper. The original ingots, procured in Austria, have been forged and pre-formed by pressing them with a 20 tons press, following a procedure defined and adapted for the unusual dimensions of these pieces. The raw components thus obtained were machined and then welded together with an electron beam. In order to get a good repeatability of the fundamental mode frequency across the eight cavities, a procedure has been established with the contractor for the final machining and welding leading to a spread in frequencies below ±20 kHz (< 0.01%). The cavities will be installed in the LHC when losses at high intensities become significant. In the meantime they are undergoing a surface treatment to clean the RF surface and will be stored.  
 
TUPKF006 Custom Design of Medium Energy Linear Accelerator Systems linac, ion, bunching, proton 965
 
  • K. Dunkel, M. Pekeler, C. Piel, H.P. Vogel, P. vom Stein
    ACCEL, Bergisch Gladbach
  Based on customer requirements ACCEL Instruments is designing and building medium energy turn-key Linear Accelerator Systems for scientific applications. Within this paper design and performance of third generation synchrotron light source electron injector linacs will be presented. Further the design of a medium energy light ion linear accelerator will be discussed. This light ion accelerator is designed with independently phased superconducting rf cavities for cw operation and acceleration of different particle species and a variable Energy output.  
 
TUPKF014 Electromagnetic Design of New RF Power Couplers for the S-DALINAC electromagnetic-fields, emittance, linac, coupling 988
 
  • M. Kunze, W.F.O. Müller, T. Weiland
    TEMF, Darmstadt
  • M.B. Brunken, H.-D. Gräf, A. Richter
    TU Darmstadt, Darmstadt
  New rf power couplers for the Superconducting Darmstadt Linear Accelerator (S-DALINAC) injector have to be designed to transfer rf power up to 2 kW to the electron beam. This allows injector operation at beam currents from 0.15 mA to 0.2 mA and electron energies up to 14 MeV. The new couplers should possibly provide a variable external Q in the range from 5·106 to 3·109 and a small transverse kick. A variable coupling is needed to allow for perfect matching in the case of beam loading and when no beam is present, respectively. The second operation stage is used for cavity diagnostics. The asymmetric field distribution of the couplers generates emittance growth of the electron beam and therefore the transverse kick has to be minimized. Electromagnetic simulations are applied to investigate different coupler designs and to localize possible problems at an early stage. Cavity external Q and transverse kick can be calculated from 3D electromagnetic eigenmode solutions. The present coaxial-coaxial input couplers at the S-DALINAC are limited to power operation below 500 W under full reflection. Therefore, to reach power operation up to 2 kW two possible new realizations of low-kick waveguide couplers for the S-DALINAC injector are presented, namely a single-waveguide and a twin-waveguide coupler.  
 
TUPKF017 Electrons Beam Dynamics of the 100 MeV Preinjector Helios for the SOLEIL Synchrotron gun, linac, emittance, focusing 997
 
  • A.S. Setty
    THALES, Colombes
  A 100 MeV electron linac is under construction, in order to inject into the booster synchrotron of SOLEIL. The linac is designed to work according to two operation modes : a short pulse mode (2 ns - 0,5 nC) and a long pulse mode (300 ns - 8 nC). Calculation of the beam dynamics, using our selfmade code PRODYN, has been carried out from the gun to the end of the linac. Special care has been taken on the gun design to avoid an overfocusing outcoming beam in order to obtain a final low emittance. Calculations results are given.  
 
TUPKF020 Numerical Investigation on the ELETTRA 500 MHz Power Coupler vacuum, coupling, simulation, storage-ring 1006
 
  • C. Pasotti, P. Craievich, A. Fabris, G. Penco, M. Svandrlik
    ELETTRA, Basovizza, Trieste
  • B. B. Baricevic
    DEEI, Trieste
  Due to the high input power required to feed a resonant cavity, the RF input coupler is a critical component for the reliability of an RF system. The 500 MHz RF input coupler for the ELETTRA cavities was specified for 150 kW input power. It is important to investigate the performance limits of the coupler in view of increasing RF power requirements. The coupler's maximum peak field and dissipation versus the input power have been studied by means of the numerical simulator HFSS. Possible improvements to the existing design have been investigated. The optimization has to take into consideration the following requirements: convenient power transmission efficiency, RF matching, suitable coupling coefficient, negligible perturbation on cavity voltage, moderate operating temperature and stress.  
 
TUPKF021 First Year of Operation of SUPER-3HC at ELETTRA damping, storage-ring, vacuum, synchrotron 1009
 
  • G. Penco, P. Craievich, A. Fabris, C. Pasotti, M. Svandrlik
    ELETTRA, Basovizza, Trieste
  Since July 2003 a superconducting third harmonic cavity has been in routine operation at ELETTRA. When the cavity is activated the stored electron bunches are lengthened by about a factor of three. The related longitudinal Landau damping has allowed first time operation at 320 mA, 2.0 GeV with a beam completely free of longitudinal coupled bunch instabilities. With the cavity active the lifetime at 320 mA, 2.0 GeV is three times the theoretical value for nominal bunch length. The increase in beam stability and lifetime contributed significantly to enhance the brightness and the integrated flux of the source. We will further discuss the operating experience with the superconducting cavity and the cryogenic system, analyzing the impact of the new system on machine operation and uptime. Finally we will also report on the characterization of the cavity performance for different filling patterns of the storage ring and relate the results to preliminary beam-cavity interaction studies.  
 
TUPKF025 Superconducting Niobium Film for RF Applications cathode, vacuum, plasma, laser 1021
 
  • A. Cianchi, L. Catani, A. Cianchi, S. Tazzari
    INFN-Roma II, Roma
  • Y.H. Akhmadeev
    Institute of High Current Electronics, Tomsk
  • A. Andreone, G. Cifariello, E. Di Gennaro, G. Lamura
    Naples University Federico II, Napoli
  • J.L. Langner
    The Andrzej Soltan Institute for Nuclear Studies, Centre Swierk, Swierk/Otwock
  • R.R. Russo
    Università di Roma II Tor Vergata, Roma
  Thin niobium film coated copper RF cavities are an interesting possible alternative to bulk-Nb cavities since copper is much cheaper than niobium, it has higher thermal conductivity and a better mechanical stability. Unfortunately, the observed degradation of the quality factor with increased cavity voltage of sputtered accelerating cavities restricts their usage in future large linear accelerators needing gradients higher than 15MV/m. We are developing an alternate deposition technology, based on a cathodic arc system working in UHV conditions. Its main advantages compared to standard sputtering are the ionized state of the evaporated material, the absence of gases to sustain the discharge, the much higher energy of atoms reaching the substrate surface and the possibility of higher deposition rates. To ignite the arc we use a Nd-YAG pulsed laser focused on the cathode surface that provides a reliable and ultraclean trigger. Recent results on the characterization of niobium film samples produced under different conditions are presented showing that the technique can produce bulk-like films suitable for RF superconducting applications.  
 
TUPKF026 RF Tests of the Beta=0.5 Five Cell TRASCO Cavities pick-up, vacuum, linac, superconductivity 1024
 
  • A. Bosotti, C. Pagani, P. Pierini
    INFN/LASA, Segrate (MI)
  • J.P. Charrier, B. Visentin
    CEA/DSM/DAPNIA, Gif-sur-Yvette
  • G. Ciovati, P. Kneisel
    Jefferson Lab, Newport News, Virginia
  Two complete 5 cell superconducting cavities at b=0.5 have been designed and fabricated. The cavities have been designed to minimize peak electric and magnetic fields, with a goal of 8.5 MV/m of accelerating gradient, at a Q > 5E9. The cavities are currently in the testing stage and the results of the vertical tests will be presented at this conference.  
 
TUPKF039 The Experiences of Operation and Performance about the 500 MHz CW Klystrons at the PLS Storage Ring klystron, storage-ring, coupling, cathode 1051
 
  • J.S. Yang, M.-H. Chun, Y.J. Han, S.-H. Nam, I.H. Yu
    PAL, Pohang
  There are four RF stations to supply the energy to electron at the storage ring of the Pohang Light Source(PLS). From the beginning of the operation of RF system, 500MHz 60kW(CW) klystrons have been operated. As the operation time of the tubes are increased, their performances are decreased. Therefore three 60kW tubes were replaced with the same model and two 75kW klystrons were replaced with 60 kW klystrons so far. Nowadays two 75 kW and two 60 kW klystrons are operated in the RF system of PLS. Our experiences of the klystron operation and their general performance are described in this paper.  
 
TUPKF048 Studies of Electron Multipacting in CESR Type Rectangular Waveguide Couplers simulation, vacuum, diagnostics, insertion 1057
 
  • P. Goudket, M. Dykes
    CCLRC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • S.A. Belomestnykh, R. Geng
    Cornell University, Laboratory for Elementary-Particle Physics, Ithaca, New York
  • R.G. Carter
    Microwave Research Group, Lancaster University, Lancaster
  • H. Padamsee
    Cornell University, Ithaca, New York
  The latest results from an experimental waveguide section, as well as simulations from a model of electron multipacting using the MAGIC PIC code, are discussed. Tests were carried out on a new waveguide section that included enhanced diagnostics and the possibility of changing surface materials and temperature. Those tests evaluated grooves, ridges and surface coatings, such as TiN and a TiZrV NEG coating, as methods of multipactor suppression. The conclusion remains that the most effective method to achieve complete multipactor suppression remains the application of a static magnetic bias of approximately 10G. The experiments also provided good data sets that can be used to verify the accuracy of simulations. Simulations of the waveguide multipacting have been carried out and have offered better understanding of electronic behaviour.  
 
TUPKF050 Triggers for RF Breakdown plasma 1063
 
  • J. Norem, Z. Insepov
    ANL, Argonne, Illinois
  We outline a model of breakdown in rf cavities. Breakdown can be triggered by two mechanisms, one is fracture of the surface due to the tensile stress produced by the electric field, the second is Ohmic heating at grain boundaries and defects at very high current densities. We show how this model follows from measurements of local electric fields using electron field emission, and show how the model applies to the operating conditions of a variety of rf structures. This model may have some relevance to SCRF and DC structures.  
 
TUPKF055 Space-charge-limited Magnetron Injection Guns for Gyroklystrons cathode, simulation, gun, injection 1072
 
  • W. Lawson
    Maryland University, College Park, Maryland
  We present the results of several space-charge-limited (SCL) magnetron injection gun (MIG) designs which are intended for use with a 500 kV, 500 A gyroklystron with accelerator applications. The design performances are compared to that of a temperature-limited (TL) gun that was constructed for the same application. The SCL designs yield similar values for beam quality, namely an axial velocity spread under 3% for an average perpendicular-to-parallel velocity ratio of 1.5. The peak electric fields and the cathode loadings of the SCL designs are somewhat higher than for the TL design. Three designs are described in this paper. In the first design the space-charge limit is achieved by recessing the emitter into the cathode. The other two designs have control electrodes to which a voltage can be applied to change the beam current independently of the beam voltage. One of these designs can accept a bias sufficiently high to cut off the current completely, so that a DC power supply with pulsed grid operation is possible. Details of all designs as well as a discussion of the advantages and disadvantages of the SCL designs as compared to the TL design will be given.  
 
TUPKF056 Multipacting in Crossed RF Fields near Cavity Equator simulation, superconductivity 1075
 
  • V.D. Shemelin
    Cornell University, Ithaca, New York
  Electric and magnetic fields near the cavity equator are presented in a form of expansions up to the third power of coordinates. Comparisons with numerical calculations made with the SLANS code for the TESLA and other cavity cells, as well as with the analytical solution for a spherical cavity are done. These fields are used for solution of equations of motion. It appears that for description of motion, the only main terms of the expansion are essential, but the value of coefficients for the electric field components depend on details of magnetic field behavior on the boundary. Equations of motion are solved for electrons moving in crossed RF fields near the cavity equator. Based on the analysis of these equations, general features of this kind of multipacting are obtained. Results are compared with simulations and experimental data. The "experimental" formulas for multipacting zones are explained and their dependence on the cavity geometries is shown. Developed approach allows evaluation of multipacting in a cavity without simulations but after an analysis of fields in the equatorial region. The fields can be computed by any code used for cavity calculation.  
 
TUPKF058 Test Results for the New 201.25 MHz Tetrode Power Amplifier at LANSCE linac, proton, power-supply, impedance 1078
 
  • J.T.M. Lyles, S. Archuletta, J. Davis, L. Lopez, G. Roybal
    LANL/LANSCE, Los Alamos, New Mexico
  A new RF amplifier has been constructed for use as the intermediate power amplifier stage for the 201.25 MHz Alvarez DTL at LANSCE. It is part of a larger upgrade to replace the entire RF plant with a new generation of components. The new RF power system under development will enable increased peak power with higher duty factor. The first tank requires up to 400 kW of RF power. This can be satisfied using the TH781 tetrode in a THALES cavity amplifier. The same stage will be also used to drive a TH628 Diacrode? final power amplifier for each of the three remaining DTL tanks. In this application, it will only be required to deliver approximately 150 kW of peak power. Details of the system design, layout for DTL 1, and test results will be presented.  
 
TUPKF059 Simulation of Dark Currents in X-band Accelerator Structures simulation, linac, vacuum, emittance 1081
 
  • K.L.F. Bane, V.A. Dolgashev, G.V. Stupakov
    SLAC, Menlo Park, California
  In high gradient accelerator structures, such as those used in the main linac of the GLC/NLC, electrons are emitted spontaneously from the structure walls and then move under the influence of the rf fields. In this report we study the behavior of this "dark current" in X-band accelerator structures using a simple particle tracking program and also the particle-in-cell program MAGIC. We address questions such as what is the sensitivity to emission parameters, what fraction of dark current is trapped and reaches to the end of a structure, and what are the temporal, spatial, and spectral distributions of dark current as functions of accelerating gradient.  
 
TUPKF065 Comparison of Klystron and Inductive Output Tubes (IOT) Vacuum-electron Devices for RF Amplifier Service in Free-electron Laser klystron, cathode, laser, vacuum 1093
 
  • A. Zolfaghari, P. MacGibbon, W. North
    MIT/BLAC, Middleton, Massachusetts
  The MIT X-Ray Laser project, conceived to produce output in the 0.3 to 100 nanometer range, is based on a super-conducting 4-GEV linear accelerator, using 24 multi-cavity cryo-modules, each with its own dedicated RF amplifier, operating at 1.3 GHz. The continuous output of each amplifier is nominally 15 kW, with an optional repetitive pulse-modulation mode of 0.1 second pulse duration at one pulse per second. Although there are no fundamental restraints which preclude the consideration of any RF amplifier type, including solid-state or conventional triode or tetrode, the most appropriate current technology includes the Klystron and the IOT (Inductive Output Tube), also known by the CPI trade-name, Klystrode. The mechanisms by which the devices convert DC input power into RF output power are discussed. The devices are then compared with regard to availability (developmental or off-the-shelf), conversion efficiency, means of pulse-modulation, RF power gain, phase and amplitude stability (pushing factors), and acquisition and life-cycle costs.  
 
TUPKF066 34 Ghz, 45 MW Pulsed Magnicon: First Results gun, plasma, cathode, linear-collider 1096
 
  • O.A. Nezhevenko, V.P. Yakovlev
    Omega-P, Inc., New Haven, Connecticut
  • J.L. Hirshfield, M.A. LaPointe
    Yale University, Physics Department, New Haven, CT
  A high efficiency, high power magnicon at 34.272 GHz has been designed and built as a microwave source to develop RF technology for a future multi-TeV electron-positron linear collider. To develop this technology, this new RF source is being perfected for necessary tests of accelerating structures, RF pulse compressors, RF components, and to determine limits of breakdown and metal fatigue. After preliminary RF conditioning of only about 200000 pulses, the magnicon produced an output power of 10.5 MW in 0.25 microsecond pulses, with a gain of 54 dB. Slotted line measurements confirmed that the output was monochromatic to within a margin of at least 30 dB.  
 
TUPKF067 High Power Magnicons at Decimeter Wavelength for Muon and Electron-Positron Colliders collider, gun, linac, acceleration 1099
 
  • O.A. Nezhevenko, V.P. Yakovlev
    Omega-P, Inc., New Haven, Connecticut
  • J.L. Hirshfield
    Yale University, Physics Department, New Haven, CT
  The CLIC drive linac requires pulsed RF amplifiers with a power of 50 MW at 937 MHz. In turn the muon collider requires 100 MW, 800 MHz RF amplifiers for the final stages of acceleration. In this paper conceptual designs of magnicons for these applications are presented. In addition to the typical magnicon advantages in power and efficiency, the designs offers substantially shorter tube length compared to either single- or multiple-beam klystrons.  
 
TUPKF074 Niobium Thin Film Cavity Deposition by ECR Plasma plasma, vacuum, ion, superconductivity 1108
 
  • A-M. Valente, H.L. Phillips, H. Wang, A. Wu, G. Wu
    Jefferson Lab, Newport News, Virginia
  Nb/Cu technology for superconducting cavities has proven to be over the years a viable alternative to bulk niobium. Energetic vacuum deposition is a very unique alternative method to grow niobium thin film on copper. Single crystal growth of niobium on sapphire substrate has been achieved as well as good surface morphology of niobium on small copper samples. The design of a cavity deposition system is in development. This paper presents the exploratory studies of the influence of the deposition energy on the Nb thin film properties. Several possible venues to achieve Nb/Cu cavity deposition with this technique are also discussed along with the design of the cavity deposition setup under development.  
 
TUPKF075 Inductive Output Tubes for Particle Accelerators gun, microtron, feedback, background 1111
 
  • H.P. Bohlen
    CPI, Palo Alto, California
  • E. Davies, P. Krzeminski, Y. Li, R.N. Tornoe
    CPI/EIMAC, San Carlos, California
  The Inductive Output Tube (IOT) is not widely used as an RF power source in particle accelerators yet, but this is about to change rapidly. One reason for this change is the IOT's "coming of age": almost twenty years of successful operation in television transmitters have lead to high refinement of IOT technology and proven reliability. The other reason is the fitness of the IOT to especially meet accelerator requirements: high efficiency, no need for power back-off to achieve fast feed-back regulation, and the possibility to pulse the RF without using a high-voltage modulator. Two classes of IOTs are available so far for application in particle accelerators. One of them consists of UHF external-cavity devices, frequency-tunable and producing output power levels up to 80 kW CW. The second class has been developed only recently. These are L-band IOTs with internal output cavities for 1.3 and 1.5 GHz, respectively, featuring output power levels between 15 and 30 kW CW. Extensive computer simulations have lead to the conclusion that even higher-power IOTs, such as a 300 kW peak-power, long-pulse L-band tube, are feasible.  
 
TUPKF076 Large Scale Production of 805-MHz Pulsed Klystrons for SNS klystron, cathode, gun, simulation 1114
 
  • S. Lenci, E. Eisen
    CPI, Palo Alto, California
  The Spallation Neutron Source (SNS) is an accelerator-based neutron source being built in Oak Ridge, Tennessee, by the U.S. Department of Energy. The SNS will provide the most intense pulsed neutron beams in the world for scientific research and industrial development. CPI is supporting the effort by providing 81 pulsed klystrons for the super-conducting portion of the accelerator. The primary output power requirements are 550 kW peak, 49.5 kW average at 805 MHz, with an electron beam-to-rf conversion efficiency of 65% and an rf gain of 50 dB. Through January 2004, 47 units have been factory-tested. Performance specifications, computer model predictions, operating results, and production statistics will be presented.  
 
TUPKF077 Test Results for a 10-MW, L-band, Multiple-beam Klystron for TESLA klystron, focusing, cathode, gun 1117
 
  • E.L. Wright, A. Balkcum, H.P. Bohlen, M. Cattelino, L. Cox, E. Eisen, F. Friedlander, S. Lenci, A. Staprans, B. Stockwell, L. Zitelli
    CPI, Palo Alto, California
  • K. Eppley
    SAIC, Burlington, Massachusetts
  The VKL-8301 high-efficiency, multiple-beam klystron (MBK), has been developed for the DESY Tera Electron volt Superconducting Linear Accelerator (TESLA) in Hamburg, Germany. The first prototype is built and will be tested in March of 2004. The prototype has been designed for long-life operation by utilizing the benefits inherent in higher-order mode (HM) MBKs. The primary benefit of HM-MBKs is their ability to widely separate individual cathodes. One of the major obstacles to the success of this approach is the design of the off-axis electron beam focusing system, particularly when confined-flow focusing is desired. We will show simulated and measured data which demonstrates a solution to this problem. High power test results will also be shown.  
 
TUPKF078 High Current Superconducting Cavities at RHIC impedance, simulation, dipole, linac 1120
 
  • R. Calaga, I. Ben-Zvi, Y. Zhao
    BNL, Upton, Long Island, New York
  • J. Sekutowicz
    Jefferson Lab, Newport News, Virginia
  A five-cell high current superconducting cavity for the electron cooling project at RHIC is under fabrication. Higher order modes (HOMs), one of main limiting factors for high current energy-recovery operation, are under investigation. Calculations of HOMs using time-domain methods in Mafia will be discussed and compared to calculations in the frequecy domain. A possible motivation towards a 2x2 superstructure using the current five-cell design will be discussed and results from Mafia will be presented. Beam breakup thresholds determined from numerical codes for the five-cell cavity as well as the superstructure will also be presented.  
 
TUPKF080 Photoemission Properties of Lead cathode, laser, heavy-ion, vacuum 1126
 
  • J. Smedley, T. Srinivasan-Rao, J. Warren
    BNL, Upton, Long Island, New York
  • R.S. Lefferts, A.R. Lipski
    SBUNSL, Stony Brook, New York
  • J. Sekutowicz
    Jefferson Lab, Newport News, Virginia
  There is significant interest in the possibility of building a super-conducting injector for high average current accelerator applications. One candidate for such a cavity design is superconducting lead. Such an injector would be made considerably simpler if it could be designed to use lead as the photocathode, eliminating the need for Cesiated materials in the injector. In this paper we present a study of the photoemission properties of lead at several UV wavelengths, including a study of the damage threshold of electroplated lead under laser cleaning. A quantum efficiency in excess of 0.1% has been achieved for a laser cleaned, electroplated lead sample with a laser wavelength of 193 nm.  
 
TUPLT001 Beam Dynamics in 100 MeV S-Band Linac for CANDLE linac, emittance, bunching, gun 1129
 
  • B. Grigoryan, V.M. Tsakanov
    CANDLE, Yerevan
  The report presents the results of the beam dynamics study in 100 MeV S-band linear accelerator foreseen as an injector for the CANDLE light source. An impact of the excited longitudinal and transverse wake fields on the particle energy spread and the beam transverse emittance are given.  
 
TUPLT003 Transfer Matrices for the Coupled Space Charge Dominated Six-dimensional Particle Motion space-charge, lattice, storage-ring, coupling 1135
 
  • D.K. Kalantaryan, Y.L. Martirosyan
    CANDLE, Yerevan
  In this paper we present exact analytical solutions for the particle motion in the six-dimensional phase space taking into account the space charge forces of fully linear coupled beam. The transfer matrices for the typical elements of magnetic lattice, such as drifts, cavities, quadrupole and dipole magnets have been obtained. The symplectic transfer matrices are used to develop a tracking program for the coupled betatron and synchro-betatron motion that enables the simulation of the tilted beam effects in circular accelerators.  
 
TUPLT011 The LHC Lead Ion Injector Chain ion, injection, linac, vacuum 1153
 
  • K. Schindl, A. Beuret, A. Blas, J. Borburgh, H. Burkhardt, C. Carli, M. Chanel, T. Fowler, M. Gourber-Pace, S. Hancock, C.E. Hill, M. Hourican, J.M. Jowett, K. Kahle, D. Kuchler, A.M. Lombardi, E. Mahner, D. Manglunki, M. Martini, S. Maury, F. Pedersen, U. Raich, C. Rossi, J.-P. Royer, R. Scrivens, L. Sermeus, E.N. Shaposhnikova, G. Tranquille, M. Vretenar, T. Zickler
    CERN, Geneva
  A sizeable part of the LHC physics programme foresees heavy ion (lead-lead) collisions with a design luminosity of 1027 cm-2 s-1. This will be achieved after an upgrade of the ion injector chain comprising Linac3, LEIR, PS and SPS machines. Each LHC ring will be filled in ~10 minutes with ~600 bunches, each of 7 107 Pb ions. Central to the scheme is the Low Energy Ion Ring (LEIR), which transforms long pulses from Linac3 to high-brilliance bunches by means of 6D multi-turn injection and accumulation via electron cooling. Major limitations along the chain, including space charge, intra-beam scattering, vacuum issues, and emittance preservation are highlighted. The conversion from LEAR (Low Energy Antiproton Ring) to LEIR includes new magnets and power converters, high-current electron cooling, broad-band RF cavities, upgraded beam diagnostics, and UHV vacuum equipment relying on beam scrubbing to achieve a few 10-12 mbar. Major hardware changes in Linac3 (Electron Cyclotron Resonance source, repetition rate, energy ramping cavity), PS (new injection hardware, elaborate RF gymnastics, stripping insertion), and SPS (100 MHz system) are described. An early beam scenario, using fewer bunches but the same bunch intensity to deliver a lower luminosity, reduces the work required for LHC ion operation in spring 2008.  
 
TUPLT016 Improved Performance of the Heavy Ion Storage Ring ESR ion, injection, heavy-ion, storage-ring 1168
 
  • M. Steck, K. Beckert, P. Beller, B. Franczak, B.  Franzke, F. Nolden
    GSI, Darmstadt
  The heavy ion storage ring ESR at GSI allows experiments with stable and radioactive heavy ions over a large range of energies. The energy range available for operation with completely stripped ions has recently been extended to energies as low as 3 MeV/u. Even for bare uranium such low energies can be provided by deceleration of the ions which are stripped to high charge states in a foil at energies of 300-400 MeV/u. After injection the beam is cooled and decelerated in an inverse synchrotron mode interspersed with electron cooling at an intermediate energy. At the lowest energy of 3 MeV/u some hundreds of thousands ions could be electron cooled after deceleration. At energies of 10-20 MeV/u physics experiments with stored and slowly extracted beam have been performed with some million decelerated cooled ions. The cooling of radioactive ions by a combination of stochastic pre-cooling and final electron cooling has been demonstrated. The hot fragment beam, which was injected at an energy of 400 MeV/u, was cooled in about 6 s to a quality useful for precision experiments.  
 
TUPLT018 Layout of the Storage Ring Complex of the International Accelerator Facility for Research with Ions and Antiprotons at GSI antiproton, storage-ring, ion, target 1174
 
  • P. Beller, K. Beckert, A. Dolinskii, B.  Franzke, F. Nolden, C. Peschke, M. Steck
    GSI, Darmstadt
  The storage ring complex of the new international accelerator facility consists of three different rings: the Collector Ring CR, the accumulator/decelerator ring RESR and the New Experimental Storage Ring NESR. The CR will serve for fast stochastic precooling of antiproton and rare isotope (RI) beams. Cooling time constants of about 100 ms for RI beams are envisaged. For experiments with RI beams the RESR serves as a decelerator ring. Precooled RI beams will be injected at 740 MeV/u and then decelerated to variable energies down to 100 MeV/u within about 1 s. The NESR will be the main instrument for nuclear and atomic physics. Besides experiments using an internal gas target, the NESR offers the possibility to collide circulating bunches of ions with electron bunches counter-propagating in a small 500 MeV electron storage ring. The physics program with antiprotons requires the accumulation of high intensity antiproton beams. The accumulation of 7×1010 antiprotons at 3 GeV per hour is foreseen. This will be accomplished by operating the RESR as an accumulator ring equipped with a stochastic cooling system. The NESR could then be used to decelerate antiprotons to 30 MeV.  
 
TUPLT022 Beam Dynamics Simulations at the S-DALINAC for the Optimal Position of Beam Energy Monitors simulation, extraction, optics, site 1186
 
  • B. Steiner, W.F.O. Müller, T. Weiland
    TEMF, Darmstadt
  • A. Richter
    TU Darmstadt, Darmstadt
  The S-DALINAC is a 130 MeV superconducting recirculating electron accelerator serving several nuclear and radiation physics experiments as well as driving an infrared free-electron laser. For the experiments an energy stability of 1·10-4 should be reached. Therefore noninvasive beam position monitors will be used to measure the beam energy. For the measurement the different flight time of the electrons to the ideal particle are compared, that means in the simulations the longitudinal dispersion of the beam transport system is used for the energy detection. The results of the simulations show that it is possible to detect an energy difference of 1·10-4 with this method. The results are also proven by measurements.  
 
TUPLT023 A New Ion Beam Beam Facility for Slow Highly Charged Ions ion, ion-source, target, extraction 1189
 
  • G. Zschornack, S. Landgraf
    TU Dresden, Dresden
  • S. Facsko, D. Kost, W. Möller, H. Tyrroff
    FZR, Dresden
  • F. Grossmann, U. Kentsch, V.P. Ovsyannikov, M. Schmidt, F. Ullmann
    Leybold Vacuum Dresden, Dresden
  A new ion beam facility for slow highly charged ions is presented. It will provide slow highly charged ions from an Electron Cyclotron Resonance (ECR) ion source as well as very highly charged ions at lower ion currents from an Electron Beam Ion Trap (EBIT). As ECR ion source a SUPERNANOGAN source* is applied. The Dresden EBIT**, a room-temperature EBIT, is used to produce comparatively low currents of very highly charged ions. This very compact and long-term stable device is producing highly charged ions at ultimate low costs. The Dresden EBIT working with electron energies up to 15 keV at electron currents up to 50 mA is able to produce bare nuclei up to nickel as Fe26+ or Ni28+, helium-like ions for medium Z such as Ge30+ or Kr34+ and neon-like ions for elements of the high-Z region such as Xe44+ or Ir67+. The ion currents extracted from the Dresden EBIT are typically in the range of some nA per pulse. With the new ion beam facility outstanding possibilities for a wide range of investigations are opened up in areas such as surface analysis, materials science and nanotechnology as well as for basic research in different fields as for instance in atomic and solid state physics.

*The Pantechnik Catalogue, August 2001 Edition, Caen 2001, France **V.P.Ovsyannikov, G.Zschornack; Review of Scientific Instruments, 70 (1999) 2646

 
 
TUPLT026 High Current Ion Beams at Frankfurt University ion, power-supply, plasma, space-charge 1198
 
  • M. Droba, O. Meusel, U. Ratzinger, K. Volk
    IAP, Frankfurt-am-Main
  A new building for the physics faculty at the Goethe-University in Frankfurt is under construction including an experimental hall. The Institute of Applied Physics IAP has started development of a high current ion beam facility consisting of a high voltage terminal(150 kV,I_beam < 300 mA,H-,p,Bi+), a 10 MV linear rf accelerator and a high current storage ring for 150 keV beams. The 150 kV terminal equipment is already ordered while the subsequent units are in the design stage. The storage ring will use a stellarator-like magnetic configuration to allow for a high degree of space charge compensation by electrons. The facility will allow high current beam investigations as well as experiments in fields of plasma, nuclear and atomic physics.  
 
TUPLT037 Dispersion Correction in HERA closed-orbit, luminosity, polarization, positron 1228
 
  • J. Keil, W. Decking
    DESY, Hamburg
  The electron-proton collider HERA at the DESY laboratory in Hamburg has been in operation since 1991. After the luminosity upgrade of HERA in 2001 the control of the horizontal and vertical dispersion function of the positron beam became more important than before. Deviations from the design dispersion in the horizontal plane can change the emittance of the electron beam significantly thus leading to a reduction of the luminosity. For optimizing the polarization of the electron beam the reduction of vertical orbit and dispersion deviations is important. In this paper the combined dispersion and orbit correction in HERA is described and first results are reported.  
 
TUPLT040 CSR - a Cryogenic Storage Ring at MPI-K ion, vacuum, quadrupole, storage-ring 1237
 
  • C.P. Welsch, J. Crespo López-Urrutia, M. Grieser, D. Orlov, C.D. Schroeter, D. Schwalm, J. Ullrich, A. Wolf, R. von Hahn
    MPI-K, Heidelberg
  • X. Urbain
    UCL CRC, Louvain-la-Neuve
  • D. Zajfman
    Weizmann Institute of Science, Physics, Rehovot
  A small cryogenic storage ring is planned to be developed at MPI-K, Heidelberg. The energy in the machine will be variable from 300 keV > down to 20 keV. Electron cooling will be applied to produce a high quality ion beam. The ring shall accommodate slow, vibrationally and rotationally cooled molecular ions and highly charged ions from the EBIT ion source. Moreover, it will serve as a test facility for the low-energy antiproton ring planned within the FLAIR collaboration to be installed at the future GSI facility. A number of technological challenges have to be handled: Especially highly charged ions require a vacuum in the order below 10-13 mbar to achieve reasonable lifetimes. Therefore - and for enabling experiments with rotationally cold molecules - the complete machine will be cooled down to below 10 K. Moreover, experiments with reaction microscopes to determine the full kinematics of ion- (antiproton-) atom or molecule collisions require a bunched operation with a bunch length below 2 ns. The optical elements of the machine and the lattice functions are given and first ideas about the vacuum chamber design are described in this paper.  
 
TUPLT041 Ultra-low Energy Antiprotons at FLAIR antiproton, storage-ring, ion, injection 1240
 
  • C.P. Welsch, M. Grieser, D. Orlov, J. Ullrich, A. Wolf, R. von Hahn
    MPI-K, Heidelberg
  The Future Accelerator Facility for Beams of Ions and Antiprotons at Darmstadt will produce the highest flux of antiprotons in the world. So far it is foreseen to accelerate the antiprotons to high energies (3-15 GeV) for meson spectroscopy and other nuclear and particle physics experiments in the HESR (High Energy Storage Ring). Within the planned complex of storage rings, it is possible to decelerate the antiprotons to about 30 MeV kinetic energy, opening up the possibility to create low energy antiprotons. In the proposed FLAIR facility the antiprotons shall be slowed down in a last step from 300 keV to 20 keV in an electrostatic storage ring (USR) for various in-ring experiments as well as for their efficient injection into traps. In this energy range - especially if one thinks about realizing a real multi-purpose facility with not only antiprotons, but also various highly-charged radioactive ions to be stored and investigated - electrostatic storage rings have clear advantages compared to their magnetic counterparts. In case one envisions to even approach the eV range, electrostatic machines are the only possible choice. This contribution presents the layout and design parameters of the USR.  
 
TUPLT043 Status of the Cooler Synchrotron COSY-Juelich injection, proton, polarization, dipole 1246
 
  • B. Lorentz, U. Bechstedt, J. Dietrich, R. Eichhorn, R. Gebel, A. Lehrach, R. Maier, D. Prasuhn, A. Schnase, H. Schneider, R. Stassen, H. Stockhorst, R. Tölle
    FZJ/IKP, Jülich
  The cooler synchrotron COSY accelerates and stores unpolarized and polarized protons and deuterons in the momentum range between 300 MeV/c to 3.65 GeV/c. To provide high quality beams, an Electron Cooler at injection and a Stochastic Cooling System from 1.5 GeV/c up to maximum momentum are available. Vertically polarized proton beams with a polarization of more than 0.80 are delivered to internal and external experimental areas at different momenta. Externally, the maximum momentum is up to date restricted to approximately 3.4 GeV/c by the extraction elements installed in COSY. In 2003 deuteron beams with different combinations of vector and tensor polarization were made available for internal and external experiments. An rf dipole was installed, which is used to induce artificial depolarizing resonances. It can be used for an accurate determination of the momentum of the stored beams. The status of the cooler synchrotron COSY is presented and future plans are discussed.  
 
TUPLT063 Laser Temporal Pulse Shaping Experiment For SPARC Photoinjector laser, emittance, insertion, feedback 1300
 
  • C. Vicario, A. Ghigo
    INFN/LNF, Frascati (Roma)
  • I. Boscolo, C. Vozzi
    Universita' degli Studi di Milano, MILANO
  • S. Cialdi, A.F. Flacco
    INFN-Milano, Milano
  • M. Nisoli, G. Sansone, S. Stagira
    Politecnico/Milano, Milano
  • M. Petrarca
    INFN-Roma, Roma
  Laser for driving high brightness photoinjector have to produce UV square pulse which is predicted to be the optimum profile for emittance compensation in advanced photoinjectors. The longitudinal laser pulse distribution, according to numerical simulations for the SPARC photoinjector, must be square with rise and fall time shorter than 1 ps and flat top variable up to 10 ps FWHM. In this paper we report the results of pulse shaping obtained using an acousto-optic (AO) programmable dispersive filter (DAZZLER). The DAZZLER was used to perform spectral amplitude and phase modulation of the incoming 100 fs Ti:Sapphire pulses. Because of the finite length of the crystal the maximum duration of the shaped pulse is 6 ps. To overcome this limitation we used a configuration in which the laser pulses passed twice through the AO filter. A dispersive glass section was also used to lengthen the pulse with a single pass in the DAZZLER. In this paper we report the experimental setup, hardware description and time and frequency domain measurements.  
 
TUPLT065 Beams from RF Ovens and ECR Ion Sources plasma, ion, ion-source, injection 1303
 
  • M. Cavenago
    INFN/LNL, Legnaro, Padova
  • T. Kulevoy, S. Petrenko
    ITEP, Moscow
  Beam of silver, copper and recently platinum were produced with the radiofrequency oven technique. The ECRIS (Electron Cyclotron Resonance Ion Source) can be conveniently considered as a charge breeder for any injection device; this approach allows to compare the injection of metals from ovens with other techniques discussed in the literature, like the injection from mevva (Metal Vapor Vacuum Arc) sources or the injection of single charged RIB (radioactive ion beams) or the simple injection of heavy gas. Extensive experiments extracting beams of copper (charge up 13+) or silver (charge up to 19+) or xenon (charge up 20+) with the same ECRIS condition are described, and advantage of rf oven over gas injection are discussed; in particular the oven crucible can be easily voltage biased up to -400 V, to modify ECRIS plasma shape. Heating the tantalum crucibles over 2300 K (average temperature) requires careful axial alignment to avoid the formation of hot spots; preliminary evidence of this effect and its numerical modeling are also described.  
 
TUPLT071 A 5 MeV Electron Linac for Radiation Processing radiation, cathode, linac, focusing 1315
 
  • A. Trifirò, L. Auditore, R.C. Barnà, D. De Pasquale, A. Italiano, M. Trimarchi
    INFN - Gruppo Messina, S. Agata, Messina
  In recent years, radiation processing is rapidly growing in various field of industrial treatments and scientific research as a safe, reliable and economic technique. To match the requirements of several applications, a 5 MeV, 1 kW electron linac has been developed at the Dipartimento di Fisica (Università di Messina), in collaboration with the ENEA Accelerators Group (Frascati- Rome). This self- containing standing wave accelerator, driven by a 3 GHz, 2.5 MW Magnetron, has been designed, by means of the SUPERFISH and PARMELA codes, in such a way as to obtain an autofocusing structure, that will be used to develop a transportable system for 'in-situ' industrial radiography and X-ray digital tomography. For this accelerator, compact pulse forming circuits have been properly developed for the magnetron and the cathode, and pulse frequency can be varied ranging from 1 to 300 Hz, thus allowing the study of several applications of radiation processing. Main features of the accelerating structure, as well as beam spot dimensions, surface dose distribution and electron beam energy range will be described.  
 
TUPLT073 Observation of Coupling Resonance in HIMAC Synchrotron coupling, resonance, ion, synchrotron 1321
 
  • T. Uesugi, T. Fujisawa, K. Noda, S. Shibuya, D. Tann, H. Uchiyama
    NIRS, Chiba-shi
  • Y. Hashimoto
    KEK, Ibaraki
  • I.N. Meshkov, E. Syresin
    JINR, Dubna, Moscow Region
  Coupling resonance was observed at operating points near to Qx-Qy=1. Two-dimensional profile of a beam at its equilibrium was measured, and it was found that the beam was inclined in transverse when the operating point is near to the resonance condition. We will present the detail of the measurement and the results.  
 
TUPLT082 Generation of a Femtosecond Electron Beam for Nanoscience and Nanotechnology gun, laser, linac, emittance 1348
 
  • J. Yang, T. Kozawa, S. Tagawa, Y. Yoshida
    ISIR, Osaka
  A new S-band femtosecond electron linear accelerator was developed in Osaka University for the study of radiation-induced ultrafast physical and chemical reactions in femtosecond time regions. The femtosecond electron accelerator was constructed with a laser driven photocathode RF gun, a linear accelerator (linac) and a magnetic pulse compressor. The RF gun was driven by a mode-locked Nd:YLF picosecond laser. The electron beam produced by the RF gun was accelerated in the linac with energy modulattion by adjusted the RF phase. The magnetic pulse compression, which was constructed with two 45o-bending magnets and four quadrupole magnets, is a technique to longitudinally focus a charged beam by rotating the phase space distribution in a magnetic field. The picosecond electron pulse, which was generated in the RF gun and accelerated in the linac with energy modulation, was compressed into femtosecond by adjusted the quadrupole magnetic fields. The femtosecond electron pulse is expected for the studies of ultrafast reactions in nano-space.  
 
TUPLT086 A 40MeV Electron Source with a Photocathode for X-ray Generation through Laser-compton Scattering laser, linac, emittance, gun 1354
 
  • F. Sakai, N. Nakajyo, Y. Okada, T. Yanagida, M. Yorozu
    SHI, Tokyo
  .3 keV femtosecond X-ray generation through laser-Compton scattering with 14MeV electron source and a TW Ti:sapphire laser was achieved. In order to increase the X-ray energy up to 15 keV for some applications, e.g. protein crystallography, we modified the system to increase electron energy. Electron beams emitted from a S-band RF photocathode are accelerated up to 40MeV with two 1.5m standing-wave linacs. The beams are bended at 90 degree using an achromatic bending system, then focused with a triplet quadrupole-magnet to be interacted with laser pulses. The characteristics of electron beams, emittance, energy and energy dispersion, will be described.  
 
TUPLT088 Beam Cooling at S-LSR laser, ion, resonance, coupling 1360
 
  • A. Noda, H. Fadil, S. Fujimoto, M. Ikegami, T. Shirai, M. Tanabe, H. Tongu
    Kyoto ICR, Uji, Kyoto
  • M. Grieser
    MPI-K, Heidelberg
  • I.N. Meshkov, E. Syresin
    JINR, Dubna, Moscow Region
  • K. Noda, T. Takeuchi
    NIRS, Chiba-shi
  • H. Okamoto, Y. Yuri
    HU/AdSM, Higashi-Hiroshima
  S-LSR is an ion accumulation and cooler ring with the circumference and maximum magnetic rigidity of 22.589 m and 1.0T.m, respectively. Electron beam cooling will be applied for laser-produced hot ion beam after phase rotation. Electron cooler for S-LSR is now under construction and the beam simulation is also going on. Laser cooling of Mg ion with low energy (35 keV) is also planned in 3-dimensional way with use of Synchro-Betatron coupling.so as to realize ultra cold beam. Cancellation of shear force due to orbit-length difference in the dipole section is to be studied with use of overlapping of the radial electric field inversely proportional to the curvature radius with the uniform vertical magnetic field. Possible experiments to approach to ultra-cold beam is also to be studied by computer simulation  
 
TUPLT103 Possibilities for Experiments with Rare Radioactive Ions in a Storage Ring Using Individual Injection ion, injection, kicker, target 1393
 
  • A.O. Sidorin, I.N. Meshkov, A.O. Sidorin, A. Smirnov, E. Syresin, G.V. Troubnikov
    JINR, Dubna, Moscow Region
  • T. Katayama
    CNS, Saitama
  • W. Mittig, P. Roussel-Chomaz
    GANIL, Caen
  A radioactive ion beam produced at a target bombarded with a primary beam has after a fragment separator a relatively large emittance and small production rate. For instance, typical flux of 132Sn isotope at the exit of fragment-separator is about 5×105 ions/s. Conventionally used scheme of the ion storage in a ring based on multitutrn injection and (or) RF stacking and stochastic cooling application can not provide a high storage rate at so pure intensity especially for short lived isotopes. In this report we discuss an alternative storage scheme which is oriented to the continuous ion beam from fragment separator at production rate of 104 ions/s or even less. It is based on the fact, that at low production rate the parameters of each particle can be measured individually with rather high accuracy. The particle trajectory can be individually corrected in a transfer channel from fragment separator to the storage ring using system of fast kickers. A fast kicker in the ring synchronized with a circulating bunch provides continuous injection of the ions. The scheme permits to store the ion number required for precise mass measurements and internal target experiment. A hope to obtain large luminosity of ion-electron collisions is related with a possibility of the ion beam crystallization at small particle number.  
 
TUPLT104 Particle Dynamics in the Low Energy Positron Toroidal Accumulator: First Experiments and Results positron, septum, quadrupole, kicker 1396
 
  • G.V. Troubnikov, V. Antropov, E. Boltushkin, V. Bykovsky, A.I. Ivanov, S. Ivashkevich, A. Kobets, I.I. Korotaev, V. Lohmatov, I.N. Meshkov, D. Monahov, V. Pavlov, R. Pivin, I.A. Seleznev, A.O. Sidorin, A. Smirnov, E. Syresin, S. Yakovenko
    JINR, Dubna, Moscow Region
  The project of Low Energy Particle Toroidal Accumulator (LEPTA) is dedicated to construction of a positron storage ring with electron cooling of positrons circulating in the ring. Such a peculiarity of the LEPTA enables it automatically to be a generator of positronium (Ps) atoms, which appear in recombination of positrons with cooling electrons inside the cooling section of the ring. The project has a few goals: to study electron and positron dynamics in the ring (particle motion in the horizontal and vertical planes are coupled contrary to of classic cycle accelerators), to set up first experiments with Ps in flight; Magnetic measurements of main LEPTA elements are performed. Several elements : kicker, injection system of electron beam, helical quadrupole, septum magnet are tested and expected design parameters were achieved for those elements. The investigations of electron beam dynamics are started. First results of experiments with circulating electron beam are presented and discussed in this article. Several beam diagnostic methods for studying of strong coupled motion of charged particles are proposed and tested.  
 
TUPLT117 Test of Materials for the High Temperature Intense Neutron Target Converter target, radiation, vacuum, diagnostics 1413
 
  • K. Gubin, M. Avilov, S. Fadeev, A. Korchagin, A. Lavrukhin, P.V. Logatchev, P. Martyshkin, S.N. Morozov, S. Shiyankov
    BINP SB RAS, Novosibirsk
  • J. Esposito, L.B. Tecchio
    INFN/LNL, Legnaro, Padova
  Nowadays in LNL INFN (Italy) the project for gain and study of short-lived radioactive isotopes is in progress [1]. The intense neutron target is required for these goals. In BINP, Russia, the design of high temperature target cooled by radiation is proposed. Presented paper describes the results of preliminary test of materials for the target converter: MPG6-brand graphite, graphite material on the basis of 13C, boron carbide, glassy carbon. Test included the distributed heating over volume of samples with the electron beam up to conditions, simulating the converter working regime (heating power density up to 1300 W/cm2, temperature up to 20000C, temperature gradient up to 1000C/mm). Graphite materials show its adaptability under conditions specified.  
 
TUPLT118 Test of Construction for High Temperature Intense Neutron Target Prototype target, simulation, vacuum, radiation 1416
 
  • K. Gubin, M. Avilov, D. Bolkhovityanov, S. Fadeev, A. Lavrukhin, P.V. Logatchev, P. Martyshkin, A.A. Starostenko
    BINP SB RAS, Novosibirsk
  • O. Alyakrinsky, L.B. Tecchio
    INFN/LNL, Legnaro, Padova
  Within the framework of the creation of the high temperature intense neutron target prototype, the thermal tests of the preliminary design were done in BINP. Tests were aimed at experimental definition of temperature and heat flux distribution over the construction, heat transfer via the contact areas between materials selected, specifying the properties of these materials. This paper presents the experimental test results as well as the comparison of experimental data with the results of numerical simulation of the working regimes of the construction.  
 
TUPLT120 Commissioning of Electron Cooler EC-300 gun, ion, cathode, vacuum 1419
 
  • V.B. Reva, E.A. Bekhtenev, V.N. Bocharov, A.V. Bubley, Y. Evtushenko, A.D. Goncharov, A.V. Ivanov, V.I. Kokoulin, V.V. Kolmogorov, M.N. Kondaurov, S.G. Konstantinov, V.R. Kozak, G.S. Krainov, Ya.G. Kruchkov, E.A. Kuper, A.S. Medvedko, L.A. Mironenko, V.M. Panasyuk, V.V. Parkhomchuk, K.K. Schreiner, B.A. Skarbo, A.N. Skrinsky, B.M. Smirnov, M.A. Vedenev, R. Voskoboinikov, M.N. Zakhvatkin, N.P. Zapiatkin
    BINP SB RAS, Novosibirsk
  • J. Li, W. Lu, L.J. Mao, Z.X. Wang, X.B. Yan, X.D. Yang, J.H. Zhang, W. Zhang, H.W. Zhao
    IMP, Lanzhou
  The article deals with the commissioning of electron cooler EC-300. It was designed and manufactured for CSR experiment (IMP, Lanzhou, China) by BINP, Russia. The energy of electron beam is up to 300 keV, the electron current is up to 3 A, the magnetic field in the cooling section is up to 1.5 kG. The major innovation of the cooler is the variable profile of electron beam, the electrostatic bends of the electron beam and the system of the magnetic field correction. During commissioning the linearity of the magnetic field 10-6 was obtained, the recuperation efficiency was observed up 10-6 , the pressure of residual gas in the vacuum chamber was 5? 10-11 torr during operation with the electron beam. The CSRe cooler for IMP is a new step at cooling technique and the first results achieved during commissioning are very interesting for accelerator physics.  
 
TUPLT128 The Operation Modes of Kharkov X-ray Generator based on Compton Scattering NESTOR laser, photon, storage-ring, scattering 1428
 
  • A.Y. Zelinsky, E.V. Bulyak, P. Gladkikh, I.M. Karnaukhov, A. Mytsykov, A.A. Shcherbakov
    NSC/KIPT, Kharkov
  • T.R. Tatchyn
    SLAC/SSRL, Menlo Park, California
  The results of theoretical and numerical considerations of linear Compton scattering are used to evaluate characteristics of X-rays produced by collision between a low emittance electron beam and intensive laser light in an X-rays generator NESTOR of NSC KIPT. Two main generation modes have been under consideration at preliminary NESTOR design. There are the operation mode for medicine 33.4 keV X-rays production using 43 Mev electron beam and Nd:YAG laser beam and higher energy X-rays production mode providing X-rays with energy up to 900 keV with 225 MeV electron beam and Nd:YAG laser beam. It is supposed to use an optical cavity for laser beam accumulation of about 2.6 m long and an interaction angle of about 30 in both operation modes. A few more operation modes provide possibility to expand operation range of NESTOR. Using interaction angle 100 and 1500 along with optical resonator 42 or 21 cm long and the second mode of laser light it is possible to produce X-rays in energy range from a few keV till 1.5 MeV. The intensity and spectral brightness of the X-rays is expected to be ~ 1013 phot/s and ~ 1013 phot/s/mm2/mrad2/0.01%BW respectively.  
 
TUPLT129 NESTOR Reference Orbit Correction pick-up, laser, radiation, storage-ring 1431
 
  • V.A. Ivashchenko, P. Gladkikh, I.M. Karnaukhov, A. Mytsykov, V.I. Trotsenko, A.Y. Zelinsky
    NSC/KIPT, Kharkov
  It is known that intensity of scattered radiation in X-rays generators based on Compton scattering strongly depends on relative position of electron and laser beams. For this reason it is very important to have effective system of reference orbit correction and beam position control as well along whole ring as at the interaction point. In the paper the results of design and development of reference orbit correction system for compact storage ring NESTOR are presented. The total reference orbit correction will be carried out in vertical plane only. Correctors will be disposed on quadrupole lenses and will be provide reference orbit correction angle up to 0.10. The local correction at the interaction point will be provided with four correctors located at the interaction straight section. In the article results of calculations, layout of whole system, quadrupole lenses and pick-up station parameters and schemes are presented.  
 
TUPLT133 Test Results of Injector Based on Resonance System with Evanescent Oscillations resonance, bunching, cathode, emittance 1437
 
  • S.A. Perezhogin, M.I. Ayzatskiy, E.Z. Biller, K. Kramarenko, V.A. Kushnir, V.V. Mytrochenko, Z.V. Zhiglo
    NSC/KIPT, Kharkov
  Report presents results of tune-up and tests of the compact electron S ? band injector consisting of the low-voltage diode electron gun and the bunching system based on the resonant system with the evanescent oscillation. In the considered bunching system electrical field increased from beam entrance to an exit of the buncher. The injector designed for bunching of electron beam with initial energy of 25 keV and pulse current of 300 mA and accelerating it to the energy of 1 MeV.  
 
TUPLT134 Lattice of NSC KIPT Compact Intense X-ray Generator NESTOR storage-ring, lattice, laser, sextupole 1440
 
  • A.Y. Zelinsky, P. Gladkikh, I.M. Karnaukhov, V. Markov, A. Mytsykov, A.A. Shcherbakov
    NSC/KIPT, Kharkov
  The new generation of the intense X-rays sources based on low energy electron storage ring and Compton scattering of laser beam allows to produce X-rays with intensity up to 1014 phot/s. One of the main traits of a storage ring lattice for such generator type is using of magnetic elements with combined focusing functions such as bending magnets with quadrupole and sextupole field components. In combination with very low bending radius and dense magnetic elements setting along ring circumference it leads to increasing of 3D magnetic field effects on electron beam dynamics and can decrease generated radiation intensity drastically. For the reasons of very low electron beam size at the interaction point and strong focusing in a compact storage ring the questions of determination of accuracy of bending magnet is very important too. The paper is devoted to the description of lattice of NSC KIPT Compact X-ray generator NESTOR. The results of investigations of the effects of 3D magnetic field and harmonic compound due to manufacture errors of bending magnets, bending magnet and lenses edges on electron beam dynamics are presented.  
 
TUPLT137 Comparative Simulation Studies of Electron Cloud Build-up for ISIS and Future Upgrades simulation, proton, injection, synchrotron 1446
 
  • G. Bellodi
    CCLRC/RAL/ASTeC, Chilton, Didcot, Oxon
  Electron cloud effects currently limit the performance of several proton accelerators operating with high beam current. Although ISIS, the 160 kW 70-800 MeV proton synchrotron at the Rutherford Appleton Laboratory (UK), has never appeared to be affected by the problem in its 15 years of operations, e-p instabilities could potentially be a cause of concern for future machine upgrades to higher beam powers. In this paper we review the present status of simulations for ISIS and compare it to preliminary results for two upgrade options: a 0.5MW 180-800 MeV scheme and a 1MW 0.8-3 GeV scheme with an additional synchrotron using ISIS as a booster (see C. Prior et al., ISIS megawatt upgrade plans, in Proceedings of the 2003 Particle Accelerator Conference PAC 2003, Portland, Or, USA).  
 
TUPLT151 Status of the Fermilab Electron Cooling Project recirculation, vacuum, acceleration, antiproton 1485
 
  • J.R. Leibfritz, D.R. Broemmelsiek, A.V. Burov, K. Carlson, B. Kramper, T. Kroc, M. McGee, S. Nagaitsev, L. Nobrega, G. Saewert, C.W. Schmidt, A.V. Shemyakin, M. Sutherland, V. Tupikov, A. Warner
    Fermilab, Batavia, Illinois
  • G. Kazakevich
    BINP SB RAS, Novosibirsk
  • S. Seletsky
    Rochester University, Rochester, New York
  Fermilab has constructed and commissioned a full-scale prototype of a multi-MV electron cooling system to be installed in the 8.9 GeV/c Fermilab Recycler ring. This prototype was used to test all of the electron beam properties needed for cooling. However, because the prototype is not located within proximity of the Recycler ring, the actual electron cooling of antiprotons can not be demonstrated until it is relocated. The Fermilab electron cooling R&D project is scheduled to be completed in May, 2004 at which time it will be disassembled and relocated to a newly constructed facility where it will be installed in the Recycler. This paper describes the experimental results obtained with the prototype cooler system, gives an overview of the new electron cooling facility, and discusses the overall status of the project.  
 
TUPLT156 Progress in Ideal High-intensity Unbunched Beams in Alternating Gradient Focusing Systems focusing, quadrupole, emittance, simulation 1494
 
  • R. Bhatt, C. Chen, J. Zhou
    MIT/PSFC, Cambridge, Massachusetts
  A persistent challenge in high-intensity accelerator design is the optimization of matching conditions between a beam injector and a focusing system in order to minimize non-laminar flows, envelope oscillations, emittance growth, and halo production. It has been shown [*] that the fluid motion of a thin space-charge dominated beam propagating through a linear magnetic focusing channel consisting of any combination of uniform or periodic solenoidal fields and alternating gradient quadrupole fields can be solved by a general class of corkscrewing elliptic beam equilibria. The present work extends this discussion to asymmetric PPM focusing and derives conditions under which a uniform density elliptical beam can be matched to such a focusing channel by considering the fluid equilibrium in the paraxial limit. Methods of constructing such a beam are also discussed, with particular attention devoted to analytic electrode design for Pierce-type gun diodes of elliptical cross-section. Several applications are discussed, including heavy-ion fusion and a high-efficiency ribbon beam microwave amplifier for accelerator applications.

* C. Chen, R. Pakter, R. Davidson, "Ideal Matching of Heavy Ion Beams," Nucl. Inst. And Methods, A 464 (2001) p. 518-523

 
 
TUPLT159 First Commissioning Experiments at DARHT-II induction, target, emittance, diagnostics 1497
 
  • C. Ekdahl, E.O. Abeyta, L. Caudill, K.C.D. Chan, D. Dalmas, S. Eversole, R.J. Gallegos, J. Harrison, M. Holzscheiter, E. Jacquez, J. Johnson, B.T. McCuistian, N. Montoya, K. Nielsen, D. Oro, L. Rodriguez, P. Rodriguez, M. Sanchez, M. Schauer, D. Simmons, H.V. Smith, J. Studebaker, G. Sullivan, C. Swinney, R. Temple
    LANL, Los Alamos, New Mexico
  • H. Bender, W. Broste, C. Carlson, G. Durtschi, D. Frayer, D. Johnson, K. Jones, A. Meidinger, K. Moy, R. Sturgess, C.-Y. Tom
    Bechtel Nevada, Los Alamos, New Mexico
  • Y.-J. Chen, T. Houck
    LLNL, Livermore, California
  • S. Eylon, W. Fawley, E. Henestroza, S. Yu
    LBNL, Berkeley, California
  • T. Hughes, C. Mostrom
    Mission Research Corporation, Albuquerque, New Mexico
  The second axis of the Dual Axis Radiographic Hydro-Test (DARHT) facility will provide up to four short(< 150 ns) radiation pulses for flash radiography of high-explosive driven implosion experiments[1]. The DARHT-II linear induction accelerator (LIA) will produce a 2-kA,18-MeV,2-micro-s electron beam. A fast kicker will cleave four short pulses out of the beam, which will focused onto a tantalum target for conversion to bremsstrahlung pulses for radiography. The first tests of the second axis accelerator were designed to demonstrate the technology, and to meet the modest performance requirements for closing out the DARHT-II construction project. These experiments demonstrated that we could indeed produce a 1.2 kA beam with pulse length 0.5-1.2 s and accelerate it to 12.5 MeV. These de-rated parameters were chosen to minimize risk of damage in these first experiments with this novel accelerator. The beam was stable to the BBU instability for these parameters. In fact, we had to reduce the magnetic guide field by a factor of 5 before any evidence of BBU was observed. We will discuss the results of these experiments and their implications, as well as our plans for continuing with DARHT-II commissioning.  
 
TUPLT160 Development of a 25-mA, 12% Duty Factor (df) H- Source for LANSCE emittance, plasma, simulation, ion 1500
 
  • G. Rouleau, A. Arvin, E. Chacon-Golcher, E. Geros, G. Jacobson, J. Meyer, P. Naffziger, S. Schaller, J.D. Sherman, J. Stelzer, J. Zaugg
    LANL/LANSCE, Los Alamos, New Mexico
  Present operations at the Los Alamos Neutron Science Center (LANSCE) accelerator use a surface conversion source to provide 80-keV, 16 to 18-mA H- beams with typical rms normalized emittance of 0.13 (pmm-mrad). Operational flexibility of the 800-MeV linac and proton storage ring will be increased by a higher current H- source. The present goal is to achieve a 25-mA H- surface converter source with modest (10-20%) emittance increase without sacrificing the present LANSCE production source 12% df and 28 day lifetime. The LANSCE 80-kV ion source test stand (ISTS) has been brought into reliable 24-hour per day operation with computer control and modern electronics. A fourth production source has been fabricated, and is now operating on the ISTS. H- currents up to 25mA have been observed with 0.15 to 0.18(pmm-mrad) rms normalized emittances. An experimental study of surface converter geometries and electron filters at the emitter electrode are planned to optimize source current and emittance.  
 
TUPLT163 Achieving Beam Quality Requirements for Parity Experiments at Jefferson Lab feedback, polarization, damping, target 1509
 
  • Y.-C. Chao, H. Areti, F.J. Benesch, B. Bevins, S.A. Bogacz, S. Chattopadhyay, J.M. Grames, J. Hansknecht, A. Hutton, R. Kazimi, L. Merminga, M. Poelker, Y. Roblin, M. Tiefenback
    Jefferson Lab, Newport News, Virginia
  • D. Armstrong
    The College of William and Mary, Williamsburg
  • D. Beck, K. Nakahara
    University of Illinois, Urbana
  • K. Paschke
    University of Massachusetts, Amherst
  • M. Pitt
    Virginia Polytechnic Institute and State University, Blacksburg
  Measurement of asymmetry between alternating opposite electron polarization in electron-nucleon scattering experiments can answer important questions about nucleon structures. Such experiments impose stringent condition on the electron beam quality, and thus the accelerator used for beam creation and delivery. Of particular concern to such ?parity? experiments is the level of correlation between beam characteristics (orbit, intensity) and electron polarization that can obscure the real asymmetry. This can be introduced at the beam forming stage, created due to scraping, or not damped to desired level due to defective transport. Suppression of such correlation thus demands tight control of the beam line from cathode to target, and requires multi-disciplined approach with collaboration among nuclear physicists and accelerator physicists/engineers. The approach adopted at Jefferson Lab includes reduction of correlation source, improving low energy beam handling, and monitoring and correcting global transport. This paper will discuss methods adopted to meet the performance criteria imposed by parity experiments, and ongoing research aimed at going beyond current performance.  
 
TUPLT164 CEBAF Injector Achieved World's Best Beam Quality for Three Simultaneous Beams with a Wide Range of Bunch Charges laser, space-charge, gun, cathode 1512
 
  • R. Kazimi, K. Beard, F.J. Benesch, A. Freyberger, J.M. Grames, T. Hiatt, A. Hutton, G.A. Krafft, L. Merminga, M. Poelker, M. Spata, M. Tiefenback, B.C. Yunn, Y. Zhang
    Jefferson Lab, Newport News, Virginia
  The CEBAF accelerator simultaneously provides three 499 MHz interleaved continuous electron beams spanning 5 decades in beam intensity (a few nA to 200 uA) to three experimental halls. The typical three-user physics program became more challenging when a new experiment, G0, was approved for more than six times higher bunch charge than is routine. The G0 experiment requires up to 8 million electrons per bunch (at a reduced repetition rate of 31 MHz) while the lowest current hall operates at 100 electrons per bunch simultaneously. This means a bunch destined to one hall may experience significant space charge forces while the next bunch, for another hall, is well below the space charge limit. This disparity in beam intensity is to be attained while maintaining best ever values in the beam quality, including final relative energy spread (<2.5x 10-5 rms) and transverse emittance (<1 mm-mrad norm. rms). The difficulties related to space charge emerge in the 10m long, 100 keV section of the CEBAF injector during initial beam production and acceleration. A series of changes were introduced in the CEBAF injector to meet the new requirements, including changes in the injector setup, adding new magnets, replacing lasers used for the photocathode and modifying typical laser parameters, stabilizing RF systems, and changes to standard operating procedures. In this paper, we will discuss all these modifications in some detail including the excellent agreement between the experimental results and detailed simulations. We will also present some of our operational results.  
 
TUPLT165 A PARMELA Model of the CEBAF Injector valid over a Wide Range of Parameters simulation, space-charge, laser, emittance 1515
 
  • Y. Zhang, K. Beard, F.J. Benesch, Y.-C. Chao, A. Freyberger, J.M. Grames, R. Kazimi, G.A. Krafft, R. Li, L. Merminga, M. Poelker, M. Tiefenback, B.C. Yunn
    Jefferson Lab, Newport News, Virginia
  A pre-existing PARMELA model of the CEBAF injector has been recently verified using machine survey data and also extended to 60 MeV region. The initial distribution and temperature of an electron bunch are determined by the photocathode laser spot size and emittance measurements. The improved injector model has been used for extensive computer simulations of the simultaneous delivery of the Hall A beam required for a hypernuclear experiment, and the Hall C beam, required for a parity experiment. The Hall C beam requires a factor of 6 higher bunch charge than the Hall A beam, with significantly increased space charge effects, while the Hall A beam has an exceedingly stringent energy spread requirement of 2.5x 10-5 rms. Measurements of the beam properties of both beams at several energies (100 keV, 500 keV, 5 MeV, 60 MeV) and several values of the bunch charge were performed using the standard quad-wire scanner technique. Comparisons of simulated particle transmission rate, longitudinal beam size, transverse emittance and twiss parameters, and energy spread against experimental data yield reasonably good agreement. The model is being used for searching for optimal setting of the CEBAF injector.  
 
TUPLT171 ORBIT Simulations of the SNS Accumulator Ring simulation, injection, linac, space-charge 1530
 
  • J.A. Holmes, S.C. Bunch, S.M. Cousineau, V.V. Danilov, S. Henderson, A. Shishlo
    ORNL/SNS, Oak Ridge, Tennessee
  • M. Plum
    LANL, Los Alamos, New Mexico
  • Y. Sato
    IUCF, Bloomington, Indiana
  As SNS undergoes construction, many detailed questions arise concerning strategies for commissioning and operating the accumulator ring. The ORBIT Code is proving to be an indispensible tool for addressing these questions and for providing guidance to the physicists and decision makers as operation draws near. This paper shows the application of ORBIT to a number of ring issues including exclusion of the HEBT RF cavities during commissioning, the detailed effect of the injection chicane magnets on the beam, the effects and correction of magnet alignment and multipole errors, debunching of the linac 402.5 MHz beam structure, the injection of self consistent uniform beam configurations, and initial electron cloud simulations.  
 
TUPLT183 Magnetized Beam Transport in Electron Coolers with Opposing Solenoid Fields quadrupole, optics, ion, coupling 1556
 
  • J. Kewisch, C. Montag
    BNL, Upton, Long Island, New York
  To improve cooling capability of electron coolers magnetized beams in strong solenoid fields are used. Too avoid betatron coupling in the ion coupling compensation is required. For the RHIC electron cooler we propose a scheme consisting of two identical solenoids with opposing fields, connected by a quadrupole matching section that preserves the electron beam magnetization. Since the fringe fields of the individual magnets overlap, the matching section can not be designed with standard optics codes. We developed an optimization code based on particle tracking instead. Input for the program are the simulated/measured field maps of the magnets. We demonstrate that the transverse temperature of the electron beam does not increase.  
 
WEOACH02 Gas Condensates onto a LHC Type Cryogenic Vacuum System Subjected to Electron Cloud vacuum, proton, synchrotron, injection 126
 
  • V. Baglin, B.J. Jenninger
    CERN, Geneva
  In the Large Hadron Collider (LHC), the gas desorbed via photon stimulated molecular desorption or electron stimulated molecular desorption will be physisorbed onto the beam screen held between 5 and 20 K. Studies of the effects of the electron cloud onto a LHC type cryogenic vacuum chamber have been performed with the cold bore experiment (COLDEX) installed in the CERN Super Proton Synchrotron (SPS). Experiments performed with gas condensates such as H2, H2O, CO and CO2 are described. Implications to the LHC design and operation are discussed.  
Video of talk
Transparencies
 
WEOACH03 Achievement of 35 MV/m in the TESLA Superconducting Cavities Using Electropolishing as a Surface Treatment linac, superconductivity, collider, coupling 129
 
  • L. Lilje
    DESY, Hamburg
  The Tera Electronvolt Superconducting Linear Accelerator TESLA is the only linear electron-positron collider project based on superconductor technology for particle accelaration. In the first stage with 500 GeV center-of-mass energy an accelerating field of 23.4MV/m is needed in the superconducting niobium cavities which are operated at a temperature of 2 K and a quality factor Q0 of 1010. This performance has been reliably achieved in the cavities of the TESLA Test Facility (TTF) accelerator. The upgrade of TESLA to 800 GeV requires accelerating gradients of 35 MV/m. Using an improved cavity treatment by electrolytic polishing it has been possible to raise the gradient to 35 - 43 MV/m in single cell resonators. Here we report on the successful transfer of the electropolishing technique to multi-cell cavities. Presently four nine-cell cavities have achieved 35 MV/m at Q_0 = 5 × 109, and a fifth cavity could be excited to 39 MV/m. In two high-power tests it could be verified that EP-cavities preserve their excellent performance after welding into the helium cryostat and assembly of the high-power coupler. One cavity has been operated for 1100 hours at the TESLA-800 gradient of 35 MV/m and 57 hours at 36 MV/m without loss in performance.  
Video of talk
Transparencies
 
WEYCH02 Technical Issues for Large Accelerators based on High Gradient SC Cavities collider, vacuum, linac, radiation 137
 
  • C. Pagani, C. Pagani
    DESY, Hamburg
  The perspective to build large accelerators based on high gradient superconducting cavities is posing a number of new problems that have been addressed in the preparation of the TESLA project. Starting from the experience gained with the past large installations, such as LEP2 at CERN and CEBAF at JLab, in this paper I discuss the new demands and the solution envisaged. Industrial production issues are focussed in terms of large scale production, reviewed quality control criteria and cost reduction. The impact on component design and engineering together with the expected improvements in term of performances and reliability are also outlined.  
Video of talk
Transparencies
 
WEODCH02 Interaction of Stored Ions with Electron Target in Low Energy Electrostatic Ring ion, target, cathode, proton 162
 
  • E. Syresin
    JINR, Dubna, Moscow Region
  • K. Noda
    NIRS, Chiba-shi
  • T. Tanabe
    KEK, Ibaraki
  The KEK electrostatic ring is used for investigations of molecular, bimolecular and DNA ions. The electron target installed in this ring has same construction as usual electron cooler. The interaction of stored ions with the electrons increases the ion lifetime at electron cooling caused by a suppression of the ion scattering on the residual gas atoms. The proton lifetime of 2 s was increased in the experiments by factor 2 at the electron cooling with the electron beam current of 0.2 mA, the proton energy of 20 keV and the residual gas pressure of 0.04 nTorr. However the electron-ion interaction can decrease the ion lifetime caused by an excitation of the transverse instability produced by an intensive electron beam. So in the KEK electrostatic ring the proton lifetime is reduced to 1.7 s at detuning of electron acceleration voltage from nominal cooler value on 0.4 V. The simulation of electron cooling and transverse instability of the light and DNA ions are discussed in this report.  
Video of talk
Transparencies
 
WEYLH03 Collective Effects and Instabilities in Space Charge Dominated Beams space-charge, resonance, simulation, impedance 189
 
  • J.A. Holmes
    ORNL/SNS, Oak Ridge, Tennessee
  Significant progress in the detailed computational study of collective beam dynamics is being driven by the spectacular increase in computer power. To take advantage of this, sophisticated physics models are being applied to ever more realistic and detailed situations, so that it is no longer necessary to restrict computer studies to highly idealized depictions of beam dynamics questions. This presentation will illustrate the application of a number of collective beam dynamics models to a range of accelerator physics problems in high intensity proton rings. In particular, we will consider the effects of space charge, transverse and longitudinal impedances, and electron cloud formation on beam parameters, stability, halo formation, collimation and losses, and possible equilibrium configurations. Examples will be taken from PSR, the CERN PS Ring, and SNS.  
Video of talk
Transparencies
 
WEILH00 Industrial Involvement in EC Supported Accelerator R&D in the 6th Framework Programme and in Preparing Large Scale Accelerator Projects linac, vacuum, proton, klystron 194
 
  • D. Proch
    DESY, Hamburg
  The presentation will cover industrial involvement in EC supported accelerator R&D in the 6th framework programme and in preparing large scale accelerator projects (TESLA).  
Video of talk
Transparencies
 
WEILH01 Methods for Successful Technology Transfer in Physics radiation, instrumentation, collider, plasma 198
 
  • K.N. Hill
    Qi3, Cambridge
  The development of accelerators for scientific research generates significant technologies of interest to industry. As physicists and technologists we also require strong partnerships with industry in order that it may supply us with the instrumentation and systems we require for new apparatus. We will discuss the methods developed for the UK Particle Physics and Astronomy Research Council (PPARC) and applied on behalf of CERN to encourage successful knowledge transfer into industry. Case studies will illustrate the hurdles that must be surmounted and effective methods to build successful partnerships, licensing opportunities and spinout companies. Factors considered will include assessment of the commercial potential of technologies, personal motivations for academic/industrial collaboration, sources of funding, and effects on the academic groups involved in knowledge transfer activity.  
Video of talk
Transparencies
 
WEPKF003 Design of the End Magnets for the IFUSP Main Microtron microtron, booster, magnet-design, linac 1591
 
  • M.L. Lopes, A.A. Malafronte, M.N. Martins, J. Takahashi
    USP/LAL, Bairro Butantan
  • K.-H. Kaiser
    IKP, Mainz
  The Instituto de Física da Universidade de São Paulo (IFUSP) is building a two-stage 31 MeV continuous wave (cw) racetrack microtron. In this work we describe the characteristics of the end magnets for the IFUSP main microtron. The magnets are part of the main acceleration stage, which raises the energy from 4.9 to 31 MeV. We are studying the possibility of increasing the energy up to 38 MeV, so the magnets should have approximately 2x1 m2 region of useful field. The dipoles have a 0.1410 T magnetic field and 1 part in 1000 homogeneity without correcting devices. Using a 2D magnetic field code (FEMM), we illustrate the use of homogenizing gaps with different forms and non parallel pole faces to achieve the necessary homogeneity. The use of clamps to produce reverse fields to reduce the vertical defocusing strength on the beam is also described. In order to calculate the beam trajectories and to evaluate the magnetic field homogeneity within the useful region, a 3D magnetic field software (TOSCA) was used.  
 
WEPKF005 Pressure Field Distribution in a Cylindrical Geometry with Arbitrary Cross Section vacuum, storage-ring 1597
 
  • F.T. Degasperi
    FATEC-SP, Sao Paulo, SP
  • M.N. Martins, J. Takahashi
    USP/LAL, Bairro Butantan
  • L.L. Verardi
    IBILCE - UNESP, Sao Jose do Rio Preto, SP
  This work presents analytical and numerical results for the pressure field distribution along the axis of tubular geometries with arbitrary axisymmetric cross sections with an arbitrary time- and position-dependent gas source. Several areas of applied physics deal with problems in high-vacuum and ultra high-vacuum technology that present tubular form. In many cases one finds tubes with non uniform cross sections, like parts of particle accelerators, colliders, storage rings, gravitational antennas, and electron devices, like klystrons, electron microscopes, and also parts of vacuum systems in general, for instance, bellows, conical pipes and others. In this work one can get the detailed pressure distribution is not determined. This work presents and describes in detail the pressure field in tubes with arbitrary axisymetric cross sections. Details of the mathematical and physical formulations and modeling are given; specific conductance and specific throughput are defined; and a detailed discussion about the boundary conditions is given. These concepts and approach are applied to usual realistic cases, like conical tubes and bellows, with typical laboratory dimensions.  
 
WEPKF007 Vacuum Characterisation of a Woven Carbon Fiber Cryosorber in Presence of H2 vacuum, injection, scattering, collider 1603
 
  • V. Baglin, H. Dupont, T. Garcin
    CERN, Geneva
  Some of the cryogenic components in the Large Hadron Collider (LHC) will operate at 4.5 K. The H2 desorption will rapidly increase to the saturated vapour pressure, 3 orders of magnitude larger than the design pressure. Therefore, the use of cryosorbers is mandatory to provide the required pumping capacity and pumping speed. The behaviour of a woven carbon fiber to be used as a cryosorber has been studied under H2 injection. The pumping speed and capacity measured in the range 6 to 30 K are described. Observations made with an electron microscope are shown. A proposed pumping mechanism and the implications to the LHC are discussed.  
 
WEPKF015 The Design of Cold to Warm Transitions of the LHC vacuum, insertion, collider, impedance 1624
 
  • J. Knaster, B.J. Jenninger, D.R. Ramos, G. Ratcliffe, R. Veness
    CERN, Geneva
  The Large Hadron Collider (LHC) is the next accelerator being constructed on the CERN site to be operational in 2007. It will accelerate and collide 7 TeV protons and heavier ions up to lead. More than 2000 cryomagnets working at 1.9 or 4.5 k will form part of the magnetic lattice of the LHC. The transitions from cryogenic temperatures to room temperature zones will be achieved by 200 cold to warm transitions (CWTs). The CWTs will compensate for longitudinal and transversal displacements between beam screens and cold bores, ensuring vacuum continuity without limiting the aperture for the beam. The transverse impedance contribution is kept below the assigned total budget of 1 MΩ/m by means of a 5 μm thick Cu coating that also minimises the dynamic heat load through image currents. Tests have been performed that confirm that the static heat load per CWT to the cryomagnets remains below 2.5 W, hence validating the design.  
 
WEPKF026 Kicker Pulser with High Stability for the BESSY FEL kicker, laser, power-supply, extraction 1654
 
  • J. Feikes, O. Dressler, J. Kuszynski
    BESSY GmbH, Berlin
  In the BESSY FEL design a kicker system is forseen to extract electron bunches from the main LINAC into two FEL beam lines, beside the straigth main beamline. Sine half wave pulsers with a repetion rate of up to 1 kHz and modest pulse currents of 120A will be used. To receive the maximum FEL gain, it is crucial, that the extracted bunches enter well centered into the undulators. Hence, the extraction demands for very high short-term stability of the magnetic field (shot to shot). A kicker pulse amplitude with a relative amplitude jitter smaller than 5* 10-5 would be tolerable ?more than one order smaller than the jitter of conventional BESSY II kicker systems in use. A new highly stable semiconductor based kicker pulser prototype was designed, built and tested at BESSY. It was shown that the stability of the pulse current fulfills the FEL requirements. The pulser design, its layout and the corresponding pulse current jitter measurements are presented.  
 
WEPKF031 Magnetic Field Correction of the Bending Magnets of the 1.5 GeV HDSM dipole, microtron, linac, coupling 1669
 
  • F. Hagenbuck, P. Jennewein, K.-H. Kaiser
    IKP, Mainz
  Beam dynamics of the Harmonic Double Sided Microtron (HDSM), the fourth stage of MAMI, require a very precise magnetic field in the inhomogeneous bending magnets. By measuring the vertical field component By in and on both sides of the midplane, the complete set of field components Bx, By, Bz was determined in the whole gap. Starting from this the asymmetric pole surface current distribution necessary to correct both symmetric and antisymmetric field errors was calculated. However, tracking calculations showed that the influence of skewed field components on the beam deflection are negligible, so that symmetric field corrections are sufficient. Nevertheless, in order to demonstrate the functioning, a set of asymmetric correction coils was built and successfully tested. The symmetric coils are designed to reduce field errors below 2*10-4. Deflection errors in the fringe field region near the magnet corners, which cannot be corrected by surface currents, will be compensated by vertical iron shims in combination with small dipoles on each beam pipe.  
 
WEPKF050 Measurement of Fast High Voltage Pulse and High Noisy DC Siganla for Modulator at the PLS Linac linac, vacuum, klystron, monitoring 1717
 
  • S.-C. Kim, Y.J. Han, S.H. Kim, S.-H. Nam, S.S. Park
    PAL, Pohang
  The 2.5-GeV electron linac at Pohang accelerator laboratory (PAL) has been operated continuously as a full energy injector for the Pohang Light Source (PLS) since Dec. 1994. There have been continuous efforts to improve the klystron-modulator system more stable and reliable. At pulse operated modulator system, important pulse and DC signals are beam voltage, beam current, EOLC current HVDC voltage and HVDC current. Pulse signals are fast high voltage pulse 30 Hz, 5ms. These signals are adequate level down from modulator but including high level switching noisy. To amplitude measure of these signals for every trigger signal, we developed special module sampling hold, A/D, calculating and D/A. The output signals of these modules are 0 ~ 10 V DC signal and not include any noise signal. These output signals are connected interlock interface module of the modulator controller. Therefore computer system (PC) of the modulator controller is free to noise of these signals and can precise monitor pulse & noise DC signal. In these paper, we are described itself characteristics pulse and high noisy DC signals of the modulator, signal conditioning technique after noise elimination and operation status of the modulator controller.  
 
WEPKF051 Operational Analysis of PLS 2-GeV Electron Linac Klystron-modulator System klystron, linac, vacuum, impedance 1720
 
  • S.S. Park, Y.J. Han, S.H. Kim, S.-C. Kim, S.-H. Nam
    PAL, Pohang
  The klystron-modulator(K&M) system of the Pohang Light Source(PLS) had been supplying high power microwaves for the acceleration of 2 GeV electron beams. There are 11 sets of K&M systems to accelerate electron beams to 2 GeV nominal beam energy without operating one klystron-modulator. One module of the K&M system consists of an 80 MW S-band (2856 MHZ) klystron tube and the matching 200 MW modulator. The total accumulated high-voltage run-time of the oldest unit among the 12 K&M systems has reached nearly 68,000 hours as of Dec. 2003 and the summation of all the units' high voltage run-time is approximately 820,000 hours. The overall system availability is well over 95%. There have been continuous efforts to improve the klystron-modulator system more stable and reliable. To improve self-diagnostic, operation, monitoring, and remote communication, we developed a new modulator controller based on an industrial PC platform in 2002. In this paper, we are able to review overall system performance of the high-power K&M system and the operational characteristics of the klystrons and thyratrons, and overall system's availability analysis from Jan. to Dec. 2003.  
 
WEPKF060 Bending Magnets for the SAGA Storage Ring: Manufacturing and Magnetic Measurements dipole, storage-ring, multipole, focusing 1738
 
  • S.V. Sinyatkin, I.N. Churkin, O.B. Kiselev, V. Korchuganov, A.B. Ogurtsov, A.V. Philipchenko, L.M. Schegolev, K.K. Schreiner, A.G. Steshov, V. Ushakov
    BINP SB RAS, Novosibirsk
  • M. Kuroda, Y. Tsuchida
    Saga Synchrotron Light Source, Industry Promotion Division, Saga City
  The paper describes the design, the manufacture and the magnetic measurement of the dipole bending magnets (BM) for SR Source storage ring (prefecture SAGA, Japan) carried out in BINP, Novosibirsk, Russia. The requirement was to create the laminated C-shape BMs with the 3.2 m radius and parallel edges. The magnetic field homogeneity must be not worth than ±2? 10-4 inside the working area: H = 30+40mm and V = ±20mm at 0.26T (250 MeV), and H = ± 28mm and V = ±20mm at 1.46 T (1.4GeV). The BMs were designed on the basis of the 2-D 3-D modeling taking into account the laminated core. The BMs yokes were produced with the help of the technology of the high temperature gluing. The computer simulations are in a good agreement with the magnetic measurements. The main parameters of the magnetic fields satisfy to the requirements and are presented. The features of the design, manufacturing and precise magnetic measurements of SAGA BMs are discussed.  
 
WEPKF072 Clearing Electrodes for Vacuum Monitoring at the Fermilab Recycler ion, vacuum, antiproton, monitoring 1771
 
  • D.R. Broemmelsiek, S. Nagaitsev
    Fermilab, Batavia, Illinois
  The Fermilab Recycler is a fixed 3.3-km 8-GeV kinetic energy storage ring located in the Fermilab Main Injector tunnel. Each split-plate beam position monitor in the Recycler is also used to generated an ion clearing field for ions trapped by the antiproton beam. Approximately 100 locations have been instrumented with pico-amp meters to measure the electron current, generated by the beam-ionized residual gas in the vacuum chamber. This electron current is found to be proportional to the beam current and to the residual gas pressure in the Recycler and may be used to monitor the Recycler vacuum.  
 
WEPKF079 A Kicker Design for the Rapid Transfer of the Electron Beam between Radiator Beamlines in LUX septum, linac, kicker, injection 1786
 
  • G.D. Stover
    LBNL/ALS, Berkeley, California
  I present in this paper preliminary design concepts for LUX - A ?fast kicker design for rapid transfer of the electron beam between radiator beamlines. This paper is a very simple feasibility study to find a rougly optimized subset of engineering parameters that would satisfy the initial design specifications of: Pulse width < 30us, time jitter < 1ns, magnetic length < 0.5meter, gap hight = 15mm, gap width = 25mm, peak field = .6Tesla, bend angle = 1.7 deg. for beam energy of 3.1 Gev, repetition rate = 10KHz. An H magnet core configuration was chosen. Through an iterative mathematical process a realizable design was chosen. Peak current, Peak voltages across the coils, conductor losses due to proximity and skin effects, di/dt rates, eddy and beam current heating in the ceramic vacuum chamber, and basic circuit topology were investigated. Types and losses of core material were only briefly discussed. The final topology consists of two magnets in series running at 10KHz, .3Tesla, 630 amp peak current, 10us pulse width, 364 Watts per coil section, driven by fast solid state switch with an energy recovery inductor. Eddy and beam image current losses were ~ 164 watts.  
 
WEPKF080 Secondary Electron Yield Measurements from Thin Surface Coatings for NLC Electron Cloud Reduction vacuum, damping, luminosity, positron 1789
 
  • F. Le Pimpec, F. King, R.E. Kirby, M.T.F. Pivi
    SLAC, Menlo Park, California
  In the beam pipe of the positron damping ring of the Next Linear Collider, electrons will be created by beam interaction with the surrounding vacuum chamber wall and give rise to an electron cloud. Several solutions are possible for avoiding the electron cloud, without changing the beam bunch structure or the diameter of the vacuum chamber. Some of the currently available solutions include reducing residual gas ionization by the beam, minimizing photon-induced electron production, and lowering the secondary electron yield (SEY) of the chamber wall. We will report on recent SEY measurements performed at SLAC on TiN coatings and TiZrV non-evaporable getter thin films.  
 
WEPKF085 Secondary Electron Emission Measurements for TiN Coating on Stainless Steel of SNS Accumulator Ring Vacuum Chamber vacuum, ion, simulation, cathode 1804
 
  • P. He, H.-C. Hseuh, R. Todd
    BNL, Upton, Long Island, New York
  • B. Henrist, N. Hilleret
    CERN, Geneva
  • S. Kato, M. Nishiwaki
    KEK, Ibaraki
  • R.E. Kirby, F. Le Pimpec, M.T.F. Pivi
    SLAC, Menlo Park, California
  BNL is responsible for the design and construction of the US Spallation Neutron Source (SNS) accumulator ring. Titanium Nitride(TiN) coating on the stainless steel vacuum chamber of the SNS accumulator ring is needed to reduce undesirable resonant multiplication of electrons. The Secondary Electron Yield(SEY) of TiN coated chamber material has been measured after coated samples were exposed to air and after electron and ion conditioning. We are reporting about the TiN coating system setup at BNL and SEY measurements results performed at CERN, SLAC and KEK. We also present updated electron-cloud simulation results for the SNS accumulator assuming different SEY values.  
 
WEPLT002 Shielding Design Study for CANDLE Facility shielding, beam-losses, radiation, storage-ring 1816
 
  • K.N. Sanosyan, M. Aghasyan, R.H. Mikaelyan
    CANDLE, Yerevan
  • V.M. Vartanian
    Stanford University, Stanford, Califormia
  The radiation shielding design study for the third generation synchrotron light source CANDLE is carried out. The electron beam loss estimates have done for all the stages from linac to storage ring. A well-known macroscopic model describing the dose rate for point losses has been used to calculate the shielding design requirements of the facility.  
 
WEPLT008 Simulated Emittance Growth due to Electron Cloud for SPS and LHC emittance, simulation, space-charge, injection 1831
 
  • E. Benedetto, D. Schulte, F. Zimmermann
    CERN, Geneva
  • G. Rumolo
    GSI, Darmstadt
  The emittance growth caused by an electron cloud is simulated by the HEADTAIL code. The simulation result depends on the number of beam-cloud "interaction points"(IPs), the phase advance between the IPs, the number of macro-particles used to represent beam and cloud, and on the betatron tune. Simulations include a transverse feedback system and, optionally, a large chromaticity, as employed in actual SPS operation. Simulation results for the SPS are compared with observations, and the emittance growth in the LHC is computed as a function of the average electron density.  
 
WEPLT009 Dynamics of the Electron Pinch and Incoherent Tune Shift Induced by Electron Cloud simulation, proton, injection, focusing 1834
 
  • E. Benedetto, F. Zimmermann
    CERN, Geneva
  When a proton bunch passes through an electron cloud, the cloud electrons are attracted by the beam electric field; their density strongly increases near the beam centre. This gives rise to an incoherent proton tune shift, which depends on the longitudinal and radial position within the bunch. We present an analytical description of the 'electron pinch' and the resulting proton tune shift, for a circular symmetry and a Gaussian cloud. Benchmarking and extending the results by computer simulations, we explore the effects of different longitudinal beam profiles and of the nonlinear transverse force.  
 
WEPLT010 Design and Fabrication of Superfluid Helium Heat Exchanger Tubes for the LHC Superconducting Magnets vacuum, quadrupole, dipole, site 1837
 
  • F.F. Bertinelli, G. Favre, L.M.A. Ferreira, S.J. Mathot, L. Rossi, F. Savary
    CERN, Geneva
  • E. Boter
    CELLS, Bellaterra (Cerdanyola del Vallès)
  The dipole and quadrupole cold masses of the LHC machine require about 1700 heat exchanger tubes (HET). In operation the HET carries a two-phase flow of superfluid helium at sub-atmospheric pressure. The HET consists of an oxygen-free, seamless copper tube equipped with stainless steel ends. After an evaluation of different design alternatives, a design based on the technologies of vacuum brazing and electron beam welding has been adopted. Presence of these multiple technologies at CERN and synergies with the cleaning, handling and transport of other 15-metre components for LHC, motivated CERN to undertake this series fabrication on site. The raw copper tubes are procured in Industry, presenting challenging issues of geometric precision. Organisation of the HET fabrication includes cryomeasurements to validate cleaning procedures, characterization of welding procedures, buckling design by FEA and experimental verification, quality control during series production. The series fabrication of these long, multi-technological components is continuing successfully, respecting the project?s tight budgetary and planning constraints.  
 
WEPLT044 Electron-cloud Build-up Simulations and Experiments at CERN simulation, injection, vacuum, quadrupole 1933
 
  • F. Zimmermann, G. Arduini, V. Baglin, T. Bohl, B.J. Jenninger, J.M. Jimenez, J.-M. Laurent, F. Ruggiero, D. Schulte
    CERN, Geneva
  We compare the predications of electron-cloud build-up simulations with measurements at the CERN SPS. Specifically, we compare the electron flux at the wall, electron-energy spectra, heat loads, and the spatial distribution of the electrons for two different bunch spacings, with variable magnetic fields, and for several chamber temperatures and associated surface conditions. The simulations employ a modified, improved version of the ECLOUD code. The main changes are briefly described. We finally present updated simulation results for the heat load in the cold LHC arcs.  
 
WEPLT051 Sub-Picosecond Electron Bunches in the BESSY Storage Ring synchrotron, radiation, optics, storage-ring 1954
 
  • G. Wustefeld, J. Feikes, K. Holldack, P. Kuske
    BESSY GmbH, Berlin
  BESSY is a low emittance, 1.7 Gev electron storage ring. A dedicated, low alpha optics is applied to produce short electron bunches for coherent synchrotron radiation (CSR) in the THz range[*]. By a further detuning of the optics, stable pulses as short as 0.7 ps rms length were produced. The sub-ps pulse shape is analysed by an auto-correlation method of the emitted CSR. The CSR-bursting instability is measured and compared with theory to estimate the current for stable, sub-ps pulses. Present limits of the low alpha optics are discussed.

* M. Abo-Bakr et al., Phys. Rev. Lett. 88, 254801 (2002).

 
 
WEPLT054 Electron Cloud Build up in Coasting Beams proton, simulation, accumulation, ion 1963
 
  • G. Rumolo
    GSI, Darmstadt
  • G. Bellodi
    CCLRC/RAL/ASTeC, Chilton, Didcot, Oxon
  • K. Ohmi
    KEK, Ibaraki
  • F. Zimmermann
    CERN, Geneva
  Electrons could in principle accumulate in the potential of coasting beams of positively charged particles until a balance between the beam force and space charge force from the electrons is reached. But the continuous interaction between a non-ideal perturbed coasting beam and the cloud of electrons being trapped by it, together with the reflection and secondary emission processes at the inner pipe wall, can alter this picture and cause a combined cloud or beam transverse instability long before the concentration of electrons reaches the theoretical equilibrium value. The issue is addressed in this paper by means of combined build-up and instability simulations carried out with the HEADTAIL code.  
 
WEPLT055 Observation of Ultracold Heavy Ion Beams with Micrometer Size by Scraping ion, emittance, storage-ring, heavy-ion 1966
 
  • M. Steck, K. Beckert, P. Beller, B.  Franzke, F. Nolden
    GSI, Darmstadt
  The existence of an ordered beam state for low intensity, electron cooled heavy ion beams has been evidenced by a sudden reduction of the momentum spread. The detection of a similar effect in the transverse degree of freedom by non-destructive diagnostics is ruled out by the limited resolution of beam profile detectors. A method to probe the horizontal beam size of an electron cooled beam in a dispersive section has been developed. It is based on beam scraping and allows a resolution on the order of micrometers. This good transverse resolution for the cooled ion beam is achieved by precise changes of the ion energy which is varied by changes of the electron beam energy. The lower resolution limit due to power supply ripple is estimated to be below 1 micrometer. This method evidenced that the reduction of the momentum spread by one order of magnitude coincides with a reduction of the transverse beam emittance by 2-3 orders of magnitude, at least. A horizontal beam radius of a few micrometer could be demonstrated for electron cooled heavy ion beams with less than 1000 particles. This gives new evidence for the formation of an ordered beam arranged as a linear string of ions.  
 
WEPLT056 An Electron Cooling System for the Proposed HESR Antiproton Storage Ring antiproton, target, storage-ring, acceleration 1969
 
  • M. Steck, K. Beckert, P. Beller, A. Dolinskii, B.  Franzke, F. Nolden
    GSI, Darmstadt
  • V.V. Parkhomchuk, V.B. Reva, A.N. Skrinsky, V.A. Vostrikov
    BINP SB RAS, Novosibirsk
  The HESR storage ring in the proposed new international accelerator facility will provide high quality antiproton beams for experiments with an internal target. In order to achieve the design luminosity for collisions with a hydrogen target powerful beam cooling is required. For dedicated experiments ultimate resolution is demanded. Therefore it is foreseen to provide cooled antiproton beams in the energy range 0.8-14 GeV with an energy spread of 100 keV or better. According to computer simulations the required cooling rates can be achieved by electron cooling with an electron current of 1 A. The conceptual design of an electron beam device which is based on electrostatic acceleration of the electrons and their transport in longitudinal magnetic fields into a cooling section with a strong magnetic field of up to 0.5 T will be presented. This design will allow cooling in the magnetized regime in order to reach the required high cooling rates. Some novel features for the generation and regulation of the accelerating voltage and for the beam transport are proposed.  
 
WEPLT057 Simulation Results on Cooling Times and Equilibrium Parameters for Antiproton Beams at the HESR target, antiproton, ion, simulation 1972
 
  • A. Dolinskii, O. Boine-Frankenheim, B.  Franzke, M. Steck
    GSI, Darmstadt
  • A. Bolshakov, P. Zenkevich
    ITEP, Moscow
  • A.O. Sidorin, G.V. Troubnikov
    JINR, Dubna, Moscow Region
  The High Energy Storage Ring HESR is part of the "International Accelerator Facility for Ion and Antiproton Beams" proposed at GSI. For internal target experiments with antiproton beams in the energy range 0.8 GeV to 14.5 GeV a maximum luminosity of 5 inverse nbarn per second and a momentum resolution on the order of 10 ppm have to be attained. Electron cooling is assumed to be the most effective way to counteract beam heating due to target effects and intra-beam scattering. Cooling times and equilibrium parameters have been determined by means of three different computer codes: BETACOOL, MOCAC, and PTARGET. The results reveal that the development of fast, "magnetized" electron cooling with beam currents of up to 1 A and variable electron energies of up to 8 MeV in an extremely homogeneous longitudinal magnetic field of up to 0.5 T is crucial to achieve the required equilibrium beam parameters over the envisaged range of antiproton energies.  
 
WEPLT068 Momentum Compaction Factor and Nonlinear Dispersion at the ANKA Storage Ring storage-ring, optics, synchrotron, synchrotron-radiation 2005
 
  • A.-S. Müller, A. Ben Kalefa, I. Birkel, E. Huttel, M. Pont, F. Pérez
    FZK-ISS-ANKA, Karlsruhe
  The ANKA electron storage ring operates in the energy range from 0.5 to 2.5 GeV. In order to improve machine performance a precise modelling of linear and nonlinear optics is mandatory. Apart from higher order chromaticity also momentum compaction factor and dispersion have to be controlled. In this framework, the higher order momentum compaction factor has been determined exploiting the extraordinary precision of the resonant spin depolarisation method. Furthermore the nonlinear horizontal dispersion was measured as a function of the momentum deviation for different chromaticities. This paper discusses the experimental results and compares the findings to different simulations.  
 
WEPLT073 VDHL Design and Simulation of a Fast Beam Loss Interlock for TTF2 beam-losses, single-bunch, linac, simulation 2020
 
  • A. Hamdi
    CEA/Saclay, Gif-sur-Yvette
  • M. Luong
    CEA/DSM/DAPNIA, Gif-sur-Yvette
  • M. Werner
    DESY, Hamburg
  The TTF2 fast beam loss interlock provides different modes of protection. Based on the differential beam charge monitoring over a macropulse, a pulse slice or bunch-by-bunch, the signal processing time should be as short as the bunch repetition period (110 ns). The signal delivered by the toroid-like inductive current transformer always shows an envelope droop due to its self-inductance to resistance ratio. When the macropulse length is comparable to this ratio, the charge of each bunch must be derived from the difference of the top to the bottom level on the signal. This necessity combined to the various protection modes leads to a digital implementation. All the processing functionalities are designed with VHDL for a Xilinx FPGA. Because the interlock involves other control signals in addition to the toroid signal with specific shapes, which cannot be easily reproduced for the design validation before the TTF2 completion, VHDL provides meanwhile the possibility for an exhaustive validation of the system with a software test bench including all timing information.  
 
WEPLT076 SPIRAL 2 RFQ Design rfq, vacuum, ion, emittance 2026
 
  • R. Ferdinand, G. Congretel, A. Curtoni, O.D. Delferriere, A. France, D.L. Leboeuf, J. Thinel, J.-C. Toussaint
    CEA/DSM/DAPNIA, Gif-sur-Yvette
  • M. Di Giacomo
    GANIL, Caen
  The SPIRAL2 RFQ is designed to accelerate at 88MHz two kinds of charge-over-mass ratio, Q/A, particles. The proposed injector can accelerate a 5 mA deuteron beam (Q/A=1/2) or a 1 mA particles beam with q/A=1/3 up to 0.75 MeV/A. It is a CW machine which has to show stable operation, provide the request availability, have the minimum losses in order to minimize the activation constraints and show the best quality/cost ratio. It will be a 4-vane RFQ type, with a mechanical assembly, the global assumption being to build an RFQ without any brazing step. Extensive modelisation was made to ensure a good vane position under RF. A 1-m long hot model prototype is under construction in order to validate the manufacturing concept.  
 
WEPLT100 Planar Electron Sources and the Electron Trap ELTRAP cathode, plasma, laser, injection 2083
 
  • M. Cavenago
    INFN/LNL, Legnaro, Padova
  • G. Bettega, F. Cavaliere, A. Illiberi, R. Pozzoli, M. Romé, L. Serafini
    INFN-Milano, Milano
  Filamentation and other space charge effects (both transverse and longitudinal) of intense electron beams, found for example in rf photoinjectors (beam energy 1 MeV, current 100 A), are easily studied in small voltage traps and drift channels (0.01-10 kV), keeping the same perveance order. A suitable Malmberg-Penning trap, named ELTRAP, installed and operated at the University of Milan, is briefly described; trap length ranges from 10 cm to 1 m; an uniform magnetic field confines electron radially. Several experimental regimes were investigated with the internal CW planar electron source: plasma, beam-plasma, beam, depending on the injection/extraction method chosen. Evolution of electron vortices and virtual cathode formation is documented; analogy with meteorologic and astrophysical plasma is discussed. Upgrading with an external laser pulsed electron source is in course. Larger planar sources are also under construction. (Main classification 4: Beam Dynamics and Electro-magnetic Fields; D03 High Intensity, Incoherent Instabilities, Space Charge, Halos, Cooling; Other classification 8: Low and Intermediate Energy Accelerators and Sources; T12 Beam Injection/Extraction and Transport; T02 Lepton sources)  
 
WEPLT102 Electron Cooling Experiments at HIMAC Synchrotron ion, simulation, heavy-ion, injection 2089
 
  • K. Noda, T. Furukawa, T. Honma, S. Shibuya, D. Tan, T. Uesugi
    NIRS, Chiba-shi
  • T. Iwashima
    AEC, Chiba
  • I.N. Meshkov, E. Syresin
    JINR, Dubna, Moscow Region
  • S. Ninomiya
    RCNP, Osaka
  In the HIMAC synchrotron, the electron cooling experiments have been carried out since 2000 in order to develop new technologies in heavy-ion therapy and related research. Among of them, especially, the cool-stacking method has been studied to increase the intensity of heavy ions such as Fe and Ni in order to study the risk estimation of the radiation exposure in space. The simulation was carried out in order to optimize the stacking intensity under various the injection periods. In addition, the beam heating by the RF-KO and the clearing the secondary ion in the cooler were applied to avoid the instability occurred when the beam density became high. We will report the experiment results.  
 
WEPLT103 Radiation Damage in Magnets for Undulators at Low Temperature radiation, undulator, permanent-magnet, linac 2092
 
  • T. Bizen, X. Maréchal, T. Seike
    JASRI/SPring-8, Hyogo
  • Y. Asano
    JAERI/SPring-8, Hyogo
  • T. Hara, H. Kitamura, T. Tanaka
    RIKEN Spring-8 Harima, Hyogo
  • D.E. Kim, H.S. Lee
    PAL, Pohang
  Nd2Fe14B permanent magnets are used in many insertion devices for its good magnetic and mechanical properties. However, the radiation sensitivity of the magnets would be concern when they are used in a strong radiation environment. It is known that these magnets with very high coercivity show high resistance to radiation, though the substance for increasing the coercivity decrease the remanence. The coercivity and remanence of this magnet exhibit negative dependence against temperature, so it is expected to these magnets to show high remanence and high resistance to radiation at low temperature. The idea of using magnets at low temperature leads the new concept of the cryogenic undulators. In this report, the experimental results of the radiation damage of permanent magnets at low temperature are shown.  
 
WEPLT105 Beam-Beam Effects Measured Using Gated Monitors at KEKB luminosity, emittance, positron, betatron 2095
 
  • T. Ieiri, Y. Funakoshi, T. Kawamoto, M. Masuzawa, M. Tawada, M. Tobiyama, S.S. Win
    KEK, Ibaraki
  KEKB is a multi-bunch, high-current, electron/positron collider for B meson physics. The two beams collide at one interaction point (IP) with a finite horizontal crossing angle and with a bunch-space of 6 to 8 ns. The luminosity of KEKB is the best in the world. The collision is performed by carefully adjusting a horizontal orbit bump of the electron beam at IP, which results in a horizontal offset to obtain the best luminosity. In order to investigate the asymmetric beam-beam effects, beam parameters of collision and non-collision bunches were compared using beam monitors capable of selecting a specific bunch in a bunch train. The beam-beam kick and the beam-beam tune-shift were obtained by the gated beam-position monitor and by the gated tune monitor. It was found that the horizontal offset was negligibly small in the case of a wide bunch-space of 48 ns. This result suggests that the horizontal offset is related to wake fields including electron-cloud effects.  
 
WEPLT109 Simulation of Ep Instability for a Coasting Proton Beam in Circular Accelerators proton, vacuum, simulation, ion 2107
 
  • K. Ohmi, T. Toyama
    KEK, Ibaraki
  • G. Rumolo
    GSI, Darmstadt
  ep instability is discussed for a coasting beam operation of J-PARC 50 GeV Main Ring. Our previous study (PAC2003) was focussed only ionization electron. We now take into account electrons created at the chamber wall due to proton loss and secondary emission with higher yield than ionization.  
 
WEPLT116 Lattice Design and Cooling Simulation at S-LSR laser, ion, lattice, quadrupole 2122
 
  • T. Shirai, H. Fadil, S. Fujimoto, M. Ikegami, A. Noda, M. Tanabe, H. Tongu
    Kyoto ICR, Uji, Kyoto
  • T. Fujimoto, H. Fujiwara, K. Noda, S. Shibuya, T. Takeuchi
    NIRS, Chiba-shi
  • M. Grieser
    MPI-K, Heidelberg
  • H. Okamoto, Y. Yuri
    HU/AdSM, Higashi-Hiroshima
  • E. Syresin
    JINR, Dubna, Moscow Region
  A compact ion cooler ring, S-LSR is under construction in Kyoto University. The circumference is 22.557 m and the maximum magnetic rigidity is 1 Tm. One of the important roles of S-LSR is a test bed to examine the lowest temperature limit of the ion beams using cooling techniques. The ultimate case is a crystalline one. The ring optics of S-LSR has a high super periodicity and a low phase advance to reduce the beam heating from the lattice structure. S-LSR has an electron beam cooling device and a laser cooling system for Mg. The simulation results show the possible limit of the ion beam temperature and the dependence on the operating betatron tunes.  
 
WEPLT119 Beam Instabilitiy Studies of BEPC and BEPCII impedance, synchrotron, synchrotron-radiation, radiation 2131
 
  • J.Q. Wang, Z.Y. Guo, Y.D. Liu, Q. Qin, Z. Zhao, D.M. Zhou
    IHEP Beijing, Beijing
  BEPC has been well operated for more then 10 years, and it will be upgraded to a double ring electron positron collider using the existing tunnel, namely BEPCII. This paper describes the recent studies on beam instabilities in BEPC for the improvement of its performance as well as for BEPCII. The instabilities caused by impedance and two-stream effect are investigated. The experimental and simulation results are reported.  
 
WEPLT121 Computer Simulation of Equilibrium Electron Beam Distribution in the Proximity of 4th Order Single Nonlinear Resonance resonance, simulation, radiation, storage-ring 2137
 
  • T.-S. Ueng, C.-C. Kuo, H.-J. Tsai
    NSRRC, Hsinchu
  • A. Chao
    SLAC, Menlo Park, California
  The beam distribution of particles in an electron storage ring is distorted in the presence of nonlinear resonances. A computer simulation is used to study the equilibrium distribution of an electron beam in the presence of 4th order single nonlinear resonance. The results are compared with that obtained using an analytical approach by solving the Fokker-Planck equation to first order in the resonance strength. The effect of resonance on the quantum lifetime of electron beam is also compared and investigated.  
 
WEPLT126 Beam Dynamics Simulation in High Energy Electron Cooler simulation, antiproton, target, vacuum 2146
 
  • A.V. Ivanov, V.M. Panasyuk, V.V. Parkhomchuk, V.B. Reva
    BINP SB RAS, Novosibirsk
  The article deals with electron beam dynamics in projected high energy electron cooler. Classical electrostatic scheme with several MeV electron energy is considered. The increase of transversal energy of electrons in an accelerating section, in bends and at the matching point of magnetic fields is calculated. In order to calculate beam behavior in bends with electrostatic compensation of centripetal drift new ELEC3D electro- and magnitostatic 3D code is developed. BEAM code is used for simulation of dynamics in an accelerating section. The methods of keeping low transversal energy are estimated.  
 
WEPLT128 Charge Particle Source for Industrial and Research Accelerators Operating at the Poor Vacuum Conditions vacuum, cathode, ion, background 2149
 
  • E.O. Popov, A.A. Pashkevich, S.O. Popov, A.V. Vitugov
    IOFFE, St. Petersburg
  We investigated the original method of fabrication of the great number of emitting tips by pulling liquid metal through the holes in track membrane under influence of electric field. The track membranes are produced by cyclotron of Physicotechnical Institute. This method enables to fabricate up to 1·108 emitting tips per square cm. Special test facility to investigate emitter parameters operating at different values of background residual gas pressure was designed and developed. The liquid metal multiple tip field emitters possess some unique characteristics which are attractive in accelerators for material irradiation: unlimited life expectancy, large current densities (about 100 mA per sq. cm), practically unlimited surface, stable emission in poor vacuum.  
 
WEPLT133 On Beam Dynamics Optimization rfq, acceleration, controls, proton 2152
 
  • D.A. Ovsyannikov, S.V. Merkuryev
    St. Petersburg State University, St. Petersburg
  Mathematical optimization methods are widely used in designing and construction of charged particle accelerators. In this paper new approach to beam dynamics optimization is considered. Suggested approach to the problem is based on the analytical representation for variation of examined functionals via solutions of special partial differentional equations. The problem of optimization is considered as a problem of mutual optimization chosen synchronous particle motion and charged particles beam at whole. This approach was applied to the beam dynamics optimization for RFQ structures.  
 
WEPLT138 Laser Cooling of Electron Bunches in Compton Storage Rings laser, synchrotron, emittance, damping 2161
 
  • E.V. Bulyak
    NSC/KIPT, Kharkov
  Self-consistent dynamics of a bunch circulating in the Compton storage ring has been studied analytically. Disturbances from both the synchrotron and Compton radiations were taken into account. The emittances in laser-dominated rings (where the synchrotron energy losses are much smaller then the Compton ones) were evaluated. The resultant emittances (synchrotrons plus Comptons) were compared with the synchrotrons. As were shown, the longitudinal degree of freedom is heated up due to Compton scattering. Almost the same conclusion is valid for the vertical uncoupled betatron emittance. Since it is impossible in principle to get zero dispersion in the banding magnets, the radial emittance almost always cooling down by laser. Therefore in practical cases of coupled transverse oscillations with the horizontal emittance determining the vertical one, the laser will cool down the transverse degrees of freedom.  
 
WEPLT140 New Abilities of Computer Code DeCA photon, scattering, simulation, laser 2164
 
  • P. Gladkikh, A.Y. Zelinsky
    NSC/KIPT, Kharkov
  In the paper the status and new abilities of computer code package DeCA (Design of Cyclic Acclerators) are described. The main effort of the code developers were made to creation of software capable to simulate intrabeam scattering effect and Compton scattering. In addition modules for calculation of the second order dispersion and momentum compaction factor were developed.  
 
WEPLT141 Beam-power Calibration System for Industrial Electron Accelerators simulation, radiation, target, monitoring 2167
 
  • V.L. Uvarov, S.P. Karasyov, V.I. Nikiforov, R.I. Pomatsalyuk, V.A. Shevchenko, I.N. Shlyakhov, A.Eh. Tenishev
    NSC/KIPT, Kharkov
  Modern electron accelerators for industrial application provide particle energy of up to 10 MeV and beam power of up to 100 kW. Such a beam is ejected into an air using a scanning system. The measuring channel based on a total-absorption calorimeter of flow-type for a beam calibration with respect to energy flow is designed. The processes of beam interaction with the primary measuring converter (a water-cooled beam absorber of especial geometry) were previously studied using a computer simulation. The metering circuit of the channel is made as a stand-alone module with LCD display and control keypad. It performs the operations of temperature measurement at the input and output of the absorber, as well as a water flow-rate determination. The absorbed power is calculated from measured parameters and then is displayed and stored into channel memory using appropriate software. The process is carried out both in off-line mode and under control of the external PC via a serial interface of RS-232 type.  
 
WEPLT155 Effect of Dark Currents on the Accelerated Beam in an X-band Linac simulation, cathode, positron, emittance 2203
 
  • V.A. Dolgashev
    SLAC/ARDA, Menlo Park, California
  • K.L.F. Bane, G.V. Stupakov, J. Wu
    SLAC, Menlo Park, California
  • T.O. Raubenheimer
    SLAC/NLC, Menlo Park, California
  X-band accelerating structures operate at surface gradients up to 120-180 MV/m. At these gradients, electron currents are emitted spontaneously from the structure walls ("dark currents") and generate additional electromagnetic fields inside the structure. We estimate the effect of these fields on the accelerated beam in a linac using two methods: a particle-in-cell simulation code MAGIC and a particle tracking code. We use the Fowler-Nordheim dependence of the emitted current on surface electric field with field enhancement factor beta. In simulations we consider geometries of traveling wave structures that have actually been built for the Next Linear Collider project.  
 
WEPLT156 Suppression of Microbunching Instability in the Linac Coherent Light Source laser, undulator, linac, simulation 2206
 
  • Z. Huang, P. Emma, C. Limborg-Deprey, G.V. Stupakov, J.J. Welch, J. Wu
    SLAC, Menlo Park, California
  • M. Borland
    ANL/APS, Argonne, Illinois
  A microbunching instability driven by longitudinal space charge, coherent synchrotron radiation and linac wakefields is studied for the linac coherent light source (LCLS) accelerator system. Since the uncorrelated (local) energy spread of electron beams generated from a photocathode rf gun is very small, the microbunching gain may be large enough to significantly amplify shot noise fluctuations of the electron beam. The uncorrelated energy spread can be increased by an order of magnitude without degrading the free-electron laser performance to provide strong Landau damping against the instability. We study different damping options in the LCLS and discuss an effective laser heater to minimize the impacts of the instability on the quality of the electron beam.  
 
WEPLT157 Single-bunch Electron Cloud Effects in the GLC/NLC, US-cold and TESLA Low Emittance Transport Lines emittance, positron, collider, focusing 2209
 
  • M.T.F. Pivi, D. Bates, A. Chang, D. Chen, T.O. Raubenheimer
    SLAC, Menlo Park, California
  In the beam pipe of the Beam Delivery System (BDS) and Bunch Compressor system (BCS) of a linear collider, ionization of residual gasses and secondary emission may lead to amplification of an initial electron signal during the bunch train passage and ultimately give rise to an electron-cloud. A positron beam passing through the linear collider beam delivery may experience unwanted additional focusing due to interaction with the electron cloud. This typically leads to an increase in the beam size at the interaction point (IP) when the cloud density is high. Interaction with the electron cloud in the bunch compressor could also potentially cause an instability. This paper examines the severity of the electron cloud effects in the BCS and BDS of both the GLC/NLC and US-Cold linear collider design through the use of specially developed simulation codes. An estimate of the critical cloud density is given for the BDS and BCS of both designs.  
 
WEPLT158 Direct Measurement of the Resistive Wakefield in Tapered Collimators linac, vacuum, impedance, damping 2212
 
  • P. Tenenbaum
    SLAC, Menlo Park, California
  • D. Onoprienko
    Brunel University, Middlesex
  The transverse wakefield component arising from surface resistivity is expected to play a major role in the beam dynamics of future linear colliders. We report on a series of experiments in which the resistive wakefield was measured in a series of tapered collimators, using the Collimator Wakefield beam test facility at SLAC. In order to separate the contributions of geometric and resistive wakefields, two sets of collimators with identical geometries but different resistivities were measured. The results are in agreement with the theoretical prediction for the high-resistivity (titanium) collimators, but in the case of low-resistivity (copper) collimators the resistive deflections appear to be substantially larger than predicted.  
 
WEPLT171 Rotating Electromagnetic Field Trap for High Temperature Plasma and Charge Confinement laser, quadrupole, electromagnetic-fields, plasma 2230
 
  • V.V. Danilov
    ORNL/SNS, Oak Ridge, Tennessee
  This paper demonstrates that there exists a special combination of oscillating electromagnetic fields capable of trapping ultra high charge densities. Trapped particles undergo stable motion when their frequencies of oscillation are much higher than that of the ocillating field. Contrary to conventional electromagnetic traps, the motion in this dynamic trap is stable for arbitrarily high electromagnetic field amplitudes. This, in turn, leads to the possibility of using enormous electric and magnetic fields from RF or laser sources to confine dense ultrahigh temperature plasmas and particle beams.  
 
WEPLT177 Analysis of Electron Cloud at RHIC proton, injection, simulation, interaction-region 2239
 
  • U. Iriso, M. Blaskiewicz, P. Cameron, K.A. Drees, W. Fischer, H.-C. Hseuh, R. Lee, S. Peggs, L. Smart, D. Trbojevic, S.Y. Zhang
    BNL, Upton, Long Island, New York
  • G. Rumolo
    GSI, Darmstadt
  Pressure rises with high intense beams are becoming the main luminosity limitation at RHIC. Observations during the latest runs show beam induced electron multipacting as one of the causes for these pressure rises. Experimental studies are carried out at RHIC using devoted instrumentation to understand the mechanism leading to electron clouds. Possible cures using NEG coated beam pipes and solenoids are experimentally tested. In the following, we report the experimental electron cloud data and analyzed the results using computer simulation codes.  
 
WEPLT183 Clearing of Electron Cloud in SNS space-charge, extraction, proton, ion 2248
 
  • L. Wang, Y.Y. Lee, D. Raparia, J. Wei, S.Y. Zhang
    BNL, Upton, Long Island, New York
  In this paper we describe a mechanism using the clearing electrodes to remove the electron cloud in the Spallation Neutron Source (SNS) accumulator ring, where strong multipacting could happen at median clearing fields. A similar phenomenon was reported in an experimental study at Los Alamos laboratory's Proton Synchrotron Ring (PSR). We also investigated the effectiveness of the solenoid's clearing mechanism in the SNS, which differs from the short bunch case, such as in B-factories.  
 
WEPLT184 Preliminary Estimation of the Electron Cloud in RHIC proton, vacuum, simulation, dipole 2251
 
  • L. Wang, P. He, J. Wei
    BNL, Upton, Long Island, New York
  Electron cloud due to beam induce multipacting is suspected to be one of the source of pressure rises in RHIC. This paper estimates the possible electron cloud in RHIC. Various parameters related electron multipacting has been investigated.  
 
THOACH02 Commissioning of the 500 MeV Injector for MAX-lab linac, gun, storage-ring, injection 219
 
  • S. Werin, Å. Andersson, M. Bergqvist, M. Brandin, M. Demirkan, M. Eriksson, L.-J. Lindgren, L. Malmgren, H. Tarawneh, E.J. Wallén
    MAX-lab, Lund
  • B. Anderberg
    AMACC, Uppsala
  • G. Georgsson
    Danfysik A/S, Jyllinge
  • G. LeBlanc
    ASP, Melbourne
  A 500 MeV new injector system for the storage rings MAX I, II and III have been installed during the winter 2003-4 at MAX-lab. The system consists of two linacs at 125 MeV each, using SLED, and a recirculating system such that the electrons pass the linacs twice, thus reaching a final energy of 500 MeV. The system is injected by a thermionic RF-gun. The commissioning of the complete system will be performed in the spring 2004.  
Video of talk
Transparencies
 
THYCH01 Issues and Challenges for Short Pulse Radiation Production laser, photon, radiation, linac 225
 
  • P. Emma
    SLAC/ARDA, Menlo Park, California
  A new generation of light sources are being planned at many locations, pushing the frontiers of brightness, wavelength, and peak power well beyond existing 3rd generation sources. In addition to these large scale improvements there is great interest in extremely short duration pulses into the femtosecond and sub-femtosecond regime. Collective electron bunch instabilities at these scales are severe, especially in consideration of the high-brightness electron bunch requirements. Several new schemes propose very short radiation pulses generated with moderate electron bunch lengths. Such schemes include radiation pulse compression, differential bunch spoiling, staged high-gain harmonic generation, and selective pulse seeding schemes. We will describe a few of these ideas and address some of the electron bunch length limitations, highlighting recent measurements at the Sub-Picosecond Pulse Source (SPPS) at SLAC where <100-fs electron and x-ray pulses are now available.  
Video of talk
Transparencies
 
THZCH01 Status of Tevatron Collider Run II and Novel Technologies for the Tevatron Luminosity Upgrades antiproton, luminosity, proton, emittance 239
 
  • V.D. Shiltsev
    Fermilab, Batavia, Illinois
  In the Tevatron Run-II, 36 antiproton bunches collide with 36 proton bunches at the CDF and D0 interaction regions at 980 GeV per beam. We present current status and performance of the collider complex. The plan for Run-II luminosity upgrades will be presented and novel technologies for the upgrade will be discussed.  
Video of talk
Transparencies
 
THZCH02 Electron Cooling: Remembering and Reflecting ion, proton, storage-ring, antiproton 244
 
  • I.N. Meshkov
    JINR, Dubna, Moscow Region
  The report contains a brief review of developments in electron cooling methods. The influence of electron cooling concepts on progress in particle beam physics is considered, particularly: development of alternative and complementary cooling methods - stochastic, laser, muon cooling; physics of cooled and intense particle beams; ordering effects in cooled ion beams and the idea of crystalline beams; intrabeam scattering in cooled beams, etc. Creation of new accelerator technology, based on electron cooling and its application to different fields of experimental physics, particle, nuclear and atomic physics, is described. Modern trends and new concepts of electron cooling applications are discussed.  
Video of talk
Transparencies
 
THOALH01 Bunch Length Measurements at the SLS Linac using Electro-optical Techniques laser, linac, radiation, radio-frequency 253
 
  • A. Winter, M. Tonutti
    RWTH, Aachen
  • S. Casalbuoni, P. Schmüser, S. Simrock, B. Steffen
    DESY, Hamburg
  • T. Korhonen, T. Schilcher, V. Schlott, H. Sigg, D. Suetterlin
    PSI, Villigen
  The temporal profile of the electron bunches in the SLS Linac will be determined by means of electro-optical techniques. A mode locked Ti:Sa Laser with 15 fs pulse width is used for coincidence measurements between the laser pulse and the coherent transition radiation (CTR) generated by short electron bunches. Synchronization accuracy of 100 fs rms between the 3 GHz Linac RF and the 81 MHz repetition rate of the laser was achieved, which is important for the optimum time resolution of the applied electro-optical sampling technique. Likewise, a mode locked Nd:YAG laser with 400 ps long pulses will be used for electro-optical autocorrelation measurements between the CTR and the laser pulses. This alternative technique promises single shot capability and requires much relaxed synchronization stability between laser and electron beam.  
Video of talk
Transparencies
 
THOALH02 Development of the Non-invasive Beam-size Monitor using ODR target, radiation, emittance, optics 256
 
  • T. Muto, S. Araki, H. Hayano, V. Karataev, N. Terunuma, J. Urakawa
    KEK, Ibaraki
  • R. Hamatsu
    TMU, Hatioji-shi,Tokyo
  • A. Naumenko, A.P. Potylitsyn
    Tomsk Polytechnic University, Physical-Technical Department, Tomsk
  The beam-size monitor based on Optical Diffraction Radiation (ODR) has been developed at the KEK-ATF. Because of its non-invasive nature, the ODR monitor might be one candidate to measure the extreme-low emittance electron beam for future LC?s and x-ray free electron lasers. To evaluate the beam-size, the angular distribution of the ODR emitted by the beam when crossing a slit in a metallic foil was measured. In the first trial, we observed interference patterns between ODR and backgrounds which may be the synchrotron radiation from most nearest bending magnet at the ATF extracted line. By the installation of the ceramic mask in front of our target, this interference was vanished. And comparing with the result of ODR measurements, we installed the wire scanner in the same position of our monitor. In this paper, we will present developments of the ODR monitor with some experimental results.  
Video of talk
Transparencies
 
THOALH03 The Measurements of the Longitudinal Beam Profile on the Preinjector VEPP-5 radiation, single-bunch, space-charge, linac 259
 
  • S. Gurov, P.A. Bak, P.V. Logatchev, V. Pavlov, E. Pyata
    BINP SB RAS, Novosibirsk
  • D. Chernousov
    ICKC, Novosibirsk
  For effective work of preinjector VEPP-5 it is necessary 3 ns bunch with charge 1* 1010 electrons from termogun compress to bunch with 40 ps duration on the positron target. A new streak-camera with RF cavity on the main linac frequency is used. Streak-camera with circle scanning allows see 350 ps single light signal with sub-ps resolution. An additional slow scanning can obtain the trochoidal scanning. Thus one can see with picosecond resolution and with less then 1 psec synchronization the train of ten bunches which are spacing by 350psec. The results of worked streak-camera with RF-cavity for circle scanning are presented.  
Video of talk
Transparencies
 
THYLH01 Beam Diagnostics at the VUV-FEL Facility radiation, diagnostics, laser, photon 262
 
  • J. Feldhaus, D. Noelle
    DESY, Hamburg
  The free electron laser (FEL) at the TESLA Test facility at DESY will be the first FEL user facility for VUV and soft X-ray radiation down to 6 nm wavelength, the commissioning starts in summer 2004. Commissioning as well as stable FEL operation require a combination of different diagnostic tools for measuring both electron and photon beam parameters, including the full phase space distribution of the bunch charge, exact timing with sub-picosecond resolution, electron and photon beam overlap along the undulator, radiation beam position in the user area 50-70 m behind the undulator, intensity and spectral distribution of the radiation pulses and others. Much effort has been put in the development of instrumentation for measuring the longitudinal bunch charge distribution, for controlling the electron beam orbit along the undulator, and for online monitoring the radiation intensity, position and spectral distribution. This contribution gives an overview of the complete electron and photon beam diagnostics of the FEL facility and focuses particularly on the instrumentation which is crucial or specific for the FEL operation.  
Video of talk
Transparencies
 
THOBLH02 Ultrafast Compton Scattering X-Ray Source Development at LLNL laser, photon, scattering, interaction-region 270
 
  • F.V. Hartemann, S. Anderson, C.P.J. Barty, S.M. Betts, R. Booth, J. Brown, K. Crane, R.R. Cross, D.N. Fittinghoff, D. Gibson, E.P. Hartouni, J. Kuba, G.P. Le Sage, D.R. Slaughter, P.T. Springer, A. Tremaine, A.J. Wootton
    LLNL, Livermore, California
  • J. Rosenzweig
    UCLA, Los Angeles, California
  The LLNL PLEIADES (Picosecond Laser-Electron Inter-Action for the Dynamical Evaluation of Structures) facility is now operating between 30 and 80 keV, and produces > 5 x 106 photons per shot at 10 Hz. This important milestone offers a new opportunity to develop laser-driven, compact, tunable x-ray sources for critical applications such as NIF diagnostics, time-resolved material studies, and advanced biomedical imaging. Initial x-rays were captured with a CCD using a CsI scintillator; the photon energy was measured at approximately 70 keV, and the observed spectral and angular distributions found to agree very well with three-dimensional codes. The electron beam was focused to 30 um rms, at 54 MeV, with 250 pC of charge, a relative energy spread of 0.2%, and a normalized emittance of 10 mm.mrad. Optimization of the x-ray dose is currently underway, with the goal of reaching 107 photons per shot and a peak brightness approaching 1017 photons/mm2/mrad2/s/0.1%bandwidth. High-Z K-edge radiographs have been demonstrated, as well as diffraction using highly-ordered pyrolytic graphite crystals. Nonlinear scattering experiments, using a tightly focused laser spot will also be discussed, as well as plans to develop a source capable of reaching 1% conversion efficiency from the electron beam kinetic energy into x-rays, and ultrafast diffraction experiments.  
Video of talk
Transparencies
 
THOBLH03 BESSY II Operated as a Primary Source Standard photon, storage-ring, radiation, synchrotron 273
 
  • R. Klein, R. Thornagel, G. Ulm
    PTB, Berlin
  The Physikalisch-Technische Bundesanstalt (PTB) is the German National Metrology Institute and responsible for the realization and dissemination of the legal units in Germany. For the realization of the radiometric units in the VUV and X-ray spectral range PTB has been using calculable synchrotron radiation of bending magnets from the BESSY I and BESSY II electron storage rings for more than 20 years. The spectral photon flux of synchrotron radiation can be precisely calculated by Schwinger's theory. Therefore, all the storage ring parameters entering the Schwinger equation have to be measured with low uncertainty which requires a stable and reproducible operation of the storage ring. At BESSY II, PTB has installed all equipment necessary to measure the electron energy, the electron beam current, the effective vertical source size and the magnet induction at the radiation source point as well as all geometrical quantities with low uncertainty. The measurement accuracy for these quantities enables PTB to calculate the spectral photon flux from the visible up to the soft X-ray range with relative uncertainties below 0.4 %. We report on the measurement of the storage ring parameters with low uncertainty.  
Video of talk
Transparencies
 
THPKF002 Linac RF Control System for CANDLE. Design and Simulation linac, simulation, feedback, resonance 2257
 
  • A. Vardanyan, G. Amatuni
    CANDLE, Yerevan
  The design and constructional features of the control system for 500 MHz and 3 GHz RF system of CANDLE linac are presented. The linac includes an electron gun that is modulated by 500 MHz generator to produce 1 ns electron bunches, 500 MHz and 3 GHz bunchers, pre-accelerating cavity and the main accelerating section at 3 GHz. An important feature of the presented control system is a high level synchronization of amplitude-phase characteristics of the sub-systems that provide the required energy-space characteristics of the accelerated beam. This puts strict requirements on RF frequency, amplitude and phase stabilization. A digital feedback system has been adopted to provide flexibility in the control algorithms. The main feature is a 9 MHz sampling rate for the cavity signals and digital I/Q detection. The design was performed using the RF analyze tool, based on MATLAB SIMULINK, which allows the simulation and analyzes of the field regulation quality. The simulation results for CANDLE Linac RF system, based on the output parameters of electron beam are given.  
 
THPKF013 Terahertz Diagnostics for the Femtosecond X-ray Source at BESSY laser, radiation, dipole, undulator 2284
 
  • K. Holldack, S. Khan, R. Mitzner, T. Quast, G. Wustefeld
    BESSY GmbH, Berlin
  A longitudinal electron density modulation caused by femtoslicing in a storage ring is accompanied by a strong broad band coherent THz-light emission between 0.3 and 10 THz at certain synchrotron radiation emitting devices downstream of the interaction region. A technique to use the THz signal for the control of the overlap of laser and electron bunch using fast infrared bolometers is described. A new dedicated THz extraction port at a bending magnet as well as a spectroscopic setup based on a Martin Puplett spectrometer will be commissioned in May 2004 together with the new femtoslicing source at BESSY.

* A. Zholentz, M. Zoloterev, PRL 76/1996, 912** H.-J. Baecker et al., these proceedings

 
 
THPKF014 Status of the BESSY II Femtosecond X-ray Source laser, radiation, storage-ring, wiggler 2287
 
  • S. Khan, H.-J. Baecker, J. Bahrdt, H.A. Duerr, V. Duerr, W. Eberhardt, A. Gaupp, K. Godehusen, K. Holldack, E. Jaeschke, T. Kachel, D. Krämer, R. Mitzner, M. Neeb, W.B. Peatman, T. Quast, G. Reichardt, M.-M. Richter, M. Scheer, O. Schwarzkopf, F. Senf, G. Wustefeld
    BESSY GmbH, Berlin
  • I. Hertel, F. Noack, W. Sandner, I. Will, N. Zhavarnokov
    MBI, Berlin
  At the BESSY II storage ring, work is in progress to produce X-ray pulses with 50 fs (fwhm) duration and tunable energy and polarization by "femtoslicing" [*].This work includes extensive alterations to the storage ring (one new and one modified undulator, both in the same straight section, three additional dipole magnets, a new IR beamline, and nine meters of new vacuum vessels) and to two beamlines (relocation and new optical designs), as well as the installation of a femtosecond Ti:sapphire laser system. Commissioning is planned for May 2004. This paper reviews the principles and technical implementation of the new femtosecond X-ray source, and reports the status of the project.

* A. Zholentz, M. Zoloterev, Phys.Rev.Lett. 76 (1996), 912

 
 
THPKF015 Compressed Electron Bunches for THz-Generation - Operating BESSY II in a Dedicated Low Alpha Mode optics, radiation, sextupole, single-bunch 2290
 
  • G. Wustefeld, J. Feikes, K. Holldack, P. Kuske
    BESSY GmbH, Berlin
  For the first time an electron storage ring was operated during regular user shifts in a dedicated 'low alpha' mode, where electron bunches are compressed to 5 times shorter length for THz [*] and short X-ray pulses experiments. The 1 mm rms-long bunches emit powerfull, coherent THz waves, up to 107 times stronger than incoherent radiation. We report on machine set up and operating experience.

* M. Abo-Bakr et al., Phys. Rev. Lett. 88, 254801 (2002)

 
 
THPKF016 The Metrology Light Source of the Physikalisch-Technische Bundesanstalt in Berlin-Adlershof radiation, storage-ring, photon, synchrotron 2293
 
  • R. Klein, G. Ulm
    PTB, Berlin
  • M. Abo-Bakr, P. Budz, K. Bürkmann, D. Krämer, J. Rahn, G. Wustefeld
    BESSY GmbH, Berlin
  PTB, the German National Metrology Institute, has gained approval for the construction of a low-energy electron storage ring in the close vicinity of BESSY II, where PTB operates a laboratory for X-ray radiometry. The new storage ring, named 'Metrology Light Source MLS' will be dedicated to metrology and technology development in the UV and EUV spectral range and so will fill the gap that is present since the shut down of BESSY I. The MLS is designed in close cooperation with BESSY and is located adjacent to the BESSY II facility. Construction will start 2004 and user operation is scheduled to begin in 2008. The MLS has a circumference of 48 m, injection will be from a 100 MeV microtron. The electrons energy is ramped to an eligible value in the range from 200 MeV to 600 MeV. The MLS will be equipped with all the instrumentation necessary to measure the storage ring parameters needed for the calculation of the spectral photon flux according to the Schwinger theory with low uncertainty, enabling PTB to operate the MLS as a primary source standard. Moreover, provision is taken to operated the MLS in a low alpha mode for the production of coherent synchrotron radiation in the far IR and THz region.  
 
THPKF021 Beam Current Limitations in the Synchrotron Light Source PETRA III impedance, vacuum, synchrotron, radiation 2308
 
  • R. Wanzenberg, K. Balewski
    DESY, Hamburg
  At DESY it is planned to rebuild the PETRA ring into a synchrotron radiation facility, called PETRA III, in 2007. Different operation modes with single bunch intensities of up-to 5 mA are been considered to serve the needs of the user communities. A first estimate of the impedance budget of PETRA III is given based on analytical models and numerical wakefield calculations of several vacuum chamber elements. The impedance model includes higher order modes (HOMs) of the cavities to cover also multi bunch aspects. The beam current limitations due to multi and single bunch instabilities are discussed. The build up of an electron cloud is also investigated for the option of using a positron beam to generate the synchrotron radiation.  
 
THPKF023 Studies using Beam Loss Monitors at ANKA beam-losses, vacuum, storage-ring, injection 2314
 
  • F. Pérez, I. Birkel, K. Hertkorn, E. Huttel, A.-S. Müller, M. Pont
    FZK-ISS-ANKA, Karlsruhe
  ANKA is a synchrotron light source that operates in the energy range from 0.5 to 2.5 GeV. In order to investigate the electron beam losses, two kind of beam loss monitors have been installed: 24 Pin Diode from Bergoz distributed around the storage ring, and one Pb-glass calorimeter located in a high dispersion region. The Pin Diodes are used to obtain information about the distribution of the losses while the Pb-glass detector provides higher sensitivity. The Pin Diodes allow to locate and distinguish the regions of higher losses due to Touschek and Elastic scattering. Furthermore, regions of higher losses at injection have been identified. The Pb-glass detector has been used to determine the beam energy with the resonant spin depolarisation technique. A strong spin orbit resonance has been observed with both detectors.  
 
THPKF029 Femto-second Electron Beam Slicing Project at SOLEIL laser, photon, separation-scheme, undulator 2332
 
  • O.V. Chubar, M. Idir, M.-P. Level, A. Loulergue, T. Moreno, A. Nadji, L.S. Nadolski, F. Polack
    SOLEIL, Gif-sur-Yvette
  The goal of the slicing project at SOLEIL is to provide short (50-100 fs) soft and hard X-rays pulses. The principle is based on the technique demonstrated earlier at ALS. In our case, the naturally suitable phase advances and the horizontal distributed dispersion enable the sliced pulse to be used on several consecutive straight sections. Further separation between the core and the sliced electron beams is obtained by increasing the effective horizontal dispersion using a chicane bracketing the modulator. In the hard X-rays case, the photon beams are separated spatially using a simple slit in a pinhole-camera type configuration while a mixed spatial-angular separation is chosen for the soft X-rays case. This minimizes the amount of parasitic core radiation scattered from the surface of the first focusing mirror. We will first describe the proposed scheme, the impact on the machine and some other issues. Then, photon optics calculation is presented. This takes into account the SOLEIL magnet lattice, realistic parameters of a femto-second laser, peculiarities of spectral distributions of undulator radiation and its diffraction in the range of intensities covering several orders of magnitude.  
 
THPKF034 Design of a Photoneutron Source based on a 5 MeV Electron Linac target, linac, photon, simulation 2347
 
  • L. Auditore, R.C. Barnà, D. De Pasquale, A. Trifirò, M. Trimarchi
    INFN & Messina University, S. Agata, Messina
  • A. Italiano
    INFN - Gruppo Messina, S. Agata, Messina
  A photoneutron source, based on a 5 MeV electron linac was designed by means of the MCNP simulation code. Although higher electron energies are required to produce acceptable neutron fluxes, the availability of a 5 MeV electron linac developed at the Dipartimento di Fisica (Università di Messina) has suggested this project, in sight of a future development and testing of the studied neutron source. Be and BeD2 targets were considered, whose neutron production was studied optimizing two sequential steps: the bremsstrahlung production in a suitable e-gamma converter and the (gamma,n) production in an properly designed photoneutron target-reflector-moderator system. As a result of a comparative study of different materials performances, a 0.88 mm-thick W layer was chosen as e-gamma converter. A natural graphite reflector was designed, surrounding the target, enhancing the neutron flux of two order of magnitude. The final neutron flux, at 50 cm from the photoneutron target, thermalized by a 12.2 cm-thick PE layer, was estimated to be 8.48E+07 n/cm2/sec/mA with Be target and 1.23E+08 n/cm2/sec/mA with BeD2 target.  
 
THPKF037 Quasi-isochronus Operation at NewSUBARU synchrotron, betatron, emittance, radiation 2356
 
  • Y. Shoji, S.H. Hisao, T. Matsubara
    LASTI, Ako-gun, Hyogo
  Quasi-isochronus operation is one of the operation modes of NewSUBARU, a 1.5 GeV VUV storage ring. NewSUBARU has six invert bending magnets to control the momentum compaction factor. The aim of this research is to explore the extreme reduction of electron bunch length by reducing the linear momentum compaction factor. We experimentally reduced the momentum compaction factor from 0.0014 down to less than 10-5, keeping the beam in the ring. The second-order momentum compaction factor was adjusted to almost zero, while keeping the third-order momentum compaction factor positive. The ring was operated at 1.0 GeV. Using a streak camera, the shortest bunch length we observed was 4 ps FWHM. With such a low momentum compaction factor, we expect an energy spreading by betatron oscillation even at the extremely low beam current.  
 
THPKF039 Study of Photo-cathode RF Gun for a High Brightness Electron Beam gun, cathode, laser, injection 2362
 
  • Y. Yamazaki
    JNC/OEC, Ibaraki-ken
  • S. Araki, H. Hayano, M. Kuriki, T. Muto, N. Terunuma, J. Urakawa
    KEK, Ibaraki
  • M.K. Fukuda, K. Hirano, M. Nomura, M. Takano
    NIRS, Chiba-shi
  We are going to develop a compact high-brightness electron beam system to adopt industrial and medical applications. A multi-bunch photo-cathode RF gun has been developed to generate 100 bunches beam with 2.8ns spacing and 5nC charge per bunch. We will report details of the development, especially photo-cathode production and emission characteristics from cathode by the laser.  
 
THPKF040 Development of a Femtosecond Pulse Radiolysis for Reaction Analysis in Nano-space laser, ion, linac, gun 2365
 
  • Y. Yoshida, T. Kozawa, S. Tagawa, J. Yang
    ISIR, Osaka
  A new femtosecond pulseradiolysis system was developed in Osaka University for the study of radiation-induced ultrafast physical and chemical reactions in femtosecond time regions. In the pulseradiolysis system, a femtosecond electron beam produced by a photocathode RF gun is used as an irradiation source, while a mode-locked Ti:Sapphire femtosecond laser was used as a probe light source. A time jitter between the electron pulse and the femtosecond laser was compensated by a jitter compensation technique used a femtosecond streak camera. An oblique incidence of the probe light is considered in the system to reduce the degradation of velocity difference between the electron and the laser light in samples. A time resolution of <100 fs is expected in the pulse radiolysis system for the analysis of utrafast physical and chemical reactions in nano-space.  
 
THPKF043 Accelerators Use for Irradiation of Fresh Medicinal Herbs radiation, plasma 2371
 
  • R.D. Minea, M.M. Brasoveanu, M.R. Nemtanu, C. Oproiu
    INFLPR, Bucharest - Magurele
  • E. Mazilu, N. Radulescu
    Hofigal S.A., Bucharest - Magurele
  The paper presents the results regarding the electron beam irradiation of fresh Salvia Officinalis and Calendula Officinalis. Irradiation is already a well-known decontamination method, but it received less attention for medicinal plants, especially on fresh herbs. Microbial load behavior, antioxidant activity, and enzymatic inhibition activity were measured for doses between 1 and 50 kGy. Up to 5 kGy, herbs are decontaminated without any important alteration in the active principles, but they loose their fresh aspect easier than non-irradiated ones. The last effect could be useful for the extracting process in which herbs are stressed anyway.  
 
THPKF044 The Improvement of NSRRC Linac for Top-up Mode Operation linac, storage-ring, power-supply, gun 2374
 
  • J.-Y. Hwang, J. Chen, J.-P. Chiou, K.-T. Hsu, S.Y. Hsu, K.H. Hu, T.C. King, C.H. Kuo, K.-K. Lin, C.-J. Wang, Y.-T. Yang
    NSRRC, Hsinchu
  • C.T. Pan
    NTHU, Hsinchu
  The performance of the 50 MeV linac at the National Synchrotron Radiation Research Center (NSRRC) was examined and has been improved recently. The major improved items were 1) adopting a command-charging scheme to replace the resonance charging for the linac modulator; and 2) gun electronics. As a result, the beam quality was improved in terms of its energy spectrum and stability. The correlation between the improvement of beam quality and component upgrading is analyzed. The influence of the beam quality improvement to the recently proposed top-up mode operation in 2005 will also be discussed in this report.  
 
THPKF050 Electron Accelerator for Energy up to 5.0 MeV and Beam Power up to 50 KW with X-ray Converter vacuum, extraction, cathode, coupling 2383
 
  • V. Auslender, A.A. Bryazgin, B.L. Faktorovich, E.N. Kokin, I. Makarov, S.A. Maximov, V.E. Nekhaev, A.D. Panfilov, V.M. Radchenko, M.A. Tiunov, V.O. Tkachenko, A.F.A. Tuvik, L.A. Voronin
    BINP SB RAS, Novosibirsk
  In recent time the new powerful industrial electron accelerators appear on market. It caused the increased interest to radiation technologies using high energy X-rays due to their high penetration ability. One of the promising directions is the creation of the irradiation installations for treatment of wide variety of food products. The report describes the industrial electron accelerator ILU-10 for electron energy up to 5 MeV and beam power up to 50 kW specially designed for use in industrial applications. The ILU-10 accelerator generates the vertical electron beam. The beam line turns the beam through an angle of 90 degrees and transports the beam to the vertically posed X-ray converter to generate the horizontal beam of X-rays. In the work presented results of measurements of the dose distribution profiles on the surface of treated products.  
 
THPKF051 The Status-2004 of the KURCHATOV Center of SR synchrotron, vacuum, radiation, optics 2386
 
  • V. Korchuganov, V. Korchuganov, Y.V. Krylov, V.V. Kvardakov, D.G. Odintsov, V. Ushkov, A.G. Valentinov, Y.L. Yupinov, S.I. Zheludeva
    RRC Kurchatov Institute, Moscow
  • M.V. Kovalchuk
    RAS/A.V.Shubnikov, Moscow
  Kurchatov Synchrotron Radiation Source (KCSR) began the work as a first dedicated synchrotron radiation facility in Russia in 1999. The facility includes two storage rings: 450 MeV SIBERIA-1 and 2.5 GeV SIBERIA-2 and is intended for experiments in the range of SR from VUV up to hard X-ray. Large progress was achieved in increasing SIBERIA-2 stored current during last year. Now maximum current at injection energy is more than 220 mA and it equals to 140 mA at operation energy. The SR dose is rising fast and the life time is also grown because of the outgassing of vacuum chamber by SR. Consequently, after the only one electrons accumulation the work during 24 hours on experimental stations becomes possible with SR beams unbroken. Eight experimental stations with SR beam lines and hutches were mounted and are now in routine operation with SR from bending magnets in experimental hall of Siberia-2. We are installing next beam lines there. SIBERIA-1 also has experimental hall with three beam lines and three experimental stations being in operation. The report describes the current work and the plans on the storage rings. It informs about achieved consumer parameters of an electron beam and status of SR stations.  
 
THPKF058 Experimental Experience with a Thermionic RF-gun gun, cathode, emittance, quadrupole 2394
 
  • S. Werin, Å. Andersson, M. Bergqvist, M. Brandin, L. Malmgren, S. Werin
    MAX-lab, Lund
  • G. Georgsson
    Danfysik A/S, Jyllinge
  An RF-gun structure developed at MAX-lab, and thus different from the most common BNL-structure, is in operation as a thermionic RF-gun at MAX-lab. The properties of the gun have been investigated. Especially aspects such as extractable energy range, emittance properties at various beamloading conditions and extracted current.  
 
THPKF059 Adaption of an RF-gun from Thermionic to Photo Cathode laser, cathode, gun, injection 2397
 
  • S. Werin, M. Berglund, M. Brandin, T. Hansen
    MAX-lab, Lund
  The current electron source for the injector at MAX-lab is a thermionic RF-gun. This gun produces a several ns long pulse with a significant beamloading. To allow for ?few bucket? operation and emittance reduction the gun will be adapted for operation with a ns laser system. The system to be installed during the spring 2004 is a 3 or 4th harmonic injection seeded Nd:YAG laser. The thermionic BaO cathode already in use will be used at a temperature just below thermal emission where a quantum efficiency of around 1* 10-4 is expected.  
 
THPKF060 Singapore Synchrotron Light Source– Helios 2 and Beyond synchrotron, plasma, linac, radiation 2400
 
  • H.O. Moser, B.D.F. Casse, E.P. Chew, M. Cholewa, C. Diao, S.X.D. Ding, M. Hua, J.R. Kong, Z. Li, S.bin. Mahmood, M.L. Ng, B.T. Saw, S.V.S. Vidyaraj, O. Wilhelmi, J.H.W. Wong, P. Yang, X.J. Yu
    SSLS, Singapore
  SSLS is operating a superconducting 700 MeV electron storage ring to produce synchrotron radiation over a useful spectral range from 10 keV to the far infrared for micro/nanofabrication, phase contrast imaging, surface and nano science with soft X-rays, and hard X-ray diffraction and absorption spectroscopy. An Infrared spectro/microscopy beamline is under construction. Latest results from all beamlines will be presented. SSLS is also working on a conceptual study of a Linac Undulator Light Installation (LIULI) that includes a superconducting miniundulator. Pursuing earlier work* a prototype built by ACCEL is being tested at SSLS and will later serve for FEL studies in cooperation with SSRF at Shanghai.

* A. Geisler, A. Hobl, D. Krischel, H.O. Moser, R. Rossmanith, M. Schillo, First Field Measurements and Performance Tests of a Superconductive Undulator for Light Sources with a Period Length of 14 mm, ASC Conference, Houston, TX, August 2002

 
 
THPKF061 RT-office for Electron Beam, X-ray, and Gamma-ray Dosimetry target, simulation, radiation, shielding 2403
 
  • G.F. Popov, V.T. Lazurik, V.M. Lazurik, Y.V. Rogov
    KhNU, Kharkov
  An absorbed dose of electron beam (EB),X-ray (bremsstrahlung), and gamma-ray within the irradiated product is one of the most important characteristic for all industrial radiation-technological processes. The conception for design of the Radiation-Technological Office (RT-Office) - software tools for EB, X-ray, and gamma-ray dosimetry for industrial radiation technologies was developed by authors. RT-Office realize computer technologies at all basic stages of works execution on the RTL using irradiators of EB, X-ray, and gamma-ray in the energy range from 0.1 to 25 MeV. The specialized programs for simulation of EB, X-ray, and gamma-ray processing and for decision of special tasks in dosimetry of various radiation technologies were designed on basis of the RT-Office modules. The use of the developed programs as predictive tools for EB,X-ray, and gamma-ray dose mapping, for optimization of regimes irradiation to receive minimum for dose uniformity ratio, for reducing the volume of routine dosimetry measurements of an absorbed dose within materials at realization of the radiation-technological processes are discussed in the paper.  
 
THPKF062 Comparison of Dose Distribution Prediction in Targets Irradiated by Electron Beams with Dosimetry target, simulation, radiation 2406
 
  • G.F. Popov, V.T. Lazurik, V.M. Lazurik, Y.V. Rogov
    KhNU, Kharkov
  • I. Kalushka, Z. Zimek
    Institute of Nuclear Chemistry and Technology, Warsaw
  The features of the absorbed depth-dose distribution (DDD) on boundaries of two contacting materials and material with air irradiated with an electron beam (EB) were predicted by simulation with the software ModeRTL (Modeling of the radiation-technological lines (RTL)). Validation of DDD prediction with dosimetry was fulfilled on the industrial RTL with linear electron accelerator LAE 13/9 at the INCT, Warsaw. Simulation and measurement of boundary effects of DDD were carried out for targets irradiated by scanning EB with energy 10 MeV on moving conveyer. The irradiated materials were represented as parallelepipeds with all sizes greater than range of electrons in material. Cellulose Triacetate (CTA) dosimetric film (FTR-125) in form of strips inserted between materials and air in parallel with an axis of EB was used for dosimetry. Such irradiation setup allows to receive the complete curve of DDD on the boundary of contacting materials by one dosimetric film. The physical regularities for DDD on the boundary of contacting materials predicted by simulation methods were experimentally confirmed. Investigation of those anomalies is necessary in practice to estimate the quality of an irradiation performed on RTL at realization of various industrial EB processing.  
 
THPKF063 Parameters of X-ray Radiation Emitted by Compton Sources laser, scattering, collimation, photon 2409
 
  • E.V. Bulyak, V. Skomorokhov
    NSC/KIPT, Kharkov
  Presented are results of analytical study on X–ray beam parameters generated in the Compton storage rings. A model with the given circulating electron bunch parameters and the laser splash as well is considered. For this model, the total yield of x–ray quanta is derived as a function of the crossing angle and geometric dimensions of both the bunch and splash. Also spectral characteristics of emitting x–ray beam are evaluated with account for the collimating conditions and both the angular and energy spreads in the bunch. As is shown the width of x–ray energy spectrum is narrowest for the x-ray beam collimated along the bunch orbit. With increasing the scattering angle (with respect to the bunch orbit) the spectrum of emitting quanta is widening. Problems of x-ray beam generation with required energy and brightness with the Compton storage rings are discussed.  
 
THPKF064 Status of Kharkov X-ray Generator based on Compton Scattering NESTOR storage-ring, quadrupole, injection, laser 2412
 
  • A.Y. Zelinsky, V.P. Androsov, E.V. Bulyak, I.V. Drebot, P. Gladkikh, V.A. Grevtsev, V.A. Ivashchenko, I.M. Karnaukhov, V. Lapshin, V. Markov, N.I. Mocheshnikov, A. Mytsykov, F.A. Peev, A.V. Rezaev, A.A. Shcherbakov, V.L. Skirda, V.A. Skomorokhov, Y.N. Telegin, V.I. Trotsenko
    NSC/KIPT, Kharkov
  • A. Agafonov, A.N. Lebedev
    LPI, Moscow
  • J.I.M. Botman
    TUE, Eindhoven
  • T.R. Tatchyn
    SLAC/SSRL, Menlo Park, California
  Nowadays the sources of the X-rays based on a storage ring with low beam energy and Compton scattering of intense laser beam are under development in several laboratories. In the paper the state-of-art in development and construction of cooperative project of a Kharkov advanced X-ray source NESTOR based on electron storage ring with beam energy 43 - 225 MeV and Nd:YAG laser is described. The layout of the facility is presented and main results and constructing timetable are described. The designed lattice includes 4 dipole magnets with combined focusing functions, 20 quadrupole magnets and 19 sextupoles with octupole component of magnetic field. At the present time a set of quadrupole magnet is under manufacturing and bending magnet reconstruction is going on. The main parameters of developed vacuum system providing residual gas pressure in the storage ring vacuum chamber up to 10-9 torr are presented along with testing measurement at NSC KIPT vacuum bench. The facility is going to be in operation in the middle of 2006 and generated X-rays flux is expexted to be of about 1013 phot/s.  
 
THPKF066 Conception of X-ray Source Based on Compact Wakefield Undulator radiation, photon, undulator, RF-structure 2415
 
  • A. Opanasenko
    NSC/KIPT, Kharkov
  Study of interaction of bunched charged ultrarelativistic particles with own wakefields in periodic rf structures detects new applications in the area of accelerator physics and technology. Conception of monochromatic X-ray source based on wakefield undulator, WFU, with very short period is presented. In the base of photon generation by the WFU lies a new mechanism of undulator-type radiation emitted by an ultrarelativistic electron bunch that undulates due to non-synchronous spatial harmonics of its wakefields while the bunch moves along a periodic waveguide. The features of the hard radiation and yield of photons depending on waveguide sizes and charge distribution are considered. The creation of the WFU with sub-millimetre periods due to advanced accelerator technology, such as deep X-ray lithography, opens possibilities to obtain high brightness X-rays at employing comparatively low electron energies without external alternative fields. That can have commercial significance for technological and medical applications.  
 
THPKF075 LUX - A Recirculating Linac-based Facility for Ultrafast X-ray Science linac, laser, undulator, radiation 2439
 
  • J.N. Corlett, W.A. Barletta, S. De Santis, L.R. Doolittle, W. Fawley, P.A. Heimann, S.R. Leone, D. Li, S.M. Lidia, G. Penn, A. Ratti, M. Reinsch, R.W. Schoenlein, J.W.  Staples, G.D. Stover, S.P. Virostek, W. Wan, R. Wells, R.B. Wilcox, A. Wolski, J.S. Wurtele, A. Zholents
    LBNL, Berkeley, California
  We present design concepts for LUX - a proposed source of ultra-fast synchrotron radiation pulses based on a recirculating superconducting linac. The source produces high-flux VUV-x-ray pulses with duration of 100 fs or less at a 10 kHz repetition rate, optimized for the study of ultra-fast dynamics across many fields of science. Cascaded harmonic generation in free-electron lasers (FEL's) produces coherent radiation in the VUV-soft x-ray regime, and a specialized technique is used to compress spontaneous emission for ultra-short-pulse photon production in the 1 - 10 keV range. High-brightness electron bunches of 2-3 mm-mrad emittance at 1 nC charge in 30 ps duration are produced in an rf photocathode gun and compressed to 3 ps duration following an injector linac, and recirculated three times through a 1 GeV main linac. In each return path, harmonic cascades are inserted to produce seeded FEL radiation in selected photon energy ranges from approximately 20 eV with a single stage of harmonic generation, to 1 keV with a four-stage cascade. The lattice is designed to minimize emittance growth from effects such as coherent synchrotron radiation (CSR), and to propagate electron beams carrying nm-scale density modulation in the final stages of cascaded harmonic generation. Synchronization of tens of femtoseconds is achieved by use of an optical master oscillator distributing timing signals over actively stabilized fiber, and generation of rf signals from the optical master oscillator. We describe technical developments in key areas including injection from a high repetition rate rf photocathode gun, lattice design, UV and soft x-ray production by high-gain harmonic generation, a kicker design for rapid transfer of the electron beam between radiator beamlines, lasers systems concepts, and synchronization between experimental pump lasers and the x-ray pulse.  
 
THPKF078 Coherent Infrared Radiation from the ALS Generated via Femtosecond Laser Modulation of the Electron Beam laser, wiggler, radiation, lattice 2448
 
  • A. Zholents, J.M. Byrd, Z. Hao, M.C. Martin, D. Robin, F. Sannibale, R.W. Schoenlein, M. Venturini, M.S. Zolotorev
    LBNL, Berkeley, California
  Interaction of an electron beam with a femtosecond laser pulse co-propagating through a wiggler at the ALS produces significant modulation of the electron energies within a short ~100 fs slice of the electron bunch. Subsequent propagation of the energy-modulated bunch around the storage ring results in an appearance of a local temporal modulation of the electron density (micro-bunching) due to the dispersion of electron trajectories. The temporal width of this perturbation evolves as the electron bunch propagates around the ring. The shortest modulation, ~50 microns, appears in the ALS sector immediately following the wiggler magnet, and stretches to ~ 500 microns following propagation over 2/3 of a storage ring orbit. The modulated electron bunch emits single-cycle pulses of temporally and spatially coherent infrared light which are automatically synchronized to the laser pulses. The intensity and spectra of the infrared light were measured in two locations in the ring indicated above and were found to be in good agreement with analytical calculations. Ultra-short pulses of coherent infrared radiation are presently used for a fine tuning the laser ? electron beam interaction for generating femtosecond x-ray pulses.  
 
THPKF084 Emerging Concepts, Technologies and Opportunities for Mezzo-scale Terahertz and Infrared Facilities radiation, linac, synchrotron, laser 2454
 
  • S. Chattopadhyay, S.T. Corneliussen, G.P. Williams
    Jefferson Lab, Newport News, Virginia
  Recent advances in particle beam, laser and radiofrequency technologies, combined with innovative concepts and techniques such as energy recovery, coherent synchrotron radiation-induced bunching, laser-particle beam scattering, ultrashort pulse slicing, cw high current and brightness phtoinjectors, ultrafast laser switching and compact engineered end products have opened up new opportunities and vistas in terahertz/infrared radiation sources not available before. Such sources would complement the high energy short wavelength x-ray sources in that they will allow us to probe collective processes and their ?function? in complex systems and materials, in a fashion complementary to probing structure via x-rays. We will outline and give examples of both the scientific reach of such radiation sources as well as examples of a few conceived facilities and techniques worldwide spanning a diversity of spectral, coherence, brightness and application ranges in the long wavelength. Such facilities fall in the category of mezzo-scale facilities, bracketed by table top lasers on one hand and large scale synchrotron radiation sources on the other and offer very unique and directed advances in a few key areas in life, materials, imaging, instrumentation and communication sciences.  
 
THPLT003 Vibrating Wire Scanner Parameters Optimization proton, ion, pick-up, vacuum 2460
 
  • S.G. Arutunian, K.G. Bakshetyan, N.M. Dobrovolski, M.R. Mailian, V.A. Oganessian, H.E. Soghoyan, I.E. Vasiniuk
    YerPhI, Yerevan
  • K. Wittenburg
    DESY, Hamburg
  The idea to use the metallic vibrating wire as a scanner of particles beams was experimentally confirmed [1, 2] and showed unprecedented sensibility and a huge dynamic rage of the output signal. In this work the response time of the system is estimated on the base of the dynamic model of heat transfer through the wire. A comparison of different materials of the wire is presented and the most suitable materials for different tasks are suggested. The dielectric materials are considered as possible materials of the wire, use of which allows to eliminate the electromagnetic induction from high current beams during the scanning of beam halo. The results of scanning of the iron ion beam of the mass spectrometer are presented. 1. Arutunian S.G., Avetisyan A.E., Dobrovolski N.M., Mailian M.R., Vasiniuk I.E, Wittenburg K., Reetz R., Problems of Installation of Vibrating Wire Scanners into Accelerator Vacuum Chamber. - Proc. 8-th Europ. Part. Accel. Conf. (3-7 June 2002, Paris, France), pp. 1837-1839. 2. Arutunian S.G., Dobrovolski N.M., Mailian M.R., Vasiniuk I.E., Vibrating wire scanner: first experimental results on the injector beam of Yerevan synchrotron.- Phys. Rev. Special Topics. - Accelerators and Beams, 2003, v. 6, 042801.  
 
THPLT005 Ultra-high Frequency Scanning Cavities for Non-relativistic Electron Beam polarization, target, impedance, single-bunch 2466
 
  • G.G. Oksuzyan, E.D. Gazazyan, A.T. Margaryan, A.D. Ter-Poghosyan
    YerPhI, Yerevan
  • M. Ivanyan
    CANDLE, Yerevan
  The different scanning schemes based on the RF cavities for non-relativistic electron beam are examined. Optimization criteria for various types of cavities were developed. A complete picture of the beamscanning at a given point of interest is obtained.  
 
THPLT006 A Comparison of COSY DA Maps with Analytic Formulae for Orbit Functions of a Non-scaling FFAG Accelerator closed-orbit, betatron, quadrupole, acceleration 2469
 
  • S.R. Koscielniak
    TRIUMF, Vancouver
  Fixed Field Alternating Gradient (FFAG) magnetic lattices with fixed, possibly high, radio-frequency proposed for muon acceleration have unusual requirements: relative momentum swing dp/p of ± 30% and relative spread of revolution frequencies < 10(-3). It is not evident whether the existing accelerator optical design codes are sufficiently accurate for such a large momentum range. Analytic expressions for orbit displacements, tunes and path length have been derived for thick-element models of doublet, F0D0 and FDF triplet lattices; it is this paper's purpose to compare these with values computed by SYNCH and COSY, and truncated Taylor maps constructed by Lie algebra. The mutual agreement of results from independent sources will serve to validate them all. A mathematical necessity is that one at least of the magnets be of the combined-function type, and with entrance and exit faces disposed in a sector layout. It is sufficient to consider the triplet case because in the limit that the two F quadrupoles are combined, the cell reduces to the simpler F0D0. We use as our example a "nonscaling" FFAG ring proposed for accelerations of muons over the momentum range 10-20 GeV/c.  
 
THPLT007 New Beam Profile Monitor Based on GEM Detector for the AD Transfer and Experimental Lines antiproton, hadron, cathode, extraction 2472
 
  • J. Bosser, K. Gnanvo, J. Spanggaard, G. Tranquille
    CERN, Geneva
  Many multi-wire proportional chambers, (MWPC's), are installed on the CERN Antiproton Decelerator (AD) transfer and experimental lines. They are used for the steering and profile measurement of the low energy antiproton beam that is extracted at the energy of 5.3 MeV from the AD machine. At this very low energy, the standard MWPC's are not only destructive for the beam but also perturb strongly the 2D profile measurement. These chambers are also based on technology that is outdated and in recent years have shown to be fragile and expensive to repair. For these reasons a new, low cost profile monitor, based on a Gas Electron Multiplier (GEM) detector is under development as a possible replacement of the MWPC's. This new profile monitor will enable high precision, true 2D profile measurements of the low energy antiproton beam. In this paper, we present the modification of the standard GEM detector required by our specific application and the first results of the profile monitor with antiproton beams.  
 
THPLT017 Review and Comparison of Simulation Codes Modeling Electron-Cloud Build Up and Instabilities simulation, emittance, proton, single-bunch 2502
 
  • F. Zimmermann, E. Benedetto, F. Ruggiero, D. Schulte
    CERN, Geneva
  • G. Bellodi
    CCLRC/RAL/ASTeC, Chilton, Didcot, Oxon
  • M. Blaskiewicz, L. Wang
    BNL, Upton, Long Island, New York
  • Y. Cai, M.T.F. Pivi
    SLAC, Menlo Park, California
  • V.K. Decyk, W. Mori
    UCLA, Los Angeles, California
  • M.A. Furman
    LBNL/AFR, Berkeley, California
  • A.F. Ghalam, T. Katsouleas
    USC, Los Angeles, California
  • K. Ohmi, S.S. Win
    KEK, Ibaraki
  • G. Rumolo
    GSI, Darmstadt
  Several computer codes written at various laboratories are employed for modelling the generation and the consequences of an electron cloud. We review the most popular of these programs, which simulate either the build of an electron cloud or the instabilities it produces, and we compare simulation results for identical, or similar, input parameters obtained from the various codes.  
 
THPLT018 Electron Beam Dynamics Simulations for the Low Emittance Gun emittance, gun, simulation, cathode 2505
 
  • M. Dehler, S.C. Leemann
    PSI, Villigen
  • A.E. Candel
    ETH, Zürich
  We report on theoretical simulation performed for the development of a high brightness, field emitter based electron gun suitable for an Angstrom wavelength free electron laser\cite{LEG}. First simulations have been done with available codes in 2 1/2D and 3D for basic gun configurations showing the global and local (due to the granularity of the emitter array) effects on the emittance dilution.Design and construction started on a test setup consisting of a 100 keV electron gun with solenoidal focusing and a diagnostics module. In addition to solenoid focussing, anode shaping will be investigated in order to compensate for non-linear fields leading to space charge blow-up. For advanced simulations of field emitter based guns allowing to resolve individual emitters and to capture the influence of mechanical imperfections, a massive parallel code for 3D particle-in-cell simulations is in development. The electromagnetic field solver is fully functional and the particle tracker has been completed in its basic structures.  
 
THPLT024 Commissioning and Operation of the SLS Fast Orbit Feedback feedback, photon, storage-ring, booster 2523
 
  • T. Schilcher, M. Böge, B. Keil, P. Pollet, V. Schlott
    PSI, Villigen
  The SLS Fast Orbit Feedback (FOFB) was successfully commissioned in 2003. Since November 2003 it runs during user operation of the accelerator. Taking into account 72 Digital Beam Position Monitors (DBPMs), the FOFB applies SVD-based global orbit corrections for 72 horizontal (x) and 72 vertical (y) correctors at a rate of 4 kHz, compared to ~0.5 Hz for the Slow Orbit Feedback (SOFB) that was used so far. While the SOFB was important for the elimination of orbit drifts due to temperature changes and slowly moving insertion device (ID) gaps, the FOFB is also able to damp orbit oscillations that are caused by fast changes of ID gaps or magnets, by ground and girder vibrations, 3 Hz booster crosstalk and power supply noise. This report presents experience from commissioning and user operation of the FOFB.  
 
THPLT027 Optical Transition Radiation Based Beam Diagnostics at the BESSY Synchrotron Radiation Source and FEL Accelerators laser, radiation, photon, linac 2532
 
  • T.  Kamps, K. Holldack, P. Kuske
    BESSY GmbH, Berlin
  Optical Transition Radiation (OTR) based diagnostics tools are widely used in linear accelerators to measure beam parameters like transverse beam size and emittance. Design ideas for OTR stations in the linac section of the BESSY FEL facility are presented. Several key components will be tested in the transfer lines of the BESSY storage ring. Furthermore a novel type of OTR monitor is introduced which enables the measurement of the transverse overlap of seed laser and electron beam in the undulator sections of the linac based FEL facility. Here a special radiator screen will be used allowing simultaneous imaging of both beams in the same optical readout channel.  
 
THPLT030 A Novel Device for Non-intersecting Bunch Shape Measurement at the High Current GSI-Linac background, linac, space-charge, ion 2541
 
  • P. Forck, C. Dorn, M.H. Herty, P. Strehl
    GSI, Darmstadt
  • V. Peplov
    RAS/INR, Moscow
  • S. Sharamentov
    ANL, Argonne, Illinois
  Due to the high current of heavy ions accelerated at the UNILAC at GSI, non-intersecting beam diagnostics are mandatory. For bunch length and bunch structure determination in the range of 0.3 to 5 ns a novel device has been realized. It uses the time spectrum of secondary electrons created by atomic collisions between beam ions and residual gas molecules. These electrons are accelerated by an electric field of 400 V/mm toward an electro-static energy analyzer. The analyzer is used to restrict of the effective source region. Then the electrons are deflected by an rf-resonator running in phase with the acceleration frequency (36 or 108 MHz) to transform the time spectrum into spatial separation. The detection is done with a multi-channel plate equipped with a phosphor screen and observed by a digital CCD camera. The achieved time resolution is at least 50 ps, corresponding to 2 degree of rf frequency. The general layout of the device and first results will be presented.  
 
THPLT031 Comparison of Rate Equation Models for Equilibrium Beam Parameters scattering, target, antiproton, storage-ring 2544
 
  • R.W. Hasse, O. Boine-Frankenheim
    GSI, Darmstadt
  We calculate equilibrium beam parameters from the counteraction of intrabeam scattering (IBS), electron cooling (EC) and target interaction for typical beams in the GSI cooler storge ring ESR and in the proposed HESR. This work is complementary to kinetic modeling efforts at GSI. We developed an easy to use simulation tool that includes various models for the EC rates and the IBS rates, averaged of the detailed ring lattices. The obtained scaling of the equilibrium parameters with beam current and energy are compared with existing experimental data from the ESR and with kinetic simulation results for the HESR.  
 
THPLT035 Development of a 3D-Gun-Code based on a Charge Conserving Algorithm simulation, cathode, space-charge, gun 2556
 
  • E. Gjonaj, J. Mudiganti, T. Weiland
    TEMF, Darmstadt
  Recent efforts in the development of electron sources are aiming at high intensity electron beams, beyond the limitations posed by space-charge effects in conventional guns. Field emitter arrays, multi-beam and sheet-beam guns are a few examples of emerging technology, which require an accurate characterization of the limiting current in complicated 3D-geometry. The newly developed gun code at the Technische Universität Darmstadt, implements a novel approach to the numerical simulation of space-charge-limited electron emission, which is based on the local conservation of charge for arbitrary cathode surfaces. It is shown that, imposing exact charge conservation using the CAD-data of the geometry eliminates the spurious oscillations in the charge density, which typically arise when the piecewise-planar diode approximation is applied in the simulation. The accuracy of this approach is demonstrated in the validation study of a spherical diode and in the large-scale simulation of a Traveling Wave Tube amplifier.  
 
THPLT038 The Synchrotron Radiation Interferometer using Visble Light at DELTA synchrotron, radiation, synchrotron-radiation, storage-ring 2565
 
  • U. Berges, K. Wille
    DELTA, Dortmund
  Synchrotron radiation sources such as DELTA, the Dortmund electron accelerator, rely on a monitoring system to measure the beam size and emittance with sufficient resolution. The resolution limits of the different types of optical synchrotron light monitors at DELTA have been investigated. The minimum measurable beam size with the standard synchrotron light monitor using visible light at DELTA is appr. 80 μm. Due to this limitation an interferometer was built up and tested using the same beamline in the visible range. A minimum measurable beam size of appr. 8 μm could be obtained, which gives an increased resolution of one order of magnitude with the new system.  
 
THPLT042 Automated Orbit Control for the HERA ep Collider luminosity, proton, optics, interaction-region 2574
 
  • S.W. Herb, P.K. Bartkiewicz, F. Brinker, J.M. Maass
    DESY, Hamburg
  Successful operation of the HERA electron-proton collider requires maintaining stable orbits during the typically 12 hour luminosity runs, as well as during the fill and acceleration procedures. The primary sources of orbit errors for the electron ring are the interaction region magnets, whose support structures are integrated with the experimental detectors and susceptible to thermal and magnetic effects. The orbit correction algorithms are designed to correct these effects locally, while operating with somewhat reduced sensitivity on error sources in the rest of the ring. We describe the correction system and our operating experience.  
 
THPLT044 Measurement of the Transverse Coherence of the TTF Free Electron Laser undulator, radiation, free-electron-laser, laser 2580
 
  • R. Ischebeck, M. Tonutti
    RWTH, Aachen
  • J. Feldhaus, E. Saldin, E. Schneidmiller, K. Tiedtke, R. Treusch
    DESY, Hamburg
  • C. Gerth
    CCLRC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • P. Schmüser
    Uni HH, Hamburg
  • M.V. Yurkov
    JINR, Dubna, Moscow Region
  The transverse coherence is important for many applications of a free electron laser (FEL). It depends on the inner structure of the electron bunch in the undulator, which is difficult to measure. It is therefore essential to determine the coherence properties of the FEL radiation directly. The coherence of the vacuum ultraviolet FEL at the TESLA Test Facility has been measured by recording the diffraction pattern of a double slit and measuring the visibility of the interference fringes. The experimental near field diffraction pattern is compared with a numerical model, taking into account the formation of the FEL radiation, the Fresnel diffraction in the near field zone and effects of the experimental set-up. Diffraction patterns have been recorded at various undulator lengths to measure the evolution of the transverse coherence along the undulator. This is compared to the expected evolution of the transverse radiation modes.  
 
THPLT046 The Synchrotron Radiation Beamline at TTF2 radiation, synchrotron, synchrotron-radiation, polarization 2586
 
  • O. Grimm, S. Casalbuoni, L. Fröhlich, O. Peters, J. Rossbach
    DESY, Hamburg
  The VUV-FEL at DESY, Hamburg, will require novel techniques to characterize the longitudinal charge distribution of the electron bunches that drive the free-electron laser. Conventional methods are inadequate at the short bunch lengths that will be obtained. One technique under study uses coherent far-infrared radiation to reconstruct the bunch shape through Fourier analysis of the spectrum. In a first step, a beam line to guide both far-infrared (50-1000 um) and optical synchrotron radiation from one of the bunch compressor magnets of the linear accelerator to a diagnostic station outside of the controlled area is currently under construction. It will also allow a comparison between streak camera and far-infrared measurements for features on length scales above some 100 um (the streak camera resolution). Later, infrared techniques extending to shorter wavelengths, i.e. to shorter bunch lengths, will also be used further downstream the accelerator, employing synchrotron, transition and undulator radiation. The beam line design, measurement principle and first measurements will be presented.  
 
THPLT048 Progress in 3D Space-charge Calculations in the GPT Code space-charge, acceleration, brightness, emittance 2592
 
  • G. Pöplau, U. Van Rienen
    Rostock University, Faculty of Engineering, Rostock
  • M.J. de Loos
    PP, Soest
  • S.B. van der Geer
    TUE, Eindhoven
  The mesh-based 3D space-charge routine in the GPT (General Particle Tracer, Pulsar Physics) code scales linearly with the number of particles in terms of CPU time and allows a million particles to be tracked on a normal PC. The crucial ingredient of the routine is a non-equidistant multi-grid Poisson solver to calculate the electrostatic potential in the rest frame of the bunch. The solver has been optimized for very high and very low aspect ratio bunches present in state-of-the-art high-brightness electron accelerators. In this paper, we explore the efficiency and accuracy of the calculations as function of meshing strategy and boundary conditions.  
 
THPLT051 End to End Multiparticle Simulations of the AIRIX Linac target, simulation, cathode, linac 2598
 
  • N. Pichoff, A. Compant La Fontaine
    CEA/DAM, Bruyères-le-Châtel
  AIRIX is a working 3 kA, 20 MeV induction accelerator. It has been designed with an enveloppe code : ENV. A new set of multiparticle codes (PBGUNS, MAGIC, PARMELA and PARTRAN) has been used recently to simulate the beam transport with an higher accuracy especially taking into account the field non-linearities. A dedicated space-charge routine has been written. The calculation results have been compared to experimental measurements.  
 
THPLT052 Measurement of Relative Gas Chamber Pressure in Narrow Straight Section Vacuum Vessels by Observing Gas Bremstrahlung radiation, vacuum, background, beam-losses 2601
 
  • G.A. Naylor, B. Joly, D. Robinson
    ESRF, Grenoble
  The measurement of gas pressure inside long, small cross section, vacuum vessels is difficult due to the distance between the centre of the vacuum vessel and vacuum gauges (leading to a low vacuum conductance). Following initial chamber installation, significant out-gassing is observed leading to a significant pressure bump within the chamber. A modified beam loss detector has been developed in order to monitor the gamma radiation produced by the collision of the 6GeV electrons in the storage ring with residual gas atoms. The narrow beam of gamma radiation is intercepted at various points by high Z materials in the beam line front-end allowing a radiation shower to be detected outside the vacuum vessel proportional to the gas pressure in the corresponding storage ring straight section. Various locations are considerred and results shown.  
 
THPLT053 Fast Orbit Feedback Developments at ELETTRA feedback, power-supply, insertion, insertion-device 2604
 
  • D. Bulfone, R. De Monte, M. Ferianis, V. Forchi', M. Lonza
    ELETTRA, Basovizza, Trieste
  A number of fast local orbit feedback stations are being sequentially installed at ELETTRA to improve the stability of the electron beam at the Insertion Device source points. They rely on Beam Position Monitors equipped with digital detector electronics that provides high precision and readout rate. The local feedback stations will be integrated in a fast global orbit feedback system, which is the goal of the ongoing developments. The performance and the operational experience gained with the local feedback systems are presented together with the planned road map towards the global system.  
 
THPLT058 Commissioning of the OTR Beam Profile Monitor System at TTF/VUV-FEL Injector emittance, radiation, diagnostics, target 2619
 
  • A. Cianchi, L. Catani, E.C. Chiadroni
    INFN-Roma II, Roma
  • M. Castellano, G. Di Pirro
    INFN/LNF, Frascati (Roma)
  • K. Honkavaara
    DESY, Hamburg
  • M. Raparelli
    Università di Roma II Tor Vergata, Roma
  The TESLA Test Facility (TTF) linac at DESY is being extended to an energy of 1 GeV to drive a new Free Electron Laser facility (VUV-FEL)with wavelengths between 100 nm and 6 nm.Beam profile monitors based on optical transition radiation (OTR) are one of the most important electron beam diagnostics tools. The OTR imaging system is designed to measure the transverse beam size and shape with a resolution down to 10 um. The images are digitized by CCD cameras. A network structure allows a simpler topology to connect the large number of cameras (24).This paper considers the commissioning of the OTR beam profile monitors during the first running period of the injector in spring 2004.  
 
THPLT061 Development of a Multibunch Photo-cathode RF Gun System gun, laser, cathode, injection 2628
 
  • J. Urakawa, M. Akemoto, S. Araki, H. Hayano, M. Kuriki, T. Muto, N. Terunuma, Y. Yamazaki
    KEK, Ibaraki
  • M.K. Fukuda, K. Hirano, M. Nomura, M. Takano
    NIRS, Chiba-shi
  A multibunch photo-cathode RF gun system has been developed as a electron source for the production of quasi-monoenergetic X-rays based on inverse Compton scattering. This system consists of a photocathode rf gun, a cathode system, a laser system, beam diagnostic sections, and beam dump line. The gun produces 100 bunches with a 2.8ns bunch spacing and 5nC bunch charge. We will report on the RF gun system with 4 bending dipoles of a chicane which makes the laser injection to the cathode with perpendicular angle possible.  
 
THPLT064 Enhancement of Laser Power from a Mode Lock Laser with an Optical Cavity laser, resonance, scattering, target 2637
 
  • M. Nomura, K. Hirano, M. Takano
    NIRS, Chiba-shi
  • S. Araki, Y. Higashi, T. Taniguchi, J. Urakawa, Y. Yamazaki
    KEK, Ibaraki
  • Y. Honda, N. Sasao, K. Takezawa
    Kyoto University, Kyoto
  • H. Sakai
    ISSP/SRL, Chiba
  We have developed a laser-wire beam monitor to measure a beam profile in the KEK/ATF damping ring. This monitor is based on the inverse Compton scattering with a thin wire of the laser. The laser-wire is produced with a Fabry-Perot optical cavity in which laser power from a CW laser is stored and enhanced up to 1000 times. We have a plan to increase a gamma ray flux by using a pulsed laser instead of the CW laser. There are many applications for such a high flux gamma ray, e.g. medical use, transmutation and so on. We have done a test experiment of laser pulse stacking with a mode lock laser where wavelength is 1064 nm, repetition rate 357MHz, pulse width 7psec(FWHM) and a 42 cm long Fabry-Perot optical cavity. The experimental results show that laser power in the optical cavity can be enhanced by laser pulse stacking.  
 
THPLT076 Compact X-band (11.424 Ghz) Linac for Cancer Therapy linac, radiation, laser, simulation 2670
 
  • N.H. Quyet, K. Dobashi, F. Ebina, M. El-Ashmawy, A. Fukasawa, H. Iijima, H. Ogino, M. Uesaka
    UTNL, Ibaraki
  Since most of medical linacs use S-band frequency, so far, such linacs cannot fit to modern advanced treatment techniques such as Tomotherapy and Stereotactic radiotherapy, which allows physicians to locate the tumor position during treatment time and enable for beam modification based on the real time analysis. Therefore, a new generation of electron linac with the compact size, higher power, higher gradient that can supply the advanced requirements of cancer treatment has been become necessary. X-band frequencies range is one of the suitable frequencies range for design such linacs. In this paper we will describe the possible design of a X-band (11.424 GHz) medical linac with side-coupled standing wave structure which understudying in NERL, The University of Tokyo. We aim to couple the therapy machine to the Compton scattering tunable monochromatic X-ray inspection device to realize the simultaneous inspection/therapy. Detailed design and numerical results are presented.  
 
THPLT081 Present Status of Photo-cathode RF Gun System and its Applications at Waseda University laser, gun, scattering, emittance 2685
 
  • R. Kuroda, Y. Hama, K. Hidume, H. Hirama, M. Kawaguchi, N. Kudo, T. Kuribayasi, S. Minamiguchi, R. Moriyama, T. Saito, K. Sakaue, D. Ueyama, M. Washio
    RISE, Tokyo
  • H. Hayano, J. Urakawa
    KEK, Ibaraki
  • S. Kashiwagi
    ISIR, Osaka
  • X.J. Wang
    BNL/NSLS, Upton, Long Island, New York
  High quality electron beam generation using photo-cathode rf gun system and its application have been developed at Waseda University. This system can generate about 4 MeV low emittance electron beam. This is applied for soft X-ray generation using laser Compton scattering and pulse radiolysis experiments based on the pump-probe technique. In case of the soft X-ray generation, Compton scattering experiments between about 4.2 MeV electron beam and Nd:YLF laser light (1047nm) is performed at 20 degrees interaction angle, so that about 300 eV soft X-ray is generated. In case of the pulse radiolysis experiments, the electron beam is used for the pump beam. The probe light is generated as white light by concentrating Nd:YLF laser light (1047nm) on the water cell. The measurement with about 30 ps (FWHM) time resolution of this system is demonstrated for the absorption of hydrated electrons. In this conference, we will present the experimental results, status of this system and future applications.  
 
THPLT082 Beam Diagnostics for a Photocathode Rf-gun System emittance, laser, simulation, space-charge 2688
 
  • K. Sakaue, N. Kudo, R. Kuroda, M. Washio
    RISE, Tokyo
  • H. Hayano, J. Urakawa
    KEK, Ibaraki
  • S. Kashiwagi
    ISIR, Osaka
  Beam diagnostic systems for high quality electron beam emitted from photo-cathode rf gun have been developed. Beam characteristics such as bunch length and emittance measurements were performed at Waseda University. The bunch length was measured using an rms bunch length monitor based on beam spectrum analysis. The monitor is very useful as the non-destructive and conventional tool even for the relatively low energy electron beam around 5MeV. The measurement results of the rms bunch lengths using this monitor are in good agreement with the simulation results of PARMELA. However, it is not applicable for the measurement of longitudinal profile of the electron bunch, so that we have started the manufacturing of a deflection cavity, so-called RF-Kicker, to measure the longitudinal profiles of the bunch. The emittance has been measured by using a slit scan technique. By using double slit scan technique, emittance of 9mmmrad has been obtained. Though the value is not satisfactory small, we believe that much smaller emittance can be obtained by optimizing a laser profile. The measurement results and progress of rf gun at Waseda University will be presented at the conference.  
 
THPLT083 Femto-second Bunch Length Measurement using the RF Deflector dipole, radiation, linac, coupling 2691
 
  • S. Kashiwagi, G. Isoyama, R. Kato, K.K. Kobayashi, Y. Matsui, A. Saeki, J. Yang
    ISIR, Osaka
  • H. Hayano, M. Kuriki
    KEK, Ibaraki
  • M. Kudo, M. Washio
    RISE, Tokyo
  The traveling wave type rf cavities operating in dipole mode (TM110-like) is being developed for a measurement of femto-second electron bunch. The femto-second electron bunch is used the pulse radiolysis experiments for the studies on radiation physics and chemistry with femto-second time resolution. The resonant frequency is tuned to the designing value 2856 MHz, which is accelerating frequency of a photo-injector linac at ISIR Osaka University. Further, we are planning to apply the design of the traveling wave rf deflector to a X-band crab cavities for the Global Linear Collider (GLC) project. In this conference, we will report the design of the traveling wave rf deflector and the result of cold test.  
 
THPLT086 High Temporal Resolution, Single-shot Electron Bunch-length Measurements laser, undulator, coupling, monitoring 2700
 
  • G. Berden, B. Redlich, A.F.G. Van der Meer
    FOM Rijnhuizen, Nieuwegein
  • W.A. Gillespie, A. MacLeod
    UAD, Dundee
  • S.P. Jamison
    Strathclyde University, Glasgow
  A new technique, combining the electro-optic detection of the Coulomb field of an electron bunch and the single-shot cross-correlation of optical pulses, is used to provide single-shot measurements of the shape and length of sub-picosecond electron bunches. As in our previous technique [I. Wilke et al., Phys. Rev. Lett. 88, 124801 (2002)], the electric field of the electron beam is encoded electro-optically on an optical pulse. Our earlier measurements, which involved encoding the time profile of the electron bunch on the spectrum of the optical pulse, showed electric field profiles with a FWHM of the order of 1.7 ps. The new method offers a much better time resolution since it avoids the significant measurement artifacts that can arise in our previous (spectral encoding technique due to the coupling between the temporal envelope and spectral content of the optical pulse. The cross-correlation technique has been applied to the measurement of electron bunches in FELIX, showing single bunches of around 500fs FWHM. The resolution is limited primarily by the electro-optic crystal thickness and the relatively low energy of the electrons (50 MeV).  
 
THPLT093 Particle-in-cell Numerical Simulations of Particle Dynamics in Beams and ECR Sources ion, simulation, plasma, ion-source 2712
 
  • G. Shirkov, V. Alexandrov, V. Shevtsov
    JINR/PPL, Dubna, Moscow Region
  A summary of recent development of physical and mathematical basements and the first version of computer code library based on the particle-in-cell method are presented. The code library is aimed for the three-dimensional (3D) simulation of the ECR plasma and ion production in the ECR ion source. The particle-in-cell (finite particle) method is one of the most powerful methods for the numerical simulation of multicomponent ECR plasma and electron-ion beams. This method allows studying the detailed characteristics of plasma, taking into account the distribution functions of particles (spatial, velocity and energy distributions), real self and external fields, particle-particle interactions and many other effects. This technique promises to provide very precise numerical simulations and optimizations of ECR ion sources. The first results of simulations of ECR source plasma are presented. It has been shown that a complete and adequate description of ECR plasma requires the full-scale 3D model and computer codes. This is out of frames of existed project and could be an aim of some addition investigations.  
 
THPLT099 The Analysis of the Electron Beam Scanning Method for the Beam Profile Monitoring. ion, scattering, injection, space-charge 2721
 
  • D.A. Liakin
    ITEP, Moscow
  The method of the beam profile monitoring with scanning electron beam is analyzed. Simulation model of the ion/electron beam interaction is presented and some simulation results are shown. In the report the estimation of overall performance characteristics of this method such as sensitivity, spatial resolution, frequency bandwidth etc. are given.  
 
THPLT100 Development of a Permanent Magnet Residual Gas Profile Monitor With Fast Readout ion, synchrotron, injection, photon 2724
 
  • D.A. Liakin, S.V. Barabin, V. Skachkov
    ITEP, Moscow
  • P. Forck, T. Giacomini
    GSI, Darmstadt
  • A. Vetrov
    MSU, Moscow
  The beam profile measurement at modern ion synchrotrons and storage rings require high timing performances on a turn-by-turn basis. From the other hand, high spatial resolutions are very desirable for cold beams. We are developing a residual gas monitor to cover the wide range of beam currents and transversal distributions of particles. It supplies the needed high-resolution and high-speed tools for beam profiling. The new residual gas monitor, will operate on secondary electrons whose trajectories are localized within 0.1 mm filaments. The required magnetic field of 100 mT will be excited by a permanent magnet. In the fast turn-by-turn mode the beam profile will be read out with a resolution of 1 mm by a 100-channel photodiode-amplifier-digitizer. The high resolution mode of 0.1 mm is provided by a CCD camera with upstream MCP-phosphor screen assembly. In this paper the first results of the photodiode-digitizer device testing, the compact mechanical design features and simulation results of the permanent magnet device are presented.  
 
THPLT102 Characteristics of Sealed-off Electron Gun with Wide Beam gun, radiation, cathode, vacuum 2727
 
  • V.M. Pirozhenko
    MRTI RAS, Moscow
  • A.N. Korolev, K.G. Simonov
    ISTOK, Moscow Region
  Compact sealed-off electron gun is a new promising type of devices. The gun generates wide beam of electrons with energy up to 200 keV and high peak power in 2-microsecond pulses. The beam is extracted to the atmosphere or a gas through the foil being uniformly distributed over the area of exposure. The gun contains the long ribbon cathode of oxide type, the electrodes for forming required distribution of the beam, the output window with 20-micron titanium foil, the high-voltage ceramic insulator, and the vacuum casing of rectangular shape. The gun is applied in the radiation technology system intended for the treatment of continuously moving tapes with 300 mm width. The gun design provides 10% uniformity of the radiation dose on the tape width.  
 
THPLT106 Measurement of Beam Polarization in VEPP-3 Storage Ring using Internal Target-based Moeller Polarimeter polarization, target, background, scattering 2730
 
  • A.V. Grigoriev, V. Kiselev, E.V. Kremyanskaya, E. Levichev, S.I. Mishnev, S.A. Nikitin, D.M. Nikolenko, I.A. Rachek, Y.V. Shestakov, D.K. Toporkov, V.N. Zhilich
    BINP SB RAS, Novosibirsk
  A method for beam polarization measurement in a storage ring has been for the first time developed and applied based on measuring the asymmetry in scattering of polarized beam electrons on the internal polarized gas jet target. Using this method we have studied the polarization in VEPP-3 booster storage ring. VEPP-3 is the source of polarized beams for VEPP-4M electron-positron collider in the planned experiment on high-precision mass measurement of tau-lepton near the production threshold of the latter (1777 MeV). Radiative polarization of beams obtained in VEPP-3 is used for absolute calibration of particle energy by the resonant depolarization technique after injection into VEPP-4M ring. The polarimeter design is described. Results of polarization measurements performed in 60 MeV range of VEPP-3 energy contiguous from above to tau-lepton production threshold are presented and discussed. The depolarizing influence of the integer machine spin resonance (1763 MeV) as well as of the combination spin resonances with the betatron frequencies are found to be significant.  
 
THPLT109 The Upgraded Optical Diagnostic of the VEPP-4M Collider diagnostics, collider, positron, booster 2739
 
  • O.I. Meshkov, M.G. Fedotov, V.F. Gurko, A.D. Khilchenko, N.Y. Muchnoi, Yu.A. Pakhotin, N.A. Selivanov, A.N. Zhuravlev, E.I. Zinin, P.V. Zubarev
    BINP SB RAS, Novosibirsk
  The upgraded optical diagnostic of the VEPP-4M collider is described. The system abilities are improved sufficiently in comparing with the previous version. Now the diagnostic supplies the data about an electron/positron beam transversal and longitudinal size, shape and position. It is applied to study the electron beam "tails" and turn-to-turn beam profile dynamics. The system is used to tune of the beam pass-by from the VEPP-3 booster to the VEPP-4M collider and provides the permanent measurements of the synchrotron and betatron frequencies.  
 
THPLT111 An Accelerator-based Thermal Neutron Source for BNCT Application target, proton, rfq, beam-loading 2745
 
  • A. Makhankov, A. Gervash, R. Giniyatulin, I. Mazul, M. Rumyantsev
    NIIEFA, St. Petersburg
  • J. Esposito, L.B. Tecchio
    INFN/LNL, Legnaro, Padova
  • V. Khripunov
    RRC Kurchatov Institute, Moscow
  An accelerator-based thermal neutron source, aimed at the BNCT treatment of skin melanoma is in construction at the INFN-LNL in the framework of SPES project. The BNCT device exploit the intense proton beam provided by a 5 MeV, 30 mA RFQ that represent the first accelerating step of the SPES exotic nuclei production beam facility. Neutrons are generated by 9Be(p,n)9B nuclear reaction in a high power (150 kW) Beryllium target. The operational condition of the Beryllium converter is close to the condition of Be-armoured components in fusion reactors. The main difference consists in the necessity of limitation of structural materials amount used in the design in order to meet therapeutic irradiation requirements. Two possible design of neutron converter are developed: one with saddle block tiles brazed to CuCrZr tubes and another one with Be target made from solid Be block. Results of R&D works on the development of water cooled Be target for converter are presented, including data on selected materials, technological trials and mockups high heat flux testing.  
 
THPLT122 The Energy Deposition Profile of 0.1-3.0 MeV Electrons in NaCl target, scattering, positron, radiation 2756
 
  • V.V. Gann
    NSC/KIPT, Kharkov
  • A.V. Sugonyako, D.I. Vainshtein, H.W. den Hartog
    RUG, Groningen
  An analysis is presented of existing experimental and theoretical data of energy loss profiles and energy deposition in thick targets irradiated with MeV-energy electrons. A simple approximate calculation is proposed for the energy deposition profile of a perpendicular beam of 0.1-3 MeV electrons in matter. The results obtained with this method are in agreement with existing calculated and measured energy absorption profiles for a variety of materials. It will be shown that the build-up phenomenon has a significant effect on the energy deposition profile in thick samples. A systematic experimental investigation of the energy deposition profile of 0.5 MeV electrons in 0.2 - 0.8 mm thick NaCl platelets has been carried out. The distribution of the absorbed dose was determined with differential scanning calorimetry method by measuring either the latent heat of melting of the radiation-induced Na-precipitates or the stored energy.  
 
THPLT127 Beam Diagnostics Systems for the Diamond Synchrotron Light Source linac, booster, storage-ring, synchrotron 2765
 
  • G. Rehm, A.F.D. Morgan, C. Thomas
    Diamond, Oxfordshire
  We present an overview of the diagnostics systems that will be implemented at the Diamond synchrotron light source. The aim of this paper is to give a complete picture of the systems to measure the quality of the electron beam from the injector through to the storage ring. We will show how we intend to measure the dimensions, the position and the time structure of the electron bunches. In addition, the instrumentation to measure the charge, the current and the emittance of the electron beam will be described. Finally, systems to provide accurate measurement of electron losses and the injection efficiency will be detailed.  
 
THPLT140 Commissioning of BL 7.2, the New Diagnostic Beamline at the ALS diagnostics, radiation, storage-ring, photon 2783
 
  • F. Sannibale, D. Baum, A. Biocca, N. Kelez, T. Nishimura, T. Scarvie, E. Williams
    LBNL, Berkeley, California
  • K. Holldack
    BESSY GmbH, Berlin
  BL 7.2 is a new beamline at the Advanced Light Source (ALS) dedicated to electron beam diagnostics. The system, which is basically a hard x-ray pinhole camera, was installed on the storage ring in August 2003 and the commissioning with the ALS electron beam followed immediately after. In this paper, the commissioning results are presented together with the description of the relevant measurements performed for the beamline characterization.  
 
THPLT147 Beam Halo Monitoring on the CLIC Test Facility 3 photon, monitoring, linac, radiation 2801
 
  • T. Lefevre
    NU, Evanston
  • H.-H. Braun, E. Bravin, R. Corsini, A.-L. Perrot, D. Schulte
    CERN, Geneva
  In high intensity accelerators, the knowledge of the beam halo distribution and its generation mechanisms are important issues. In order to study these phenomena, dedicated beam diagnostics must be foreseen. In circular machines, beam halo was monitored by using scrapers and beam loss detectors. In the framework of the CLIC project, beam halo monitoring is currently under development. The proposed device is based on an imaging system and a masking technique, which suppresses the core of the beam to allow direct observation of the beam halo. A first test was performed on the CLIC test facility 3 in 2003. We discuss the performances and the limitations of this technique pointing out our plans for future developments.  
 
THPLT148 Beam Loss Monitoring on the CLIC Test Facility 3 beam-losses, linac, simulation, monitoring 2804
 
  • T. Lefevre, M. Velasco, M. Wood
    NU, Evanston
  • H.-H. Braun, R. Corsini, M. Gasior
    CERN, Geneva
  The CLIC test facility 3 (CTF3) provides a 3.5A, 1.5s electron beam pulse of 150MeV at the end of the linac. The average beam power is 4 kW. Beam loss will be monitored all along the linac in order to keep the radiation level as low as possible. The heavy beam loading of the linac can lead to time transients of beam position and size along the pulse. To compensate these transients effectively a beam loss monitor (BLM) technology has to be chosen with a time response faster than a few nanoseconds. In this context, two different tests have been performed in 2003 on the already existing part of the CTF3 accelerator. Several detectors based on different technologies were first tested in parallel to determine which one was the most appropriate. A second test, in which the beam was intentionally lost in well defined conditions, was then made with the aim of comparing the measurements with simulation results. We present here the results of these tests and our conclusion for the new system to be developed.  
 
THPLT150 Results from Orbit and Optics Improvement by Evaluating the Nonlinear Beam Position Monitor Response in CESR coupling, betatron, closed-orbit, optics 2807
 
  • R.W. Helms, G. Hoffstaetter
    Cornell University, Laboratory for Elementary-Particle Physics, Ithaca, New York
  In the Cornell Electron/positron Storage Ring (CESR), pretzel orbits with large horizontal oscillations are used to keep electron and positron beams out of collision except at the interaction point. Since a beam position monitor's (BPM's) response is only linear near the center of the beam pipe, the assumption of linearity does not allow for accurate orbit and phase measurements under colliding beam conditions. Using a numerical model of the BPMs' response to large offsets of the beam position, and an enhanced algorithm for real-time inversion of this nonlinear response function, we have extended our orbit and betatron phase measurements to beams with large pretzel amplitudes. Several measurements demonstrate the applicability, accuracy, and usefulness of this method.  
 
THPLT151 Evaluation of Beam Position Monitors in the Nonlinear Regime betatron, closed-orbit, positron, coupling 2810
 
  • R.W. Helms, G. Hoffstaetter
    Cornell University, Laboratory for Elementary-Particle Physics, Ithaca, New York
  Here we present a new algorithm for processing BPM signals and extracting orbit and phase data for very large beam excursion where the BPM response function changes nonlinearly with the beam position. Using two dimensional models of each BPM geometry, we calculate the button response using numerical solution of Laplace's equation and Green's reciprocity theorem. The difference between the calculated signals and the measured signals is minimized in real time to calculate the beam position and measurement errors. Using the derivatives of the response functions, we model the effect of beam shaking, and from it, calculate the betatron phase.  
 
THPLT159 Instability Thresholds and Generation of the Electron-cloud in the GLC/NLC and Tesla Damping Rings damping, simulation, single-bunch, synchrotron 2831
 
  • M.T.F. Pivi, T.O. Raubenheimer
    SLAC/NLC, Menlo Park, California
  In the beam pipe of the Damping Ring (DR) of a linear collider, an electron cloud may be produced by ionization of residual gas and secondary emission. This electron cloud can reach equilibrium after the passage of only a few bunches. We present recent computer simulation results for the main features of the electron cloud generation in the GLC/NLC main DR and for the TESLA DR. Single and multi-bunch instability thresholds are also calculated for the NLC main DR. The results are obtained by the computer simulation codes HEAD-TAIL and POSINST, which were developed to study the electron cloud effect in particle accelerators.  
 
THPLT161 Compton X-ray Source laser, gun, diagnostics, quadrupole 2837
 
  • A.E. Vlieks, G. Caryotakis, D.W. Martin
    SLAC, Menlo Park, California
  • C.A. DeStefano, W.J. Frederick, J.P. Heritage, N.C. Luhmann Jr.
    UCD, Davis, California
  In an effort to develop a monochromatic, tunable source of X-rays in the 20-85 KeV energy range, a 5.5 cell X-band RF gun has been designed and tested. Together with a 1.05 m high gradient accelerating structure (an NLC Collider component), this system generates and accelerates a beam of electrons to energies greater than 60 MeV. Monochromatic X-rays are generated, via the Compton Effect, through a head-on collision of this beam with a multi-terawatt laser beam.We are currently measuring and analyzing the performance of the complete system, including the energy, monochromaticity and emittance of the electron beam, the laser system performance and the X-ray flux from the beam-laser interaction. A tunable, monochromatic X-ray source has important medical applications.We will report on the latest results as well as describe the experimental setup, components and diagnostics.  
 
THPLT167 SNS Laser Profile Monitor Progress laser, ion, feedback, optics 2852
 
  • W. Blokland, A.V. Aleksandrov, S. Assadi, C. Deibele, W. Grice, S. Henderson, T. Hunter, P. Ladd, G.R. Murdoch, J. Pogge, K. Potter, T.J. Shea, D. Stout
    ORNL/SNS, Oak Ridge, Tennessee
  • V. Alexandrov
    BINP SB RAS, Protvino, Moscow Region
  SNS will use a Nd:YAG laser to measure transverse profiles in the 186-1000 MeV super-conducting LINAC (SCL) and Ti:Sapphire modelock laser to measure longitudinal profiles in the 2.5 MeV Medium Energy Beam Transport (MEBT). The laser beam is scanned across the H- beam to photo-neutralize narrow slices. The liberated electrons are collected to provide a direct measurement of the transverse or longitudinal beam profile. We have successfully measured the transverse profile with a prototype system on the MEBT beam. The final SCL system uses an optical transport line that is installed alongside the 300 meter super-conducting LINAC to deliver laser light at 8 locations. Possible vibrations in the optical transport system can lead to inaccuracies in the profile measurement. We will use an active feedback system on a mirror to correct any vibration up to 2 KHz. In this paper we describe our vibration studies and vibration cancellation system as well as the progress in the design, installation and testing of various subsystems for both the transverse and the longitudinal profiles.  
 
THPLT177 Maps for Fast Electron Cloud Simulations at RHIC simulation, luminosity, space-charge, proton 2870
 
  • U. Iriso, S. Peggs
    BNL, Upton, Long Island, New York
  Luminosity in several colliders, including RHIC, is limited by the electron cloud effect. A careful re-distribution of the bunch pattern around the azimuth of a ring can decrease the average electron density for a fixed total bunch current, allowing the luminosity to be increased. In the search for a bunch pattern that maximizes the luminosity, a fast computer simulation is a key requirement. We discuss the use of fast polynomial maps to simulate the bunch to bunch evolution of the electron density at RHIC. Such maps are empirically derived from existing conventional slow simulation codes.  
 
THPLT181 A Tomographic Technique for Magnetized Beam Matching gun, linac, heavy-ion, quadrupole 2876
 
  • C. Montag, I. Ben-Zvi, J. Kewisch
    BNL, Upton, Long Island, New York
  To maintain low electron beam temperatures in the proposed RHIC electron cooler, careful matching of the magnetized beam from the source to the cooler solenoid is mandatory. We propose a tomographic technique to diagnose matching conditions. First simulation results will be presented.  
 
FRXBCH01 Novel Ideas and R&D for High Intensity Neutrino Beams proton, target, factory, storage-ring 281
 
  • K.J. Peach
    CCLRC/RAL/ASTeC, Chilton, Didcot, Oxon
  Recent developments in neutrino physics, primarily the conclusive demonstration of neutrino oscillations in both atmospheric neutrinos and solar neutrinos, provide the first conclusive evidence for physics beyond the Standard Model of particle physics. The phenomenology of neutrino oscillations, for three generations of neutrino, requires six parameters - two squared mass differences, 3 mixing angles and a complex phase that could, if not 0 or pi, contribute to the otherwise unexplained baryon asymmetry observed in the Universe. Exploring the neutrino sector will requires very intense beams of neutrinos, and needs novel solutions.  
Video of talk
Transparencies
 
FRXBCH02 Towards Higher Luminosities in B and Phi Factories luminosity, damping, emittance, background 286
 
  • P. Raimondi
    INFN/LNF, Frascati (Roma)
  A brief review of the performances of the existing Factories will be presented. Such machines have been proved extremely successful, for both particle and accelerator physics. To further extend their physics reach, several plans are under way to upgrade the existing colliders, in order to increase their luminosity up to an order of magnitude. Will also be described several new schemes and ideas to realize full ?Second Generation Factories? aimed at luminosities two order of magnitude higher then what achieved so far.  
Video of talk
Transparencies
 
FRYBCH01 Clean Energy and the Fast Track to Fusion Power plasma, target, neutral-beams, ion 295
 
  • C. Llewellyn Smith
    UKAEA Culham, Culham, Abingdon, Oxon
  The theoretical attractions of fusion are clear: used as fuel in a fusion power plant, the lithium in one laptop battery together with 40 litres of water would produce 200,000 kW hours of electricity in an environmentally benign manner. The Joint European Torus (JET), which has produced 16MW, has shown that fusion can work in practice. ITER (the International Tokamak Experimental Reactor) is now essential to test integration of the components at the heart of a fusion reactor, and confirm that a burning plasma, in a fusion device scaled up in all dimensions by a factor of two from JET, to power plant size, has the expected behaviour. ITER should confirm that a fusion power plant can be built. The challenge will then be to build a power plant that would be sufficiently reliable and robust to be economically viable. This will require intensive research and development on the materials needed to construct the plasma vessel and surrounding blanket. These materials will have to be tested under reactor conditions at a dedicated facility called IFMIF (International Fusion Materials Facility). Construction of IFMIF in parallel with ITER would put fusion firmly on the 'fast track' (strongly advocated by the British Government) to the construction of a commercial fusion power plant, which could in principle be in operation within 30 years. I shall describe how a fusion power plant would work, the advantages and disadvantages of fusion, and the challenges that lie ahead.  
Video of talk
Transparencies