A   B   C   D   E   F   G   H   I   K   L   M   N   O   P   Q   R   S   T   U   V   W    

impedance

        
Paper Title Other Keywords Page
MOPKF044 Wake Fields Effects in the Photoinjector of the SPARC Project emittance, space-charge, linac, optics 405
 
  • V. Fusco, M. Ferrario, B. Spataro
    INFN/LNF, Frascati (Roma)
  • M.  Migliorati, L. Palumbo
    Rome University La Sapienza, Roma
  When a bunch travels off axis across structures whose shape is not uniform, such as RF cavity or bellows, generates longitudinal and transverse wake fields. In addition transverse time dependent fields (like transverse RF components and wake fields ) may induce correlated slice centroids displacement, so that each slice centroid motion become affected also by space charge forces generated by the next slices. An evaluation of the emittance degradation and induced energy spread in the SPARC injector is performed with an improved version of the code Homdyn and the results are discussed. A comparison with other codes (ABCI, PARMELA 3D) to validate our model is also presented.  
 
MOPKF069 Engineering Design of the LUX Photoinjector klystron, coupling, vacuum, emittance 473
 
  • J.W.  Staples, S.P. Virostek
    LBNL, Berkeley, California
  • S.M. Lidia
    LBNL/AFR, Berkeley, California
  The photoinjector for the LBNL LUX project, a femtosecond-regime X-ray source, is a room-temperature 1.3 GHz 4-cell structure producing a 10 MeV, nominal 30 psec, 1 nanocoulomb electron bunch at a 10 kHz rate. The first cell is of reentrant geometry, with a peak field of 64 MV/m at the photocathode surface, the geometry of which will be optimized for minimum beam emittance. The high repetition rate and high peak power results in a high average surface power density. The design of the cavity, its cooling structure and power couplers, is coordinated with the configuration of the RF system, including a short, high-power driving pulse and active removal of stored energy after the beam pulse to reduce the average power dissipated in the cavity. An RF and thermal analysis will be presented, along with plans for a high average and peak power test of the first cell.  
 
MOPKF084 Beam Instabilities in Lepton Ring of eRHIC electron, lepton, positron, ion 515
 
  • D. Wang, M. Farkhondeh, C. Tschalaer, J. Van der Laan, F. Wang, A. Zolfaghari, T. Zwart
    MIT/BLAC, Middleton, Massachusetts
  • M. Blaskiewicz, Y. Luo, L. Wang
    BNL, Upton, Long Island, New York
  The eRHIC is a high luminosity lepton-hadron collider planned to be built in Brookhaven National Lab, Upton, New York, USA. The lepton machine of eRHIC is a completely newly designed machine complex to provide highly polarized lepton beams at up to 10 GeV energy for the high luminosity lepton-hadron collisions. This paper decribes major issues of collective effects in this lepton storage ring. Besides conventional impedance-driven instabilities, the electron cloud effects in positron operation and fast beam-ion effects in electron operation are of major conserns. The analytical and numerical estimats for major collective effects are made with different machine operation conditions.  
 
MOPLT005 An Improved Collimation System for the LHC collimation, proton, insertion, beam-losses 536
 
  • R.W. Assmann, O. Aberle, A. Bertarelli, H.-H. Braun, M. Brugger, L. Bruno, O.S. Brüning, S. Calatroni, E. Chiaveri, B. Dehning, A. Ferrari, B. Goddard, E.B. Holzer, J.-B. Jeanneret, J.M. Jimenez, V. Kain, M. Lamont, M. Mayer, E. Métral, R. Perret, S. Redaelli, T. Risselada, G. Robert-Demolaize, S. Roesler, F. Ruggiero, R. Schmidt, D. Schulte, P. Sievers, V. Vlachoudis, L. Vos, G. Vossenberg, J. Wenninger
    CERN, Geneva
  • I.L. Ajguirei, I. Baishev, I.L. Kurochkin
    IHEP Protvino, Protvino, Moscow Region
  • D. Kaltchev
    TRIUMF, Vancouver
  • H. Tsutsui
    SHI, Tokyo
  The LHC design parameters extend the maximum stored beam energy 2-3 orders of magnitude beyond present experience. The handling of the high-intensity LHC beams in a super-conducting environment requires a high-robustness collimation system with unprecedented cleaning efficiency. For gap closures down to 2mm no beam instabilities may be induced from the collimator impedance. A difficult trade-off between collimator robustness, cleaning efficiency and collimator impedance is encountered. The conflicting LHC requirements are resolved with a phased approach, relying on low Z collimators for maximum robustness and hybrid metallic collimators for maximum performance. Efficiency is further enhanced with an additional cleaning close to the insertion triplets. The machine layouts have been adapted to the new requirements. The LHC collimation hardware is presently under design and has entered into the prototyping and early testing phase. Plans for collimator tests with beam are presented.  
 
MOPLT006 The New Layout of the LHC Cleaning Insertions collimation, insertion, vacuum, optics 539
 
  • R.W. Assmann, O. Aberle, O.S. Brüning, S. Chemli, D. Gasser, J.-B. Jeanneret, J.M. Jimenez, V. Kain, E. Métral, G. Peon, S. Ramberger, C. Rathjen, T. Risselada, F. Ruggiero, L. Vos
    CERN, Geneva
  • D. Kaltchev
    TRIUMF, Vancouver
  The improved LHC collimation system required significant changes in the layout and design of the warm insertion IR7. Requirements for collimation, optics, impedance, vacuum, and additional infrastructure are described and the adopted layout is discussed. Various design principles have been explored during the re-design, ranging from a regular 90 degree lattice and special low impedance lattices to an option with additional warm quadrupole units that could have extended the usable space for collimator installations in the insertion. The various constraints for the optics and cleaning design in the LHC cleaning insertions are summarized. Magnet positions and collimators were moved significantly, such that a good cleaning efficiency was maintained while impedance was reduced by a factor of two. Metallic phase 2 collimators allow a better efficiency than originally achievable and additional scrapers were allocated. The required infrastructure was specified, including a powerful cooling system for the collimators.  
 
MOPLT027 Cold Beam Vacuum Interconnects for the LHC Insertion Regions vacuum, insertion, undulator, synchrotron 599
 
  • D.R. Ramos, D. Chauville, J. Knaster, R. Veness
    CERN, Geneva
  The LHC machine is composed of arcs and insertion regions where superconducting magnets, working at temperatures of 1.9 K and 4.5 K, have flexibly interconnected beam vacuum chambers. These interconnects must respect strict requirements in terms of impedance, aperture, space optimization and reliability. A complete interconnect design was first developed for the arc regions, and from which a total of 20 variants have been created according to the different functional requirements of each pair of cryostats along the machine. All design features and manufacture processes were validated through extensive testing. Manufacture and assembly cost was minimised by using a modular interconnect design, with common components shared among different design variants. A detailed quality assurance structure was implemented in order to achieve the high level of reliability required. This paper presents the layout of cold beam vacuum interconnects along with details of development and testing performed to validate design and integration.  
 
MOPLT035 Beam Induced Heating of the SPS Fast Pulsed Magnets kicker, extraction, injection, vacuum 623
 
  • J.A. Uythoven, G. Arduini, T. Bohl, F. Caspers, E.H.R. Gaxiola, T. Kroyer, M. Timmins, L. Vos
    CERN, Geneva
  Fast pulsed magnets with ferrite yokes are used in CERN?s SPS accelerator for beam injection, extraction and excitation for tune measurements. The impedance of the ferrite structures can provoke significant beam induced heating, especially for beams with high peak currents as for LHC operation, even beyond the Curie temperature. The expected heating in the different kicker systems for various operational modes is compared with beam measurements. Estimates of the beam induced power have been derived from measured beam spectra. A fast extraction kicker system has recently been equipped with a cooling system. The measured cooling performance is compared with data from laboratory setups and numerical simulations.  
 
MOPLT092 Single Mode RF Cavity for VEPP-2000 Storage Ring Based Collider coupling, storage-ring, damping, luminosity 752
 
  • V. Volkov, A. Bushuev, E. Kenjebulatov, I. Koop, A. Kosarev, Ya.G. Kruchkov, S.A. Krutikhin, I. Kuptcov, I. Makarov, N. Mityanina, V. Petrov, E. Rotov, I. Sedlyarov, Y.M. Shatunov
    BINP SB RAS, Novosibirsk
  Accelerating cavity 172 MHz with strong damped higher-order modes (HOM) for VEPP-2000 electron-positron collider have been made in Novosibirsk. Resonance frequences and Q values of cavity HOMs are measured and analysed. Most of HOMs have Q values less than 300. We compare these results with computer calculations of HOM.  
 
MOPLT133 Beam Loading and Higher-band Longitudinal Wakes in High Phase Advance Traveling Wave Accelerator Structures for the GLC/NLC beam-loading, simulation, higher-order-mode, linear-collider 848
 
  • R.M. Jones, V.A. Dolgashev, Z. Li, T.O. Raubenheimer
    SLAC, Menlo Park, California
  A multi-bunch beam traversing traveling wave accelerator structures, each with a 5pi/6 phase advance is accelerated at a frequency that is synchronous with the fundamental mode frequency. As per design, the main interaction occurs at the working frequency of 11.424 GHz. However, modes with frequencies surrounding the dominant accelerating mode are also excited and these give rise to additional modal components to the wakefield. Here, we consider the additional modes in the context of X-band accelerator structures for the GLC/NLC (Global Linear Collider/Next Linear Collider). Finite element simulations, mode-matching and circuit models are employed in order to calculate the wakefield.  
 
MOPLT134 X-Band Linear Collider R&D in Accelerating Structures through Advanced Computing simulation, collider, damping, linear-collider 851
 
  • Z. Li, N.T. Folwell, L. Ge, A. Guetz, V. Ivanov, K. Ko, M. Kowalski, L. Lee, C.-K. Ng, G. Schussman, R. Uplenchwar
    SLAC, Menlo Park, California
  • M. Wolf
    University of Illinois, Urbana
  The X-band linear collider design, GLC/NLC, requires accelerating structures in the main linac to operate at 65 MV/m and to be able to control emittance growth due to dipole wakefields generated by 100 micron bunch trains. The approach to high gradient has focused mainly on testing structures for acceptable breakdown rates at the desired gradient through experiments since the problem is analytically challenging. In suppressing dipole wakefields, the damped, detuned structure (DDS) has shown capable of meeting design requirements but the analysis using equivalent circuits has thus far been limited to the lowest two dipole bands. This paper describes a computational approach that addresses these design issues through large-scale simulations, using a suite of parallel electromagnetic codes developed under the DOE SciDAC Accelerator Simulation Project. Numerical results on peak field calculation, dark current generation, and wakefield computation will be presented on the H60VG4S17 DDS structure, considered to be the baseline design for the NLC.  
 
MOPLT135 Damping the High Order Modes in the Pumping Chamber of the PEP-II Low Energy Ring positron, vacuum, damping, electromagnetic-fields 854
 
  • A. Novokhatski, S. Debarger, F.-J. Decker, A. Kulikov, J. Langton, M. Petree, J. Seeman, M.K. Sullivan
    SLAC, Menlo Park, California
  The Low Energy Ring of the PEP-II B-factory operates with extremely high currents and short positron bunches. Any discontinuity in the vacuum chamber can excite a broad-band spectrum of the High Order Modes. A temperature rise has been found in the vacuum chamber elements in one transition from straight section to arc. The power in the wake fields was high enough to char beyond use the feed-through for the Titanium Sublimation Pump. This pumping section consists of the beam chamber and an ante-chamber. Fields, excited in the beam chamber penetrate to the ante-chamber and then through the heater wires of the TSP come out. A small ceramic tile was placed near the TSP feed-through to absorb these fields. A short wire antenna was also placed there. HOM measurements show a wide spectrum with a maximum in the 2-3 GHz region. A special water cooled HOM absorber was designed and put inside the ante-chamber part of the section. As a result, the HOM power in the section decreased and the temperature rise went down. The power loss is 750 W for a beam current of 2 A. Measurements of the HOM impedance for different bunch patterns, bunch length and transverse beam position will be presented.  
 
TUZBCH01 Beam Quality Preservation in the CERN PS-SPS Complex emittance, electron, injection, extraction 78
 
  • G. Arduini
    CERN, Geneva
  The LHC will require beams of unprecedented transverse and longitudinal brightness. Their production imposes tight constraints on the emittance growth in each element of the LHC injector chain, namely the PS-SPS Accelerator Complex. The problems encountered at the different stages of the acceleration in the complex span a wide range of topics, such as injection matching, RF gymnastics, space charge, transverse and longitudinal single- and coupled-bunch instabilities, and electron cloud effects. The measurement techniques developed and applied to identify and study the various sources of emittance dilution to the high precision required for the LHC beams and the solutions found to control such phenomena are illustrated.  
Video of talk
Transparencies
 
TUPKF011 First Tests of a HOM-Damped High Power 500MHz Cavity vacuum, damping, simulation, coupling 979
 
  • F. Marhauser, E. Weihreter
    BESSY GmbH, Berlin
  A prototype high power 500 MHz copper cavity with three tapered circular waveguides for broadband higher order mode (HOM) damping has been fabricated especially for the use in 3rd generation synchrotron radiation sources. Low power impedance measurements are presented and compared with theoretical simulations to verify the expected HOM damping efficiency as well as the fundamental mode shunt impedance. After a careful cleaning and baking process to reduce the vacuum pressure the cavity has been conditioned at high power. All relevant parameters of the cavity are reported.  
 
TUPKF012 A HOM Damped Planar Accelerating Structure damping, dipole, coupling, polarization 982
 
  • A. Blednykh, H. Henke
    TET, Berlin
  The problem of very fast higher order mode (HOM) suppression, in the order of 1ns, was investigated for a planar 30GHz accelerating structure. Both, damping and detuning were considered. A sufficient suppression could be achieved by damping waveguides in every cell in vertical and in horizontal direction. Finally, a scaled-up 10GHz model was built. It is a 35 cm long aluminum structure, which was machined by high-precision milling. In order to reduce the surface gradient on the input/output coupling irises a symmetrical RF coupler was developed. The HOM damping is accomplished by coupling six damping waveguides to each accelerating cell. The waveguides are loaded by a low resitivity RF load. The whole structure with waveguides and loads was optimized by means of the computer code GdfidL. The paper gives the design criteria and the results of s-parameter and bead-pull measurements.  
 
TUPKF031 Non-resonant Accelerating System at the KEK-PS Booster booster, power-supply, beam-losses, synchrotron 1027
 
  • S. Ninomiya, M. Muto, M. Toda
    KEK, Ibaraki
  The non-resonant accelerating system for the KEK-PS booster accelerator has been constructed. The system has been operating since October 2003 without trouble. The accelerating gap in the system is loaded with magnetic cores of high permeability. The cores produce high resistive impedance at the gap. The power dissipated in the cores amounts to 50kW at 16kV accelerating voltage. It is removed by forced-air cooling system. At the last operation of the accelerator, with the help of new COD-correction system, the average beam intensity of the booster increased to 2.6E+12ppp, which is 30% higher than before.  
 
TUPKF034 Low Output-Impedance RF System for 2nd Harmonic Cavity in the ISIS Synchrotron feedback, cathode, synchrotron, beam-loading 1036
 
  • T. Oki, S. Fukumoto, Y. Irie, M. Muto, S. Takano, I. Yamane
    KEK, Ibaraki
  • R.G. Bendall, I.S.K. Gardner, M.G. Glover, J. Hirst, D. Jenkins, A. Morris, S. Stoneham, J.W.G. Thomason, T. Western
    CCLRC/RAL/ISIS, Chilton, Didcot, Oxon
  • J.C. Dooling, D. Horan, R. Kustom, M.E. Middendorf, G. Pile
    ANL, Argonne, Illinois
  In the ISIS facility based at Rutherford Appleton Laboratory (RAL) in the UK, second target station project was funded, which requires to increase the current intensity by 1.5-times (300 micro-A). Four 2nd harmonic RF cavities will be installed in the ISIS synchrotron in order to increase the trapping efficiency, and to mitigate the space charge detuning. A very low output-impedance RF system for the 2nd harmonic cavity has been developed by the collaboration between RAL, Argonne National Laboratory (US) and KEK (Japan). The system comprises the 240 kW triode as a final amplifier with plate-to-grid feedback path. The measured output-impedance was less than 30 ohms over the frequency range of 2.7 - 6.2 MHz, which agreed well with calculations. High power test was also performed under frequency swept mode at 50 Hz repetition. The operation was almost stable, and more than 12 kVpp was obtained as maximum. The voltage gain of the final amplifier was 25 - 30, which decreased gradually with frequency due to decreasing input-impedance of triode. The beam test is planned at ISIS in near future.  
 
TUPKF035 RF System for Compact Medical Proton Synchrotron synchrotron, proton, acceleration, radiation 1039
 
  • Z. Fang, K. Egawa, K. Endo, S. Yamanaka
    KEK, Ibaraki
  • Y. Cho, T. Fusato, T. Hirashima
    DKK, Kanagawa
  The rf system has been developed for the compact medical proton synchrotron. The rf system will be operated in pulse mode with the fundamental rf frequency sweeping from 1.6 to 15 MHz during the acceleration time of 5 ms. The required rf cavity voltage is a function of acceleration time too, with the voltage of fundamental varying from 13 to 6 kV. Besides, high order harmonics are also considered to apply to the rf system, and the cavity peak voltage varying from 20 to 9 kV during the acceleration time is expected. The performance of the rf system is being studied and will be presented.  
 
TUPKF037 Multi-harmonic RF Acceleration System for a Medical Proton Synchrotron acceleration, synchrotron, feedback, proton 1045
 
  • K. Saito, M. Katane, K. Kobayashi, K. Masui, K. Moriyama, H. Nishiuchi, H. Sakurabata, H. Satomi
    Hitachi, Ltd., Power & Industrial Systems R&D Laboratory, Ibaraki-ken
  We have developed an RF accelerating system for medical proton synchrotron. The RF cavity is a tuning-free wideband type, loaded with FINEMET cores, which is driven by a solid-state RF power amplifier with operation frequency range between 1MHz and 10MHz. Multi-harmonic RF acceleration scheme has been realized with the RF control system, to reduce beam loss by space-charge effect in low energy region. The original techniques for high-speed digital signal processing and high-precision RF signal processing have been applied, in order to fulfill feedback control of the frequency, phase and amplitude of the second and third harmonic RF signals as well as the fundamental one.  
 
TUPKF038 Reduced Length Designs of 500 MHz Damped Cavity Using SiC Microwave Absorber storage-ring, undulator, synchrotron, factory 1048
 
  • T. Koseki
    RIKEN/RARF/BPEL, Saitama
  • M. Izawa, S. Sakanaka, T. Takahashi, K. Umemori
    KEK, Ibaraki
  We present a new 500 MHz HOM (Higher-Order Modes) damped cavity for high brilliance synchrotron radiation sources. The design is based on the damped cavity, which is operated at the Photon Factory storage ring in KEK. The PF cavity has a large hole beam duct (140 mm in diameter), a part of which is made of a silicon carbide (SiC) microwave absorber. The new cavity, proposed in this paper, has parallel-plate radial transmission lines on the beam duct instead of the SiC beam duct. The outer end of the radial line is terminated by SiC absorbers. The HOMs, extracted from the center part of the cavity through the beam duct, propagate in the radial line and are dissipated in the absorber. The accelerating mode is not affected by the radial line damper since the frequency is sufficiently below the cutoff of the 140-mm beam duct. In this paper, optimized design of the radial line damper and damping properties for HOMs are described in detail.  
 
TUPKF051 A 500 kV Power System for a Gridded Sheet-beam Klystron klystron, cathode, gun, power-supply 1066
 
  • M.A. Kempkes, F.O. Arntz, J.A. Casey, M.P.J. Gaudreau, N. Reinhardt, R.P. Torti
    Diversified Technologies, Inc., Bedford
  The Next Generation Linear Collider (NLC) will require hundreds of X-band high power klystrons. These klystrons are typically cathode pulsed at 500 kV and 265 A each, with 1.6 microsecond pulses of RF, and a complex microwave delay line to achieve 400 ns RF pulses. Because the pulsed voltage is so high, CV2f losses will lead to many millions of dollars per year of wasted power. The klystron group at SLAC, working with Calabazas Creek Research (CCR), is developing a gridded, sheet beam klystron. This new klystron design avoids the CV2 losses of cathode pulsing because its cathode is not pulsed - it remains at a constant high voltage. Instead, the grid voltage is pulsed over a much smaller (6 kV) voltage range. This paper will describe DTI's progress in development of the electronics required to drive this new klystron, including a 500 kV multiplier power supply and grid modulator, a multi-concentric high voltage cable, which also acts as the pulse forming line, and an advanced, reentrant cable connection to the klystron itself. This design allows the klystron to be located adjacent to the beamline, and separated from the power electronics, improving RF efficiency, maintainability, and overall reliability.  
 
TUPKF058 Test Results for the New 201.25 MHz Tetrode Power Amplifier at LANSCE linac, proton, power-supply, electron 1078
 
  • J.T.M. Lyles, S. Archuletta, J. Davis, L. Lopez, G. Roybal
    LANL/LANSCE, Los Alamos, New Mexico
  A new RF amplifier has been constructed for use as the intermediate power amplifier stage for the 201.25 MHz Alvarez DTL at LANSCE. It is part of a larger upgrade to replace the entire RF plant with a new generation of components. The new RF power system under development will enable increased peak power with higher duty factor. The first tank requires up to 400 kW of RF power. This can be satisfied using the TH781 tetrode in a THALES cavity amplifier. The same stage will be also used to drive a TH628 Diacrode? final power amplifier for each of the three remaining DTL tanks. In this application, it will only be required to deliver approximately 150 kW of peak power. Details of the system design, layout for DTL 1, and test results will be presented.  
 
TUPKF061 The SPEAR3 RF System klystron, damping, feedback, radiation 1084
 
  • P.A. McIntosh, S. Allison, P. Bellomo, S. Hill, V. Pacak, S. Park, J.J. Sebek, D.W. Sprehn
    SLAC, Menlo Park, California
  SPEAR2 was upgraded in 2003, to a new 3rd Generation Light Source (3GLS) enabling users to take better advantage of almost 100x higher brightness and flux density over its predecessor SPEAR2. As part of the upgrade, the SPEAR2 RF system has been re-vamped from its original configuration of one 200 kW klystron feeding a single 358.5 MHz, 5-cell aluminum cavity; to a 1.2 MW klystron feeding four 476.3 MHz, HOM damped copper cavities. The system installation was completed in late November 2003 and the required accelerating voltage of 3.2 MV (800 kV/cavity) was very rapidly achieved soon after. This paper details the SPEAR3 RF system configuration and its new operating requirements, highlighting its installation and subsequent successful operation.  
 
TUPKF062 PEP-II RF System Operation and Performance klystron, feedback, luminosity, damping 1087
 
  • P.A. McIntosh, J. Browne, J.E. Dusatko, J.D. Fox, W.C. Ross, D. Teytelman, D. Van Winkle
    SLAC, Menlo Park, California
  The Low Energy Ring (LER) and High Energy Ring (HER) RF systems have operated now on PEP-II since July 1998 and have assisted in breaking all design luminosity records back in June 2002. Luminosity on PEP-II has steadily increased since then as a consequence of larger e+ and e- beam currents being accumulated. This has meant that the RF systems have inevitably been driven harder, not only to achieve these higher stored beam currents, but also to reliably keep the beams circulating whilst at the same time minimizing the number of aborts due to RF system faults. This paper details the current PEP-II RF system configurations for both rings, as well as future upgrade plans spanning the next 3-5 years. Limitations of the current RF system configurations are presented, highlighting improvement projects which will target specific areas within the RF systems to ensure that adequate operating overheads are maintained and reliable operation is assured.  
 
TUPKF078 High Current Superconducting Cavities at RHIC simulation, electron, dipole, linac 1120
 
  • R. Calaga, I. Ben-Zvi, Y. Zhao
    BNL, Upton, Long Island, New York
  • J. Sekutowicz
    Jefferson Lab, Newport News, Virginia
  A five-cell high current superconducting cavity for the electron cooling project at RHIC is under fabrication. Higher order modes (HOMs), one of main limiting factors for high current energy-recovery operation, are under investigation. Calculations of HOMs using time-domain methods in Mafia will be discussed and compared to calculations in the frequecy domain. A possible motivation towards a 2x2 superstructure using the current five-cell design will be discussed and results from Mafia will be presented. Beam breakup thresholds determined from numerical codes for the five-cell cavity as well as the superstructure will also be presented.  
 
TUPLT002 The Small-gap Undulator Impedance Study vacuum, undulator, resonance, synchrotron 1132
 
  • M. Ivanyan, V.M. Tsakanov
    CANDLE, Yerevan
  The small gap undulator vacuum chamber resistive impedance model is developed. The vacuum chamber is considered as equal-radii tubes with the different wall materials (stainless steel "copper" stainless steel). The complete impedance was calculated as a sum of tubes and transitions impedances. The modal expansion method for transition impedance calculation is presented.  
 
TUPLT008 A Retrofit Technique for Kicker Beam-coupling Impedance Reduction kicker, simulation, resonance, extraction 1144
 
  • F. Caspers, E.H.R. Gaxiola, T. Kroyer, M. Timmins, J.A. Uythoven
    CERN, Geneva
  • S.S. Kurennoy
    LANL/LANSCE, Los Alamos, New Mexico
  The reduction of the impedance of operational ferrite kicker structures may be desirable in order to avoid rebuilding such a device. Often resistively coated ceramic plates or tubes are installed for this purpose but at the expense of available aperture. Ceramic U-shaped profiles with a resistive coating fitting between the ellipse of the beam and the rectangular kicker aperture have been used to significantly reduce the impedance of the magnet, while having a limited effect on the available physical aperture Details of this method, constraints, measurements and simulation results as well as practical aspects are presented and discussed.  
 
TUPLT014 Comparative Design Studies of a Super Buncher for the 72 MeV Injection Line of the PSI Main Cyclotron cyclotron, simulation, linac, injection 1162
 
  • J.-Y. Raguin, A. Adelmann, M. Bopp, H. Fitze, M. Pedrozzi, P. Schmelzbach, P. Sigg
    PSI, Villigen
  The envisaged current upgrade from 2 to 3 mA of the PSI 590-MeV main cyclotron requires an increase of the global accelerating voltage of the 50-MHz cavities which leads to a nearly unacceptable RF requirement for the 150-MHz flattop cavity. In order to preserve the longitudinal acceptance and transmission of the machine while relaxing the high demands on the flattop system, it is conceivable to install a buncher in the 72-MeV injection line. To this end, normal-conducting 150-MHz half-wave resonators and 500-MHz two-gap drift-tube cavities have been designed and optimised for minimum input power and peak surface fields. The dependence of the RF properties (Q0, shunt impedances and peak fields) with beam apertures and gap voltages compatible with beam-dynamics requirements are presented.  
 
TUPLT015 The Bunch Compressor System for SIS18 at GSI ion, synchrotron, heavy-ion, vacuum 1165
 
  • P. Hülsmann, G. Hutter, W. Vinzenz
    GSI, Darmstadt
  For bunch compression down to pulse durations of 50 ns, a dedicated rf system is under development for the SIS12/18 heavy ion synchrotron upgrade and will be described in this paper. Due to space restrictions in SIS12/18 the rf system consists of very short cavities which provide a very large voltage gradient (50 kV/m) at a very low frequency of approximately 800 kHz and rf final stages which provide a short rise time. The only possibilty to meet the requirements is the application of a cavity heavily inductively loaded by metallic alloy (MA) ring cores. This new rf system will be a prototype for the advanced acceleration and compression system needed in SIS100, which is the most important part for the proposed International Acceleration Facility at GSI. In order to gain experience with different MA ring core materials two of the four compressor cavities are loaded differently, which gives us an opportunity to learn the operational advantages of both materials. It is expected that the experimental results will support the final judgement for the future rf system in SIS100.  
 
TUPLT033 RF Design of the MAFF IH-RFQ Power Resonator vacuum, ion, rfq, alignment 1216
 
  • M. Pasini, D. Habs, O. Kester
    LMU, München
  • T. Sieber
    CERN, Geneva
  The low energy part of the LINAC of the MAFF facility will be an IH-RFQ cavity with 101.28 MHz resonance frequency. The RF design of the cavity has been completed, including design calculations and model measurements. The RFQ is designed to deliver ions of A/q = 6.5 up to 300 keV/u to be injected into the following LINAC. The structure chosen was an IH type of resonator since it was demontrated to have a better shunt impedance. The required voltage between the electrodes is 70kV and the operation mode is pulsed with a duty cycle of 10%. The structure will be made out from bulk copper in order to improve the shunt impedance and hence to allow not direct cooling on the electrodes. The optimizazion of the several parameters of the structure, and the technique for tuning the voltage distribution are presented in this paper. Measurements with a short model will be shown as well.  
 
TUPLT070 Study of a Linac Booster for Proton Therapy in the 30-62 MeV Energy Range linac, proton, cyclotron, booster 1312
 
  • V.G. Vaccaro, A. D'Elia, M.R. Masullo
    Naples University Federico II and INFN, Napoli
  • D. Capasso, S. Lanzone
    Naples University Federico II, Napoli
  • T. Clauser, A. Rainò
    INFN-Bari, Bari
  • C. De Martinis, D. Giove, M. Mauri
    INFN/LASA, Segrate (MI)
  • V. Variale
    Bari University, Science Faculty, Bari
  Recent results in accelerator physics have shown the feasibility of a coupling scheme between a cyclotron and a linac for proton acceleration. Cyclotrons with energies up to 30 MeV, mainly devoted to radioisotopes production, are available in a large number of medical centres. These two evidences have suggested the idea to study and design a linac booster able to increase the initial proton energy up to the values required for the treatment of tumors, like the ocular ones. The main challenge in such a project is related to meet the requirements arising from the beam dynamics with the constrains due both to the mechanical structures and tolerances and to the heat dissipation mechanism chosen in the design. In this paper we will review the rationale of the project and we will discuss the basic design of a compact 3 Ghz linac with a new approach to the cavities used in a SCL (Side Coupled Linac) structure  
 
TUPLT072 Dual Harmonic Acceleration with Broadband MA Cavities in J-PARC RCS beam-loading, emittance, simulation, acceleration 1318
 
  • M. Yamamoto
    JAERI, Chiba-ken
  • S. Anami, E. Ezura, K. Hara, Y. Hashimoto, C. Ohmori, A. Takagi, M. Yoshii
    KEK, Ibaraki
  • M. Nomura, A. Schnase, F. Tamura
    JAERI/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
  In the J-PARC RCS rf system, since the fundamental rf acceleration voltage and the 2nd higher harmonic one are applied to each cavity, the impedance of hte cavity has a broadband characteristic. The Q-value of the cavity is chosen to make the higher harmonic beam loading effect as small as possible. The analysis of the amplifier and the beam loading effect on the dual harmonic rf system is described.  
 
TUPLT078 Study of Impedances and Instabilities in J-PARC kicker, vacuum, resonance, synchrotron 1336
 
  • T. Toyama, K. Ohmi
    KEK, Ibaraki
  • Y. Shobuda
    JAERI/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
  J-PARC consists of two high intensity proton rings with energies of 3 GeV and 50 GeV. Longitudinal impedances and instabilities, which are caused by beam chamber, cavities, kicker magnets and others, are mainly discussed in this paper.  
 
TUPLT188 SNS Extraction Kicker Power Supply Manufacture Status power-supply, kicker, extraction, coupling 1571
 
  • J.-L. Mi, H. Hahn, R.F. Lambiase, Y.Y. Lee, C. Pai, J. Sandberg, Y. Tan, N. Tsoupas, D.S. Warburton, R. Zapasek, W. Zhang
    BNL, Upton, Long Island, New York
  There are fourteen PFN power supplies, which will be installed in the SNS Extraction Kicker System. The Pulse Forming Network (PFN) power supplies for the SNS Extraction kicker were designed by Brookhaven. The basic configuration of the PFN is a lumped element Blumlein pulse forming network (BPFN). The PFN and power supply are fabricated by an industrial company. The first article of. PFN and power supply has been manufactured and tested with a dummy load at the company and onsite with the prototype magnet. The PFN has been tested beyond its specification and has met all requirements including rise time, pulse flatness, amplitude and pulse repetition rate. Additional heat runs are scheduled. The transverse coupling impedance of the kicker system with attached PFN has been measured. This paper will report on the SNS Extraction Kicker Power Supply engineering status, and will include output waveforms, impedance measurements, and production projections.  
 
WEOACH01 High Field Gradient Cavity for J-PARC 3 GeV RCS beam-loading, acceleration, synchrotron, injection 123
 
  • C. Ohmori, S. Anami, E. Ezura, K. Hara, Y. Hashimoto, A. Takagi, M. Toda, M. Yoshii
    KEK, Ibaraki
  • M. Nomura, A. Schnase, F. Tamura, M. Yamamoto
    JAERI/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
  A new type of rf cavity will be used for J-PARC project. To minimize the beam loading effects, the quality factor of the core stack is increased by a cut core configuration. High power test of the rf system has been performed. Temperature rise around the cut surface of the cores were observed. It is minimized by improving the cooling efficiency.  
Video of talk
Transparencies
 
WEYLH01 Emittance Control for Very Short Bunches linac, emittance, undulator, simulation 179
 
  • K.L.F. Bane
    SLAC, Menlo Park, California
  Many recent accelerator projects call for the production of high energy bunches of electrons or positrons that are simultaneously short, intense, and have small emittances. Two examples of such projects are linear colliders, such as the GLC/NLC, and Self-Amplified Spontaneous Emission (SASE) FEL's, such as the Linac Coherent Light Source (LCLS). A major challenge in such projects is keeping in check forces that increase short bunch emittances in accelerator components, such as: wakefields of accelerator structures, collimators, and surface roughness, and coherent synchrotron radiation (CSR). We describe such forces and their control.  
Video of talk
Transparencies
 
WEYLH03 Collective Effects and Instabilities in Space Charge Dominated Beams space-charge, resonance, simulation, electron 189
 
  • J.A. Holmes
    ORNL/SNS, Oak Ridge, Tennessee
  Significant progress in the detailed computational study of collective beam dynamics is being driven by the spectacular increase in computer power. To take advantage of this, sophisticated physics models are being applied to ever more realistic and detailed situations, so that it is no longer necessary to restrict computer studies to highly idealized depictions of beam dynamics questions. This presentation will illustrate the application of a number of collective beam dynamics models to a range of accelerator physics problems in high intensity proton rings. In particular, we will consider the effects of space charge, transverse and longitudinal impedances, and electron cloud formation on beam parameters, stability, halo formation, collimation and losses, and possible equilibrium configurations. Examples will be taken from PSR, the CERN PS Ring, and SNS.  
Video of talk
Transparencies
 
WEPKF015 The Design of Cold to Warm Transitions of the LHC vacuum, electron, insertion, collider 1624
 
  • J. Knaster, B.J. Jenninger, D.R. Ramos, G. Ratcliffe, R. Veness
    CERN, Geneva
  The Large Hadron Collider (LHC) is the next accelerator being constructed on the CERN site to be operational in 2007. It will accelerate and collide 7 TeV protons and heavier ions up to lead. More than 2000 cryomagnets working at 1.9 or 4.5 k will form part of the magnetic lattice of the LHC. The transitions from cryogenic temperatures to room temperature zones will be achieved by 200 cold to warm transitions (CWTs). The CWTs will compensate for longitudinal and transversal displacements between beam screens and cold bores, ensuring vacuum continuity without limiting the aperture for the beam. The transverse impedance contribution is kept below the assigned total budget of 1 MΩ/m by means of a 5 μm thick Cu coating that also minimises the dynamic heat load through image currents. Tests have been performed that confirm that the static heat load per CWT to the cryomagnets remains below 2.5 W, hence validating the design.  
 
WEPKF028 High Charge Transfer Operation of Light Trigged Thrystor Crowbars power-supply, klystron 1660
 
  • W. Merz
    DESY, Hamburg
  High power klystrons are protected by the application of crowbar switches. The closing switch approach is most commonly used. It is characterized by establishing a short circuit path to bypass the klystron fault current. During short circuit operation the crowbar switch must be capable to carry both puls current of the filter capacitor and follow through current of the high voltage dc power supply. Depending on the main circuit parameters both the capacitor charge and the follow through charge can achieve significant amounts. The application of line controlled and uncontrolled hvdc power converters requires special attention regarding the follow through current charge transfer. This paper presents first practical results of series connected Light Triggered Thyristors (LTT) operating as closing crowbar switches. Measured data are discussed, which have been obtained from the DESY-II installation operating with thyristor controllers and the PETRA installation operating with uncontrolled rectifiers. Beside the puls operation the follow through current capability of the crowbar is pointed out.  
 
WEPKF051 Operational Analysis of PLS 2-GeV Electron Linac Klystron-modulator System klystron, linac, electron, vacuum 1720
 
  • S.S. Park, Y.J. Han, S.H. Kim, S.-C. Kim, S.-H. Nam
    PAL, Pohang
  The klystron-modulator(K&M) system of the Pohang Light Source(PLS) had been supplying high power microwaves for the acceleration of 2 GeV electron beams. There are 11 sets of K&M systems to accelerate electron beams to 2 GeV nominal beam energy without operating one klystron-modulator. One module of the K&M system consists of an 80 MW S-band (2856 MHZ) klystron tube and the matching 200 MW modulator. The total accumulated high-voltage run-time of the oldest unit among the 12 K&M systems has reached nearly 68,000 hours as of Dec. 2003 and the summation of all the units' high voltage run-time is approximately 820,000 hours. The overall system availability is well over 95%. There have been continuous efforts to improve the klystron-modulator system more stable and reliable. To improve self-diagnostic, operation, monitoring, and remote communication, we developed a new modulator controller based on an industrial PC platform in 2002. In this paper, we are able to review overall system performance of the high-power K&M system and the operational characteristics of the klystrons and thyratrons, and overall system's availability analysis from Jan. to Dec. 2003.  
 
WEPKF087 SNS Extraction Fast Kicker Pulsed Power System kicker, extraction, pulsed-power, vacuum 1810
 
  • W. Zhang, H. Hahn, J.-L. Mi, C. Pai, J. Sandberg, Y. Tan, N. Tsoupas, J. Tuozzolo, D.S. Warburton, J. Wei
    BNL, Upton, Long Island, New York
  • R. Cutler, K. Rust
    ORNL/SNS, Oak Ridge, Tennessee
  The Spallation Neutron Source (SNS) is a next generation high intensity beam facility. Its Accumulator Ring Extraction Fast Kicker System is a very high peak power, high average power, high precision pulse-waveform, ultra-low beam impedance, and high repetition rated pulsed power system. It has been successfully design and developed at Brookhaven National Laboratory. This system will consist of fourteen identical high voltage modulators and fourteen extraction magnet sections located inside of the SNS accumulator ring. The overall system output will reach multiple GW peak power with 60 Pulse-per-second repetition rates. The techniques of reducing impedance, improving rise time, and minimizing ripples will be discussed. The lifetime considerations, issues of the system design, development and construction are presented in this paper.  
 
WEPLT012 Observation of a Fast Single Bunch Transverse Instability on Protons in the SPS simulation, proton, emittance, injection 1843
 
  • H. Burkhardt, G. Arduini, E. Benedetto, E. Métral
    CERN, Geneva
  • G. Rumolo
    GSI, Darmstadt
  The longitudinal impedance of the SPS has been reduced significantly by hardware modifications over the last years and the threshold for longitudinal instabilities increased accordingly. We now observe a fast transverse instability on high intensity single bunches of low longitudinal emittance. The main observed signature and the threshold dependence on beam parameters is described and compared with theoretical expectations and simulations.  
 
WEPLT023 Transverse Resistive Wall Impedance and Wake Function with Inductive Bypass dipole, vacuum, simulation, betatron 1876
 
  • A. Koschik, F. Caspers, E. Métral, L. Vos
    CERN, Geneva
  • B. Zotter
    Honorary CERN Staff Member, Grand-Saconnex
  We analyze the resistive wall impedance with an "inductive bypass" due to alternate current paths in the outer vacuum chamber proper. Also the corresponding wake function has been obtained which is useful for the simulation of beam stability in the time domain. Results are presented for the LHC.  
 
WEPLT035 Capture Loss of the LHC Beam in the CERN SPS injection, beam-losses, feedback, simulation 1906
 
  • E.N. Shaposhnikova, T. Bohl, T.P.R. Linnecar, J. Tuckmantel
    CERN, Geneva
  The matched voltage of the LHC beam at injection into the SPS is 750 kV. However, even with RF feedback and feed forward systems in operation, the relative particle losses on the flat bottom for nominal LHC parameters with this capture voltage can reach the 30% level. With voltages as high as 2 MV these losses are still around 15% pushing the intensity in the SPS injectors to the limit to obtain nominal intensity beam for the LHC. Beam losses grow with intensity and are always asymmetric in energy (lost particles are seen main in front of the batch). The asymmetry can be explained by the energy loss of particles due to the SPS impedance which is also responsible for a non-zero synchronous phase on the flat bottom leading to large gaps between buckets. In this paper the measurements of the dependence of particles loss on the beam and machine parameters are presented and discussed together with possible loss mechanisms.  
 
WEPLT036 Energy Loss of a Single Bunch in the CERN SPS single-bunch, kicker, beam-loading, pick-up 1909
 
  • E.N. Shaposhnikova, T. Bohl, T.P.R. Linnecar, J. Tuckmantel
    CERN, Geneva
  • A. Hofmann
    Honorary CERN Staff Member, Grand-Saconnex
  The dependence of energy loss on bunch length was determined experimentally for a single proton bunch in the SPS at 26 GeV/c. This was done from measurements of the synchronous phase as a function of intensity for different capture voltages. The results are compared with the expected dependence calculated from the resistive part of the SPS impedance below 1 GHz. Two impedance sources, the cavities of the 200 MHz RF system and the extraction kickers, give the main contributions to particle energy loss in very good agreement with experiment. The results obtained allow a better understanding of some mechanisms leading to capture loss of the high intensity LHC beam in the SPS.  
 
WEPLT041 RF Amplitude Modulation to Suppress Longitudinal Coupled Bunch Instabilities in the SPS damping, synchrotron, proton, pick-up 1924
 
  • E. Vogel, T. Bohl, U. Wehrle
    CERN, Geneva
  In the SPS, even after a considerable impedance reduction including the removal of all RF cavities used for lepton acceleration in the past, longitudinal coupled bunch instabilities develop with an LHC beam of about one fifth of the nominal bunch intensity. The nominal LHC beam is stabilised using both, the 800 MHz Landau damping cavities, in bunch shortening mode, and pre-emptive emittance blow-up. An alternative method to increase the synchrotron frequency spread and thus stabilise the beam is amplitude modulation of the accelerating RF voltage. This method might be especially suitable in accelerators without a higher harmonic RF system, as will be the case in LHC. The main results of recent studies using this method in the SPS and considerations about its use in LHC are presented.  
 
WEPLT046 Localizing Impedance Sources from Betatron-phase Beating in the CERN SPS quadrupole, betatron, optics, focusing 1939
 
  • F. Zimmermann, G. Arduini, C. Carli
    CERN, Geneva
  Multi-turn beam-position data recorded after beam excitation can be used to extract the betatron-phase advance between adjacent beam position monitors (BPMs) by a harmonic analysis. Performing this treatment for different beam intensities yields the change in phase advance with current. A local impedance contributes to the average tune shift with current, but, more importantly, it also causes a mismatch and phase beating. We describe an attempt to determine the localized impedance around the SPS ring by fitting the measured betatron phase shift with current at all BPMs to the expected impedance response matrix.  
 
WEPLT062 Wakefield Calculations for TTF-II linac, electromagnetic-fields, diagnostics, dipole 1987
 
  • I. Zagorodnov, T. Weiland
    TEMF, Darmstadt
  • M. Dohlus
    DESY, Hamburg
  In this paper we estimate long- and short-range wake functions for new elements to be used in TESLA Test Facility (TTF) - II. The wake potentials of the LOLA-IV structure and the 3rd harmonic section are calculated numerically for very short bunches and analytical approximations for wake functions in short and long ranges are obtained by fitting procedures based on analytical estimations. The numerical results are obtained with code ECHO for high relativistic Gaussian bunches with RMS deviation up to 0.015 mm. The calculations are carried out for the complete structures (including bellows, rounding of the irises and the different end cell geometries) supplied with ingoing and outgoing pipes. The low frequency spectra of the wake potentials is calculated using the Prony-Pisarenko method.  
 
WEPLT069 Investigation of Scraper Induced Wake Fields at ANKA closed-orbit, synchrotron, single-bunch, storage-ring 2008
 
  • A.-S. Müller, I. Birkel, E. Huttel, M. Pont, F. Pérez
    FZK-ISS-ANKA, Karlsruhe
  • F. Zimmermann
    CERN, Geneva
  The ANKA synchrotron light source operates in the energy range from 0.5 to 2.5 GeV. Typical requirements for light sources include small beam sizes, large lifetimes and high currents to provide the highest possible photon flux. The understanding of impedance and instability related issues is very important in order to improve the machine performance, in particular when small aperture insertion devices are installed that require protection by a scraper. In the framework of an impedance survey the transverse and longitudinal wake fields induced by a vertical scraper have been measured and analysed. This paper reports the beam observations and compares them with the expectation.  
 
WEPLT070 Studies of Current Dependent Effects at ANKA synchrotron, storage-ring, betatron, closed-orbit 2011
 
  • A.-S. Müller, I. Birkel, E. Huttel, M. Pont, F. Pérez
    FZK-ISS-ANKA, Karlsruhe
  • F. Zimmermann
    CERN, Geneva
  The ANKA electron storage ring is operated at energies between 0.5 and 2.5 GeV. A major requirement for a synchrotron light source, such as ANKA, is to achieve a high beam current. A multitude of mostly impedance related effects depend on either bunch or total beam current. This paper gives an overview over the various beam studies performed at ANKA in this context, specifically the observation of current dependent detuning, the dermination of the bunch length change with current from a measurement of the ratio between coherent and incoherent synchrotron tune and an assessment of the effective longitudinal loss factor from the current dependent horizontal closed orbit distortion.  
 
WEPLT077 DESIGN OF A FULL-CUSTOM ACCURATE I-Q MODULATOR simulation, radio-frequency, coupling, insertion 2029
 
  • M. Luong, M. Desmons
    CEA/DSM/DAPNIA, Gif-sur-Yvette
  The I-Q modulator is a key component in a digital Low Level RF (LLRF) system for amplitude and phase feedbacks. Its residual errors in offset or gain have a strong impact on the dynamic and accuracy of the feedback loops. For some frequencies, commercial I-Q modulators are available on the market. But even in that case, these components are usually designed for broadband communication purposes, and their performances in term of residual errors may not fit the strict requirements on the final amplitude and phase loop stability. Since LLRF systems for accelerators are typically narrow-banded, i.e. limited to few MHz, it is possible to achieve a high directivity and a very accurate coupling for hybrids, and an excellent matching for all subcomponents in a fully custom design. This approach guarantees the lowest residual errors for an I-Q modulator. The principle for the design and the process for the optimization are presented in this paper.  
 
WEPLT080 Study of Resistive-wall Effects on SOLEIL single-bunch, vacuum, focusing, synchrotron 2038
 
  • R. Nagaoka
    SOLEIL, Gif-sur-Yvette
  The presence of low-gap chambers for insertion devices, along with a relatively small vertical gap of 25 mm chosen for the standard vacuum chambers, implies a significant influence of the resistive-wall on the beam in the future SOLEIL storage ring. A systematic approach was taken to quantify the net contribution by taking into account all local variations of the non-circular chamber cross-sections as well as beta functions. Low multibunch instability thresholds were found in both transverse planes, indicating the necessity of cures, by means of transverse feedback and/or chromaticity shifts. An effort was made to evaluate the effect of metallic coating, particularly that of NEG, which was adopted in all straight sections. The dependence on both resistivity and thickness of NEG was followed. It is found that, the NEG coating nearly doubles the reactive part of the impedance in the frequency range seen by the beam. Implication on the reduction of the transverse mode-coupling instability threshold is discussed. Incoherent tune shifts arising from the non-circular chamber cross-section were also evaluated, including a non-negligible NEG contribution in the short-range wakes.  
 
WEPLT081 Numerical Evaluation of Geometric Impedance for SOLEIL vacuum, dipole, collective-effects, coupling 2041
 
  • R. Nagaoka
    SOLEIL, Gif-sur-Yvette
  Good knowledge and minimisation of the coupling impedance is of great importance for the future storage ring SOLEIL, envisaged to operate in both high current multibunch and high bunch intensity modes. Three-dimensional computations of the geometric impedance of various vacuum chamber components have been made with the code GdfidL, which allows parallel processing with a cluster of computers, rendering the computation with a small mesh size and a long integrated distance feasible. Many treated objects were found to exhibit large asymmetry in the two transverse planes, as well as resonant behaviour at high frequencies, both of which being non-straightforward to follow with the conventional analytical methods and 2-dimensional calculations. In particular, strongly trapped modes found for the flange impedance resulted in an unacceptably low vertical multibunch instability threshold, which urged a modification of the original cavity-like structure. The dependence of the dipole chamber impedance on the vertical slot size was followed to determine the optimal slot opening. Characteristics of the total broadband impedance obtained, along with relative contributions are also presented.  
 
WEPLT083 Coherent and Incoherent Tune Shifts Deduced from Impedance Modelling in the ESRF-Ring vacuum, single-bunch, storage-ring, coupling 2047
 
  • T.F. Günzel
    ESRF, Grenoble
  In single bunch the detuning of the transverse modes m=0,1 and -1 are calculated on the base of an impedance model contructed from element-wise wakefield calculation and the resistive wall impedance of the ESRF-ring. As the vacuum chambers of the ESRF storage ring have notably flat cross sections incoherent wake fields have an impact on the tune shifts as well as coherent wake fields. Compared to tune shift measurements in single bunch the calculated transverse mode detuning can explain half of the tune shift in the vertical plane and almost completely the tune shift in horizontal plane.  
 
WEPLT085 Vertcal Effective Impedance Mapping of the ESRF Storage Ring closed-orbit, insertion, insertion-device, vacuum 2053
 
  • T. Perron, L. Farvacque, E. Plouviez
    ESRF, Grenoble
  Transverse impedance increase due to installation of low gap vacuum chambers is a general effect observed in synchrotron light sources. ESRF has been sensitive to this increase of impedance, as its single bunch threshold has dramatically decreased. This paper presents a method based on closed orbit distortion measurements, witch allows to measure locally the vertical effective impedance. Results of measurements performed on low gap vacuum chambers and in-vacuum ondulators are presented. As an extension to this experiment, a new global method is discussed. This method, also based on closed orbit measurement allows measuring simultaneously all areas of high impedance in the machine  
 
WEPLT095 Modified Polarizabilities and Wall Impedance for Shielded Perforated Beam Pipes with General Shape coupling, vacuum, dipole, shielding 2074
 
  • S. Petracca, T. Demma
    U. Sannio, Benevento
  We extend previous results [*] concerning the modified polarizability of (electrically small) holes/slots in the wall of a circular beam liner surrounded by a coaxial circular tube to the most general liner and cold bore geometries. We obtain an equivalent wall impedance to describe the electromagnetic boundary conditions at perforated walls for this most general case, and use a general perturbational approach [**] for computing the pertinent longitudinal and transverse coupling impedances.

* R.L. Gluckstern, CERN SL 92-06 (AP), 1992, CERN SL 92-31 (AP), 1992; R.L. Gluckstern, B. Zotter, CERN SL 96-56 (AP), 1996.** S. Petracca, Part. Acc., {\bf 50}, 211, 1995; id., Phys. Rev. E, 60 (3),1999.

 
 
WEPLT119 Beam Instabilitiy Studies of BEPC and BEPCII electron, synchrotron, synchrotron-radiation, radiation 2131
 
  • J.Q. Wang, Z.Y. Guo, Y.D. Liu, Q. Qin, Z. Zhao, D.M. Zhou
    IHEP Beijing, Beijing
  BEPC has been well operated for more then 10 years, and it will be upgraded to a double ring electron positron collider using the existing tunnel, namely BEPCII. This paper describes the recent studies on beam instabilities in BEPC for the improvement of its performance as well as for BEPCII. The instabilities caused by impedance and two-stream effect are investigated. The experimental and simulation results are reported.  
 
WEPLT122 Investigation of Microwave Instability on Electron Storage Ring TLS simulation, damping, single-bunch, storage-ring 2140
 
  • M.-H. Wang
    NSRRC, Hsinchu
  • A. Chao
    SLAC, Menlo Park, California
  With the planned installation of a superconducting rf system, the new operation mode of TLS, the electron storage ring at NSRRC, is expected to double the beam intensity. Several accelerator physics topics need to be examined. One of these topics concerns the beam instability of single-bunch longitudinal microwave instability. We consider different approaches to measure the effective broad band impedance. We compare these measurement results with each other and to the old data [*]. The new measurements of effective broad band impedance are higher than the old measurement since between these two sets of measurements several narrow gap insertion devices were installed into the storage ring. We calculate the threshold current of microwave instability with a mode-mixing analysis code written by Dr. K. Oide of KEK [**]. We also develop a multi-particle tracking code to simulate the instability. The results of simulation and measurement are compared and discussed. We conclude that the doubling of beam current will not onset the microwave instability even without a Landau cavity to lengthen the bunch.

* M.H. Wang, et al.,"Longitudinal Beam Instability Observation with streak Camera at SRRC", proceeding of 1996 European Particle Accelerator Conference, pp. 1120** K. Oide, "Longitudinal Single-Bunch Instability in Electron Storage Rings", KEK Preprint 90-10

 
 
WEPLT137 Higher Order Modes in the New 100 and 500 MHz Cavities at MAX-lab damping, synchrotron, synchrotron-radiation, coupling 2158
 
  • H. Tarawneh, Å. Andersson, M. Bergqvist, M. Brandin, M. Eriksson, L. Malmgren
    MAX-lab, Lund
  The MAX-II electron storage ring operates exclusively in multi-bunch mode with all buckets filled. Damping of the longitudinal higher order mode (HOM) instabilities has successfully been provided by passive third harmonic 1.5 GHz cavities. With a new RF employing three 100 MHz capacity loaded cavities and a fifth harmonic Landau cavity installed, a study of the HOM impedances, and related threshold instability currents, is necessary. Measurements and calculations so far, are being presented.  
 
WEPLT158 Direct Measurement of the Resistive Wakefield in Tapered Collimators linac, vacuum, electron, damping 2212
 
  • P. Tenenbaum
    SLAC, Menlo Park, California
  • D. Onoprienko
    Brunel University, Middlesex
  The transverse wakefield component arising from surface resistivity is expected to play a major role in the beam dynamics of future linear colliders. We report on a series of experiments in which the resistive wakefield was measured in a series of tapered collimators, using the Collimator Wakefield beam test facility at SLAC. In order to separate the contributions of geometric and resistive wakefields, two sets of collimators with identical geometries but different resistivities were measured. The results are in agreement with the theoretical prediction for the high-resistivity (titanium) collimators, but in the case of low-resistivity (copper) collimators the resistive deflections appear to be substantially larger than predicted.  
 
WEPLT169 Benchmark and Threshold Analysis of Longitudinal Microwave Instability in the PSR injection, space-charge, proton, storage-ring 2224
 
  • S.M. Cousineau, J.A. Holmes
    ORNL/SNS, Oak Ridge, Tennessee
  • C. Beltran, R.J. Macek
    LANL/LANSCE, Los Alamos, New Mexico
  A set of inductive inserts used to provide passive longitudinal space charge compensation in the Los Alamos Proton Storage Ring cause a strong microwave instability in the beam when the inductors are at room temperature. We use the ORBIT code to perform benchmarks of the microwave instability dynamics, including the mode spectrum and the instability growth time. Additionally, we analyze the experimental instability intensity threshold and compare it with the simulated threshold. For all parameters benchmarked, results of simulations are in good agreement with the experimental data.  
 
THPKF021 Beam Current Limitations in the Synchrotron Light Source PETRA III vacuum, synchrotron, electron, radiation 2308
 
  • R. Wanzenberg, K. Balewski
    DESY, Hamburg
  At DESY it is planned to rebuild the PETRA ring into a synchrotron radiation facility, called PETRA III, in 2007. Different operation modes with single bunch intensities of up-to 5 mA are been considered to serve the needs of the user communities. A first estimate of the impedance budget of PETRA III is given based on analytical models and numerical wakefield calculations of several vacuum chamber elements. The impedance model includes higher order modes (HOMs) of the cavities to cover also multi bunch aspects. The beam current limitations due to multi and single bunch instabilities are discussed. The build up of an electron cloud is also investigated for the option of using a positron beam to generate the synchrotron radiation.  
 
THPKF028 Upgrade of the Cryomodule Prototype before its Implementation in SOLEIL damping, dipole, storage-ring, synchrotron 2329
 
  • P. Bosland
    CEA/DSM, Gif-sur-Yvette
  • P. Bredy, S. Chel, G. Devanz
    CEA/DSM/DAPNIA, Gif-sur-Yvette
  • R. Losito
    CERN, Geneva
  • P. Marchand, K. Tavakoli, C. Thomas-Madec
    SOLEIL, Gif-sur-Yvette
  In the Storage Ring (SR) of the Synchrotron SOLEIL light source, two cryomodules will provide the maximum power of 600 kW required at the nominal energy of 2.75 GeV with the full beam current of 500 mA. A cryomodule prototype, housing two 352 MHz superconducting single-cell cavities with strong damping of the Higher Order Modes has been built and successfully tested in the ESRF storage ring. Even though the achieved performance (3 MV and 380 kW) does meet the SOLEIL requirement for the 1st year of operation, the cryomodule prototype will be upgraded before its installation in the SR early 2005. Modifications will be made on the internal cryogenic system, and also on the power and dipolar HOM couplers. That requires a complete disassembling and reassembling of the cryomodule, which is being carried out at CERN in the framework of collaboration between SOLEIL, CEA and CERN. Additional 3D RF calculations have been performed on the full SOLEIL RF structure in order to get a more detailed description of the dipolar modes damping and of the dipolar HOM couplers tuning. A second cryomodule, similar to the modified prototype, will be built and installed in the SR about one year later.  
 
THPKF088 NSLS II: A Future Source for the NSLS synchrotron, brightness, storage-ring, insertion 2457
 
  • J.B. Murphy, J. Bengtsson, L. Berman, R. Biscardi, A. Blednykh, G.L. Carr, W.R. Casey, S.B. Dierker, E. Haas, R. Heese, S. Hulbert, E. Johnson, C.C. Kao, S.L. Kramer, S. Krinsky, I.P. Pinayev, R. Pindak, S. Pjerov, B. Podobedov, G. Rakowsky, J. Rose, T.V. Shaftan, B. Sheehy, D.P. Siddons, J. Skaritka, N. Towne, J.-M. Wang, X.J. Wang, L.-H. Yu
    BNL/NSLS, Upton, Long Island, New York
  The National Synchrotron Light Source at BNL was the first dedicated light source facility and has now operated for more than 20 years. During this time, the user community has grown to more than 2400 users annually. To insure that this vibrant user community has access to the highest quality photon beams, the NSLS is pursuing the design of a new ultrahigh brightness (~ 1E21) electron storage ring, tailored to the 0.3-20 keV photon energy range. We present our preliminary design and review the critical accelerator physics design issues.  
 
THPLT005 Ultra-high Frequency Scanning Cavities for Non-relativistic Electron Beam electron, polarization, target, single-bunch 2466
 
  • G.G. Oksuzyan, E.D. Gazazyan, A.T. Margaryan, A.D. Ter-Poghosyan
    YerPhI, Yerevan
  • M. Ivanyan
    CANDLE, Yerevan
  The different scanning schemes based on the RF cavities for non-relativistic electron beam are examined. Optimization criteria for various types of cavities were developed. A complete picture of the beamscanning at a given point of interest is obtained.  
 
THPLT010 Limiting High Frequency Longitudinal Impedance of an Inductive Pick-up by a Thin Metallic Layer simulation, pick-up, insertion, vacuum 2481
 
  • M. Gasior
    CERN, Geneva
  An Inductive Pick-Up (IPU) was developed to measure the position and current of an electron beam of the CTF3 Drive Beam Linac. The pick-up construction is similar to a wall current monitor, but the pick-up inner wall is divided into 8 electrodes, each of which forms the primary winding of a toroidal transformer. The beam image current component flowing along each electrode is transformed to a secondary winding, connected to an output. The continuity of the vacuum chamber is taken care of by a ceramic insertion surrounded by the electrodes. The insertion is titanium coated on the inside and the end-to-end resistance of the layer is chosen in such a way that within the IPU bandwidth the image current flows over the electrodes. For higher frequencies the current is conducted by the coating to limit the longitudinal impedance of the device in the GHz range. This paper describes a simple electric network model, which was used to simulate the influence of the coating and to optimize its resistance. The model is built from sections of ideal transmission lines and resistors and is suitable for SPICE simulations. Results of measurements and simulations are compared.  
 
THPLT013 Simulation of Multi-bunch Multi-turn Instabilities in High Energy Proton Rings: Algorithms and Results simulation, proton, target, vacuum 2490
 
  • A. Koschik
    CERN, Geneva
  A simulation code to study collective effects in multi-bunch proton machines has been developed and applied to the CERN SPS and LHC. The 3D simulation program allows the exploration of long-range effects due to resistive-wall and HOMs in circular, elliptic and rectangular vacuum chambers also for uneven filling schemes. The code has been benchmarked with measurements in the SPS. Results obtained for LHC, including beam stability and emittance growth, are presented and discussed.  
 
THPLT113 Conceptual Design of a Microwave Confocal Resonator Pick-up pick-up, coupling, damping, extraction 2750
 
  • V.G. Ziemann, A. Ferrari, T. Lofnes
    TSL, Uppsala
  • F. Caspers, I. Syratchev
    CERN, Geneva
  A confocal resonator may be used as a pick-up for frequencies in the multi-GHz region. In this report we discuss the design by analytical and numerical methods of such a device. Furthermore we discuss engineering issues such as the damping of unwanted modes, shielding of image fields and manufacturing tolerances. Such a device can be used both as pick-up and kicker where the actual structure is several wavelengths away from the beam in the transverse direction. It is intended for highly relativistic beams and does not require changing particle trajectory as opposed to a diagnostic wiggler.  
 
THPLT124 Simulation Technique for Study of Transient Self-consistent Beam Dynamics in RF Linacs simulation, linac, beam-loading, acceleration 2762
 
  • V.V. Mytrochenko, A. Opanasenko
    NSC/KIPT, Kharkov
  The report describes a simulation technique for study of unsteady self-consistent dynamics of charged particles in resonant linacs. The technique allows simulating the linacs that consist of resonant cavities and traveling wave sections. The proposed approach is based on unsteady theories of excitation of resonant cavities and waveguides by a beam of charged particles and RF feeders. The theory of waveguide excitation is generalized to the case of spatially inhomogeneous traveling wave structures. The system of self-consistent differential equations for fields and motion of particles is integrated over time and space. The SUPERFISH code is used to evaluate characteristics of the axially symmetrical cavities and traveling wave sections. The PARMELA code is applied to simulate motion of the particles at each time step of the integration. In such a way the fields and beam characteristics in the axially symmetrical accelerating structures can be obtained for transient and steady state operation. Description of the algorithm and results of its validation are presented.  
 
THPLT155 Development and Testing of a Low Group-delay Woofer Channel for PEP-II feedback, damping, diagnostics, synchrotron 2822
 
  • J.D. Fox, L. Beckman, D. Teytelman, D. Van Winkle, A. Young
    SLAC, Menlo Park, California
  The PEP-II HER and LER require active longitudinal feedback to control coupled-bunch instabilities. The PEP-II RF systems use direct and comb loop feedback to reduce the cavity fundamental impedance, though the remaining low-mode impedance is providing the fastest growing unstable modes in both rings. Since commissioning the longitudinal feedback systems have used a dedicated "woofer" channel to apply the low-frequency correction kick via the RF system. The performance of this original controller is limited by the maximum gain that can be supported due to the processing delay (group delay), as well as the difficulty in configuring a common correction controller that acts via two correction paths. A dedicated low-mode signal processing system has been developed to allow higher damping rates. It is a digital processing channel, operating at a 10 MHz sampling rate, and implementing flexible 5 to 10 tap FIR control filters. The design of the channel and initial control filters is presented, as are initial machine experiments quantifying the damping and noise floor of this low group delay woofer system.  
 
THPLT160 Measurements of Transverse Coupled-bunch Instabilities in PEP-II feedback, damping, diagnostics, betatron 2834
 
  • D. Teytelman, R. Akre, J.D. Fox, S.A. Heifets, A. Krasnykh, D. Van Winkle, U. Wienands
    SLAC, Menlo Park, California
  At the design currents the PEP-II High and Low Energy Rings operate above the coupled-bunch instability thresholds in horizontal and vertical planes. Both machines have used analog bunch-by-bunch feedback systems to stabilize the beams since commissioning. Here we present a measurement technique that uses the capabilities of the PEP-II programmable digital longitudinal feedback system to provide transient diagnostics in X or Y directions. This technique allows one to measure instability growth or damping rates as well as oscillation frequencies in both open-loop and closed-loop conditions. Based on these measurements the configuration of the relevant transverse feedback channel can be optimized. The technique will be illustrated with instability measurements and feedback optimization examples. Comparisons of the measured modal patterns and growth rates to the theoretical predictions will be presented.  
 
THPLT163 High-temperature Kicker Electrodes for High-beam-current Operation of PEP-II kicker, feedback, vacuum, radiation 2843
 
  • U. Wienands, R. Akre, D.E. Anderson, S. Debarger, K. Fant, D. Kharakh, R.E. Kirby, A. Krasnykh, A. Kulikov, J. Langton
    SLAC, Menlo Park, California
  The strip line electrodes of the kickers used in the transverse bunch-by-bunch feedback systems see significant power deposition by beam and HOM-induced currents. This leads to elevated temperatures of the aluminum electrodes and will ultimately become a limit for the beam current in the Low Energy Ring. Heat is transported to the environment primarily by radiation from the blackened surface of the electrodes. In order to extend the beam-current range of these kickers, new electrodes have been fabricated from molybdenum which are able to run at significantly higher temperature, thus greatly increasing the efficiency of the radiative cooling of the electrodes. Blackening of the electrodes is achieved by oxidation in air at 1000°F using a recipe first applied in aviation research for supersonic aircraft. Emissivity was measured on coupons and a whole electrode to be about 0.6. In addition, the match at the terminations of the electrodes is improved following field calculations and measurements on a model of the kicker.