Physics Challenges
for ERL Light Sources

Lia Merminga

Jefferson Laboratory

9th European Particle Accelerator Conference
July 5-9, 2004
Lucerne
Outline

- ERL Light Source
- Promise of ERL Light Sources
 - Free Electron Laser ERLs
 - Synchrotron Light Source ERLs
- Realization of the promise
 - Challenge I: Generation and preservation of low emittance, high average current beam
 - Challenge II: Accelerator transport
 - Challenge III: High current effects in Superconducting RF
- A bright future: ERL LS projects and proposals worldwide
- Summary
Energy Recovery Linac Light Source

- e⁻ Injector
- Beam Dump
- Photon Generator
- Linac
- Light
ERL vs. Storage Ring vs. Linac

- While an electron storage ring stores the same electrons for hours in an equilibrium state, an ERL stores the energy of the electrons.

- In an ERL electrons spend little time in the accelerator (~1 µs), therefore they never reach an equilibrium state.

- In common with linacs: In an ERL the 6-D beam phase space is largely determined by electron source properties by design.

- In common with storage rings: An ERL possesses high average current-carrying capability enabled by the ER process, thus promising high efficiencies.
Reality and Promise of FEL ERLs

The promise:

- High average laser power (~ 100 kW)
- High overall system efficiency
- Reduced beam dump activation

The reality:

JLab 10kW IR FEL and 1 kW UV FEL

Achieved 8.5 kW CW IR power on June 24, 2004!
Energy recovered up to 5mA at 145 MeV, up to 9mA at 88 MeV
Promise of Synchrotron Light ERLs

![Graph showing average brilliance and flux vs. photon energy for various synchrotron sources, including ESRF U35, Sp8 5m, APS 4.8m, APS 2.4m, ERL 25m, and LCLS SASE, with Brilliance in photons/s/0.1%/mm²/mr² and Flux in photons/s/0.1% plotted on logarithmic scales.]

Courtesy of Q. Shen
Promise of Synchrotron Light ERLs

Coherent Fraction

Photon Energy (keV)

LCLS SASE

CHESS ERL
25m 0.015nm 10mA

CHESS ERL
25m 0.15nm 100mA

APS 4.8m

ESRF U35

APS 2.4m

Sp8 5m

10^10

10^9

10^8

10^7

10^6

10^5

10^4

10^3

10^2

10^1

10^0

10^{-1}

10^{-2}

10^{-3}

10^{-4}

10^{-5}

10^{-6}

10^{-7}

10^{-8}

10^{-9}

10^{-10}

Repetition Rate (Hz)

Storage Rings

ERL hi-coh

ERL short-pulse

LUX

LCLS

X-ray Pulse Length FWHM (ps)

Courtesy: Q. Shen
SL User Requirements and Beam Properties

- **High average brilliance**
 \[B \propto \frac{N_u I_{ave}}{\varepsilon_x \varepsilon_y} \]

- **Full spatial coherence**
 \[\varepsilon < \frac{\lambda}{4\pi} \]

- **High average flux**
 \[\propto I_{ave} \]

- **High temporal coherence**

- **Sub-ps x-ray pulses**

- **Low emittance**
 \[\varepsilon_N \leq 1 \text{ mm-mrad} \]
 & round beams

- **High average current**
 \[\sim 100 \text{ mA} \]

- **Small energy spread**
 \[\frac{\sigma_E}{E} \sim 10^{-4} \]

- **Sub-ps bunch length**
 \[\sim 100 \text{ fsec} \]

- **Long insertion devices**

- **Variable filling patterns**

*quantities are rms
Challenge 1: Generation and Preservation of Low Emittance, High Average Current Beams

In an ERL, highest quality beam must be produced at the source, and preserved in the low-energy regime

Ia. High accelerating gradients or high repetition rate? Or both?

Ib. Getting beyond the space charge limit
DC photoinjectors

State-of-the-art: JLAB FEL gun

- High repetition rate up to 75 MHz
- \(\varepsilon_{N,\text{rms}} \approx 7-15 \text{ mm-mrad} \) for \(Q \approx 60-135 \text{ pC} \)
 (measured at the wiggler)
- Average current up to 9 mA
- Cathode voltage: 350 – 500 kV
Beyond the space charge limit

Cornell ERL Prototype Injector Layout

- 500-750 kV DC Photoemission Gun
- 2-cell SRF cavities
- Buncher
- Merger dipoles into ERL linac
- Solenoids

Injector optimization

<table>
<thead>
<tr>
<th>bunch length (mm)</th>
<th>emittance (mm-mrad)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>0.6</td>
<td>0.35</td>
</tr>
<tr>
<td>0.8</td>
<td>0.3</td>
</tr>
<tr>
<td>1.0</td>
<td>0.25</td>
</tr>
<tr>
<td>1.2</td>
<td>0.2</td>
</tr>
<tr>
<td>1.4</td>
<td>0.15</td>
</tr>
<tr>
<td>1.6</td>
<td>0.1</td>
</tr>
<tr>
<td>1.8</td>
<td>0.05</td>
</tr>
</tbody>
</table>

0.1 mm-mrad, 80 pC, 3ps

Courtesy of I. Bazarov
RF photoinjectors

- High accelerating gradients (~100 MV/m) to rapidly accelerate electrons beyond the space charge regime, thereby reducing emittance growth.

- To date RF guns have produced best normalized emittances:
 \[e_N \sim 1 \mu m \] at
 \[Q \sim 0.1 - 1 \text{ nC} \], but at relatively low rep rate (10-100 Hz)

- Boeing gun operated at 433 MHz with 25% duty factor

- Challenge: Balance high gradient (low emittance) with high rep rate (thermal effects)
SRF photoinjectors

- High CW RF fields possible
- Significant R&D required

Rossendorf proof of principle experiment:
1.3 GHz, 10 MeV
77 pC at 13 MHz and 1 nC at < 1 MHz

BNL/AES/JLAB development
High I_{ave} & brightness gun under test:
1.3 GHz ½-cell Nb cavity at 2K

BNL development
SRF gun with diamond amplified cathode
Challenge II: Accelerator Transport

6-D emittance preservation and phase space management during acceleration and energy recovery

IIa. Longitudinal matching

IIb. Coherent Synchrotron Radiation

IIc. Transverse matching
Longitudinal Matching

Requirements:

- **Synchrotron Light ERLs:**

 Short X-ray pulses may require bunching during acceleration

- **FEL ERLs:**

 - High peak current (short bunches) at the FEL

 - Large energy spread after lasing ($\delta E/E \sim 10\%$) must be decompressed

 - Small energy spread at the dump

The challenge:

Nonlinear distortions in phase space must be corrected for minimum bunch length and proper energy recovery
Longitudinal Dynamics in JLAB 2 kW FEL

Courtesy: P. Piot

Scale change

Energy Spread (keV)

Phase (RF deg)

-500 -500 -500

500 500 500

-5 0 5

-5 0 5

-5 0 5

100 50 0

-100 -50 0

-500 500 500

500 500 500
Why We Need the “Right” T_{566}

- Sextupoles off
 - Lasing off
 - Lasing on
- Sextupoles on
 - Lasing off
 - Lasing on

Second-order correction
Coherent Synchrotron Radiation

Radiation wavelength longer than bunch length: coherent emission.

Radiation from the bunch tail catches up with the head can increase energy spread and emittance potentially serious for high brightness beam quality preservation.

In SL ERLs bunch charge relatively small (~0.1 nC) and bunch length ~0.1-1 ps, however emittance preservation important. CSR needs to be studied.

Challenge: Minimize emittance growth due to CSR.

Optics schemes are being developed to minimize the effects.
Transverse Matching

Requirement:

- Synchrotron Light ERLs: High energy (GeV scale) demonstration of energy recovery. A significant extrapolation from FEL ERL paradigm (~ 100 MeV).

The challenge:

- Demonstrate sufficient operational control of two coupled beams of substantially different energies in a common transport channel, in the presence of steering, focusing errors.
CEBAF-Energy Recovery Experiment

- **CEBAF-ER** is a 1 GeV demonstration of energy recovery in CEBAF – 40 cryomodules.

 • Quantify evolution of transverse phase space during acceleration and energy recovery.

 • Test the dynamic range of system: large ratio of final-to-injected ($E_{\text{fin}}/E_{\text{inj}}$) beam energies

 Larger $E_{\text{fin}}/E_{\text{inj}}$ ratio \rightarrow higher ERL efficiency!
CEBAF-ER Experiment

Special installation of a $\lambda_{RF}/2$ path length delay chicane, dump and beamline diagnostics.
CEBAF-ER Preliminary Results

- Demonstrated a significant operational extension of energy recovery to high energy (1 GeV), through a large (~1 km circumference), superconducting RF system (40 cryomodules).

- Demonstrated feasibility of energy recovery with ratio of final-to-injected energy up to 50:1 (1 GeV = 20 MeV).

- No significant emittance dilution was measured as a result of the energy recovery process. No surprises were uncovered.

“The CEBAF ER Experiment” MOPKF087
Challenge III: High Current Effects in Superconducting RF

Beam stability and beam quality preservation, and cryogenic efficiency during acceleration/deceleration of high average current, short bunch length beams in SRF environment

IIIa. Efficient extraction of HOM power

IIIb. Stability against multipass beam breakup
HOM Power Dissipation

- High average current, short bunch length beams in SRF cavities excite HOMs. On average, HOM power loss per cavity is:

\[
P_{\text{HOM}} = 2 \ k_{||} \ Q_{\text{bunch}} \ I_{\text{ave}}
\]

and extends over high frequencies (~100 GHz).

The challenge:

- Adequate damping of HOMs and extraction of HOM power with good cryogenic efficiency.
Frequency Distribution of HOM Power

Monopole Mode Single Bunch Power Excitation per 9-Cell Cavity

\[\sigma_{bunch} = 0.7 \text{ mm, } q_{bunch} = 77 \text{ pC, } P_{total} = 185 \text{ W} \]

- \(~80 \text{ W at } f_{\text{HOM}} < 5 \text{ GHz}\)
- \(~105 \text{ W at } f_{\text{HOM}} > 5 \text{ GHz}\)
HOM damping scheme for the Cornell ERL

- $f_{\text{HOM}} < 5 \text{ GHz}$
 - Absorbed at room temperature loads

- $f_{\text{HOM}} > 5 \text{ GHz}$
 - Propagate along structure, get absorbed by ferrite rings at 80 K

Courtesy: M. Liepe
Multipass Beam Breakup

- In recirculating linacs, multipass beam breakup (BBU), driven predominantly by high-Q superconducting cavities, can potentially limit the average current.

- The “feedback” system formed between beam and cavities is closed and instability can result at sufficiently high currents.

- Energy recovering linacs can support enough beam current to reach the threshold of the instability.
Multipass Beam Breakup

SUPERCONDUCTING CAVITY

HOMs
BBU Simulation and Observation

BBU simulations of the JLAB 10 kW FEL (145 MeV)

<table>
<thead>
<tr>
<th>Cavity</th>
<th>Frequency [MHz]</th>
<th>Threshold Current [mA]</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>2106</td>
<td>2.9</td>
</tr>
<tr>
<td>4</td>
<td>2114</td>
<td>3.7</td>
</tr>
</tbody>
</table>

BBU observation in the JLAB 10 kW FEL (88 MeV)

- **Cavity 7**: HOM 2106 MHz, $I_{th} = 2.9$ mA
- **Cavity 4**: HOM 2114 MHz, $I_{th} = 3.7$ mA

HOM data based on measurements
Model recirculation matrix

Cavity 4
Schottky diode signals at 3.0 mA CW current
Growth Rate vs. Beam Current

\[\tau_I = \tau_0 \frac{I_{th}}{I - I_{th}} \]

- Calculated from the data measured in pulsed regime
 \[I_{th} = 2.34 \text{ mA} \]
- Measured (CW)
 \[I_{th} \approx 2.3 \text{ mA} \]

Amplitude exponentially grows

\[\tau_6/\tau_8 = 2 \text{ (2 and 1 msec)} \]

- \(I_b = 6 \text{mA and 8mA} \)
 \[(I_{th} = 4 \text{ mA}) \]

- Diode Voltage (V)
 \[Q \approx 5 \times 10^6 \]
Beam Breakup Measurements

Cavity voltage measured:
directly at HOM port
after going through Schottky diode

Predicted HOM frequency 2114.2 MHz

Measured HOM frequency

Tek Run: 10.0kS/s
Suppressing Beam Breakup

“Reflecting” or “Rotating” Beam Optics: Phase space is rotated such that $x' \rightarrow y$ and $y' \rightarrow x$ leading to higher threshold currents

Skew quads installed in JLAB FEL
Ready for tests.

Lower Frequency SRF Development

Develop CW SRF cavity for high intensity beams:
Large bore, 700 MHz cavity with ferrite HOM dampers and high beam break-up threshold
BNL-JLAB collaboration

Predicted BBU threshold current > 1 Amp!
How close are we?

- Beam energy of 5-7 GeV – up by 5-7
- 1300-1500 MHz bunch repetition rate – up by 17-20
- 100 mA or higher average beam current – up by 10
- Normalized rms emittance ~1-2 mm-mrad at full energy – down by 5-10
- Bunch length from ~ 1 ps to < 0.1 ps – down by 4
Presently Operating FEL ERLs

JAERI FEL

BINP
Recuperator FEL
180 MHz NC RF

JLAB FEL
A bright future: Synchrotron Light

ERL Proposals Worldwide

4GLS

ERL at KEK

ERL@CESR

XFEL ERL

Thomas Jefferson National Accelerator Facility
Proposed ERL Test Facilities

Cornell ERL Prototype

KEK ERL Prototype

BNL ERL Prototype
Summary

- ERLs provide a powerful and elegant paradigm for high average brightness, short-pulse radiation sources.

- The pioneering ERL FELs have established the fundamental principles of ERLs.
Summary (Cont’d)

- The challenges and R&D opportunities for the realization of next generation ERL light sources are centered around:
 - Source brightness
 - Emittance preservation
 - High current effects in SRF systems

- The fundamentals of these challenges are understood. Vigorous R&D activities in many labs to resolve outstanding physics and engineering issues.
The multitude of ERL projects and proposals worldwide promises an exciting next decade as:

- Existing ERLs will reach higher performance
- R&D issues will be resolved, and
- New ERLs will be constructed
Acknowledgments

- I. Bazarov (Cornell)
- I. Ben-Zvi (BNL)
- S. Benson (JLAB)
- S. Chattopadhyay (JLAB)
- J. Delayen (JLAB)
- D. Douglas (JLAB)
- R. Hajima (JAERI)
- G. Hoffstaetter (Cornell)
- A. Hutton (JLAB)
- G. Krafft (JLAB)
- C. Leemann (JLAB)
- M. Liepe (Cornell)
- J. Murphy (BNL)
- G. Neil (JLAB)
- M. Poole (Daresury)
- E. Pozdeyev (JLAB)
- J. Sekutowicz (DESY)
- S. Simrock (DESY)
- C. Sinclair (Cornell)
- T. Smith (Stanford)
- T. Suwada (KEK)
- C. Tennant (JLAB)
- N. Vinokurov (BINP)
- K. Yokoya (KEK)
The 32nd Advanced ICFA Beam Dynamics Workshop on Energy Recovering Linacs

Fall 2004
Jefferson Laboratory

ERL@jlab.org