A   B   C   D   E   F   G   H   I   K   L   M   N   O   P   Q   R   S   T   U   V   W    

septum

Paper Title Other Keywords Page
MOPLT009 The Design of the New Fast Extraction Channel for LHC extraction, kicker, emittance, proton 548
 
  • J. Borburgh, B. Balhan, E.H.R. Gaxiola, B. Goddard, Y. Kadi, J.A. Uythoven
    CERN, Geneva
  The Large Hadron Collider (LHC) project requires the modification of the existing extraction channel in the long straight section 6 of the CERN Super Proton Synchrotron (SPS). The new extraction will be used to transfer protons at 450 Gev/c as well as ions via the 2.8 km long transfer line TI 2 to the clockwise ring of the LHC. As the resonant extraction to the present SPS west area will be stopped after 2004, the electrostatic septa will be replaced by new fast extraction kicker magnets. The girder for the existing DC septa will be modified to accommodate a new septum protection element. Other modifications concern the replacement of a machine quadrupole, a new scheme for the extraction bumpers, new instrumentation and interlocks. The requirements and the design of the new extraction channel will be described as well as the modifications which will mainly be carried out in the long SPS shutdown 2005.  
 
MOPLT017 Beam Commissioning of the SPS LSS4 Extraction and the TT40 Transfer Line extraction, kicker, controls, instrumentation 569
 
  • B. Goddard, P. Collier, M. Lamont, V. Mertens, K. Sigerud, J.A. Uythoven, J. Wenninger
    CERN, Geneva
  The new fast extraction system in LSS4 of the SPS and the transfer line TT40 were installed between 2000 and 2003, and commissioned with beam in late 2003. The extraction system and transfer line will serve both the anti-clockwise ring of the Large Hadron Collider (LHC), and the long baseline neutrino (CNGS) facility. The layout and functionality of the main elements are briefly explained, including the various hardware subsystems and the controls system. The safety procedures, test objectives and results of the system commissioning with beam are described, together with the test methodology. Conclusions are drawn concerning the performance of the system elements, agreement between predicted and expected activation levels and test efficiency and procedures. The test results are also briefly discussed in the context of future LHC beam commissioning activities.  
 
MOPLT127 Diagnosing the PEP-II Injection System injection, kicker, luminosity, background 833
 
  • F.-J. Decker, M.H. Donald, R.H. Iverson, A. Kulikov, G.C. Pappas, M. Weaver
    SLAC, Menlo Park, California
  The injection of beam into the PEP-II B-Factory, especially into the High Energy Ring (HER) has some challenges. A high background level in the BaBar Detector has so far inhibited us from trickling charge into the HER similar to the Low Energy Ring (LER). Analyzing the injection system has revealed many issues which could be improved. The injection bump between two kickers was not closed, mainly because the phase advance wasn't exactly 180 degrees and the two kicker strengths were not balanced. Additionally we found reflections which kick the stored beam after the main kick and cause the average luminosity to drop about 3% for a 10 Hz injection rate. The strength of the overall kick is nearly twice as high than the design, indicating a much bigger effective septum thickness. Compared with single beam the background is worse when the HER beam is colliding with the LER beam. This hints that the beam-beam force and the observed vertical blow-up in the HER pushes the beam and especially the injected beam further out to the edge of the dynamic aperture or beyond.  
 
TUPLT020 High Intensity Uranium Operation in SIS18 ion, injection, beam-losses, acceleration 1180
 
  • P.J. Spiller, K. Blasche, P. Hülsmann, A. Kraemer, H. Ramakers, H.R. Sprenger
    GSI, Darmstadt
  For the present experiment program and the planned international accelerator facility at GSI, the space charge limit of SIS18 for highly(4x1010) and intermediate (2.7x1011) charged uranium ions shall be reached within the next four years. Furthermore, measures to increase the repetition- and ramp rate up to 4 Hz with 10 T/s have been progressed. The present state of intensities per cycle and the limitations will be described. In connection with the planned enhancement of heavy ion intensities, protection, interlock and diagnostic systems, especially for the injection- and extraction devices have been prepared. Special attention is drawn on the insights which were achieved with respect to the operation at dynamic vacuum conditions. Results of R&D work with the goal to increase the intensity threshold and to improve the beam life time will be summarized. Furthermore, the specific upgrade program and schedule for the SIS18 booster mode will be presented.  
 
TUPLT077 R&D Status of the Fast Extraction Kicker Magnets for the KEK/JAERI 50 GeV Synchrotron ion, kicker 1333
 
  • Y. Shirakabe, Y. Arakaki, T. Kawakubo, Y. Mori, S. Murasugi, E. Nakamura, I. Sakai, M. Tomizawa
    KEK, Ibaraki
  The 50 GeV proton synchrotron composes the final stage of the high intensity proton accelerator complex now on construction at JAERI/Tokai site as a joint project by KEK and JAERI. In this ring, the proton beam is accelerated from 3 GeV to 50 GeV, and delivered to the experimental facilities through the fast and slow extraction lines. The distinctive feature of the fast extraction line is that the bipolar extraction function will be provided. In normal operations, the beam is extracted toward the inner side of the ring and transported to the facility for the long baseline neutrino oscillation experiment using the Super-Kamiokande detector. In case of emergency, for example, quenches of the superconducting magnets of the neutrino line or malfunctioning of the ring RF systems, the beam is extracted toward the outer side of the ring and sent directly to the abort line with a beam dump at the end. In the current kicker design, the bipolar function will be achieved by the Symmetric Blumlein PFN (SBPFN) system with two switches on both ends. The designed parameters of the fast extraction kicker magnets and the recent hardware R&D status will be described in this paper.  
 
TUPLT079 Opposite Field Septum Magnet System for the J-PARC 50GeV Ring Injection injection, synchrotron, vacuum, proton 1339
 
  • I. Sakai, Y. Arakaki, K. Fan, Y. Mori, M. Muto, Y. Saitou, Y. Shirakabe, M. Tomizawa, M. Uota
    KEK, Ibaraki
  • K. Gotou, Y. Morigaki, A. Nishikawa, M. Takahashi
    IHI/Yokohama, Kanagawa
  • H. Mori, A. Tokuchi
    NICHICON, Shiga
  For the injection/extraction system of the high energy high intensity proton synchrotrons, high field wide aperture thin septum magnets are required. To solve these tight problems, new design concept of opposite-field septum magnet system has been invented. The same grade of opposite magnetic field is produced both inside and outside of the septum. The electromagnetic force and leakage flux around the septum conductor are cancelled out each other. The magnetic field of the circulating beam side is compensated by two sub-bending magnets set on the up-stream and down-stream of the opposite fields septum magnet. The beam-separation angle per magnet length is twice as large as normal septum magnet and the two sub-bending magnets also have a role to extend the injection/extraction angle. The newly developed method of the opposite field septum magnets system.is applied to the injection septum magnets for the J-PARC 50-GeV proton synchrotron to get the sufficient injection angle and clearance for low loss injection. The thin septum thickness and larger kick angle at the septum magnet can be obtained by the new system, which is applicable to many accelerators.  
 
TUPLT104 Particle Dynamics in the Low Energy Positron Toroidal Accumulator: First Experiments and Results electron, positron, quadrupole, kicker 1396
 
  • G.V. Troubnikov, V. Antropov, E. Boltushkin, V. Bykovsky, A.I. Ivanov, S. Ivashkevich, A. Kobets, I.I. Korotaev, V. Lohmatov, I.N. Meshkov, D. Monahov, V. Pavlov, R. Pivin, I.A. Seleznev, A.O. Sidorin, A. Smirnov, E. Syresin, S. Yakovenko
    JINR, Dubna, Moscow Region
  The project of Low Energy Particle Toroidal Accumulator (LEPTA) is dedicated to construction of a positron storage ring with electron cooling of positrons circulating in the ring. Such a peculiarity of the LEPTA enables it automatically to be a generator of positronium (Ps) atoms, which appear in recombination of positrons with cooling electrons inside the cooling section of the ring. The project has a few goals: to study electron and positron dynamics in the ring (particle motion in the horizontal and vertical planes are coupled contrary to of classic cycle accelerators), to set up first experiments with Ps in flight; Magnetic measurements of main LEPTA elements are performed. Several elements : kicker, injection system of electron beam, helical quadrupole, septum magnet are tested and expected design parameters were achieved for those elements. The investigations of electron beam dynamics are started. First results of experiments with circulating electron beam are presented and discussed in this article. Several beam diagnostic methods for studying of strong coupled motion of charged particles are proposed and tested.  
 
TUPLT136 Proton Beam Line for the ISIS Second Target Station target, extraction, dipole, quadrupole 1443
 
  • D.J. Adams
    CCLRC/RAL/ASTeC, Chilton, Didcot, Oxon
  The ISIS facility, based at the Rutherford Appleton Laboratory in the UK, is an intense pulsed source of Muons and Neutrons used for condensed matter research. The accelerator facility delivers an 800 MeV proton beam of 2.5x1013 protons per pulse at 50 Hz. As part of the facility upgrade, which includes increasing the source intensity to 3.7x1013 protons per pulse using a dual harmonic RF system, it is planned to share the source with a second, 10 Hz, target station. A beam line supplying this target will extract from the existing target station beam line. Measurements and models characterising the optical functions around the extraction point of the existing line are discussed. The optical design, diagnostics and beam correction systems for second target station beam line are presented.  
 
WEPKF020 The Design of the Special Magnets for PIMMS/TERA injection, extraction, vacuum, power-supply 1639
 
  • L. Sermeus, J. Borburgh, T. Fowler, M. Hourican, K.D. Metzmacher
    CERN, Geneva
  • M. Crescenti
    TERA, Novara
  In the framework of a collaboration agreement with the TERA Foundation CERN provided the design, drawings and engineering specifications for 2 kickers, 1 chopper and 3 bumper magnets as well as 3 magnetic and 2 electrostatic septa, power supplies for the electrostatic septa, kickers and bumpers including control electronics for the PIMMS/TERA proton and carbon ion medical synchrotron. The first application will be in the Italian National Centre for Hadron Therapy, to be constructed in Pavia. The main features of the devices are described along with the strategic design choices, directed by the demand for very high reliability and minimum maintenance.  
 
WEPKF041 Permanent Magnet Generating High and Variable Septum Magnetic Field and its Deterioration by Radiation permanent-magnet, radiation, booster, beam-losses 1696
 
  • T. Kawakubo, E. Nakamura, M. Numajiri
    KEK, Ibaraki
  • M. Aoki, T. Hisamura, E. Sugiyama
    NEOMAX Co., Ltd., Mishima-gun, Osaka
  Conventional high field septum magnet is fed by DC current or pulse current. In the case of DC, the problem of coil support is not very important, but the cooling of the coil is serious problem. While, in the case of pulse, the problem of support is much important than that of cooling. However, if the septum magnet is made of permanent magnet, those problems are dissolved. And the cost for electricity and cooling water can be exceedingly decreased. Therefore, we made the model septum magnet which has 1/4 scale of the real size and generates 1[T] with the variable range of ± 10%. The magnetic field distribution in the gap by changing the representative field is reported. When this permanent magnet is set in an accelerator, the deterioration of the permanent magnet by radiation will be serious problem. We also report the dependence of the magnetic fields generated by permanent magnet samples on accumulated radiation by various types of radiation source.  
 
WEPKF068 Developments in Magnet Power Converters at the SRS power-supply, booster, kicker, storage-ring 1759
 
  • G.D. Charnley, J. Cartledge, P.A.D. Dickenson, S.A. Griffiths, S.H. Hands, R.J. Smith, J.E. Theed, C.J. White
    CCLRC/DL, Daresbury, Warrington, Cheshire
  A project to upgrade the magnet power converters of the SRS has commenced to ensure its efficient operation for its remaining operational lifetime. A recent risk analysis of the facilities equipment identified that the main areas for concern were the Storage Ring magnet power converters, kicker and septum pulse power supplies and the Booster Dipole "White Circuit" and associated power converters. This report detail the development and replacement programs currently active at Daresbury Laboratory, including future work identified to support and improve SRS utilisation.  
 
WEPKF079 A Kicker Design for the Rapid Transfer of the Electron Beam between Radiator Beamlines in LUX electron, linac, kicker, injection 1786
 
  • G.D. Stover
    LBNL/ALS, Berkeley, California
  I present in this paper preliminary design concepts for LUX - A ?fast kicker design for rapid transfer of the electron beam between radiator beamlines. This paper is a very simple feasibility study to find a rougly optimized subset of engineering parameters that would satisfy the initial design specifications of: Pulse width < 30us, time jitter < 1ns, magnetic length < 0.5meter, gap hight = 15mm, gap width = 25mm, peak field = .6Tesla, bend angle = 1.7 deg. for beam energy of 3.1 Gev, repetition rate = 10KHz. An H magnet core configuration was chosen. Through an iterative mathematical process a realizable design was chosen. Peak current, Peak voltages across the coils, conductor losses due to proximity and skin effects, di/dt rates, eddy and beam current heating in the ceramic vacuum chamber, and basic circuit topology were investigated. Types and losses of core material were only briefly discussed. The final topology consists of two magnets in series running at 10KHz, .3Tesla, 630 amp peak current, 10us pulse width, 364 Watts per coil section, driven by fast solid state switch with an energy recovery inductor. Eddy and beam image current losses were ~ 164 watts.  
 
WEPLT043 Detecting Failures in Electrical Circuits Leading to Very Fast Beam Losses in the LHC extraction, beam-losses, simulation, insertion 1930
 
  • M. Zerlauth, B. Goddard, V. Kain, R. Schmidt
    CERN, Geneva
  Depending on the beam optics, failures in the magnet powering at locations with large beta functions could lead to very fast beam losses at the collimators, possibly within less than 10 turns. Beam loss monitors would normally detect such losses and trigger a beam dump. However, the available time for detection with beam loss monitors before reaching the damage level of a collimator might not be sufficient, in particular for beams with few particles in the tails. This has always been of concern and becomes even more relevant since very fast losses have been observed recently at HERA. In this paper, we present particle tracking studies for the LHC to identify failures on critical magnets. We propose a fast detection of such failures in the electrical circuit, either with highly precise hall probes for current measurement or measurements of the induced inductive voltage during the current decay. In combination with a small and simple interlock electronics such detection system can provide reliable and fast interlock signals for critical magnets in the LHC main ring but could also be used to monitor injection and extraction magnets. Depending on the properties of the electrical circuit an increase of the natural time constant of the current decay using a serial superconducting magnet is also considered.  
 
WEPLT082 General Performances of the Injection Scheme into the SOLEIL Storage Ring injection, coupling, undulator, quadrupole 2044
 
  • M.-A. Tordeux, J. Da Silva, P. Feret, P. Gros, P. Lebasque, A. Mary
    SOLEIL, Gif-sur-Yvette
  The injection scheme of the electron beam into the Storage Ring of the SOLEIL synchrotron is presented. It corresponds to the new SOLEIL optics : 12 meter long straight section, 2.75 GeV energy, with in addition the requirement for top-up injection mode. Pulsed magnets are described, and in particular the passive septum magnet, the transverse position of which can be adjusted so as to optimise the Touschek beam Lifetime. Tracking of particles has been performed over a large number of turns, taking into account the magnet errors, the high chromaticities and the physical apertures all along the machine (limited vertical apertures due to low gap undulators). Statistical efficiency of the injection has been deduced. Specific requirements for top-up injection have been examined, such as the closure of the injection bump, the residual vertical field and the leakage fields from septa.  
 
WEPLT151 Using the PBO LAB(TM) Optimization and Transport Modules to Gain an Improved Understanding of the LLUMC Proton Therapy Beamlines optics, extraction, proton, beam-transport 2191
 
  • G.H. Gillespie, O.V. Voronkova
    G.H. Gillespie Associates, Inc., Del Mar, California
  • G. Coutrakon, J. Hubbard, E. Sanders
    LLU/MC, Loma Linda, California
  The Particle Beam Optics Laboratory (PBO Lab) has an advanced Optimization Module that works in concert with beam optics codes (also modules in PBO Lab) to solve optimization and fitting problems that are difficult or impossible to address with optics code alone. The PBO Lab Optimization Module has been used in conjunction with the TRANSPORT Module to study the beamlines of the proton therapy center at the Loma Linda University Medical Center (LLUMC). The primary goal of the study was to establish a fast, efficient and reliable procedure for determining the parameters of the beam extracted from the synchrotron accelerator that best fit the extensive wire scanner profile data used to monitor the LLUMC proton therapy beamlines. This paper summarizes how the PBO Lab Optimization Module is applied to this problem and presents selected results from the LLUMC proton therapy beamline study.  
 
THPKF008 Injection System for the Canadian Light Source injection, storage-ring, booster, linac 2272
 
  • R.M. Silzer, R. Berg, J.C. Bergstrom, L. Dallin, X. Shen, J.M. Vogt
    CLS, Saskatoon, Saskatchewan
  The full energy injection system for the Canadian Light Source is made up of a 250 MeV linac, a low energy transfer line, a 2.9 GeV booster synchrotron and a high energy transfer line. The system has routinely provided up to 25 mA peak current in a 132 ns pulse train to the CLS storage ring injection point since September 2003. By January, 2004, injection efficiencies up to 10% have been acheived and stored currents up to 25 mA were accumulated in less than 4 minutes. The injection timing system allows a variety of fill patterns. By July, 2004, injection rates of up to 2 mA per second should be possible providing a fill time of under one minute for a 100 mA stored beam.  
 
THPKF024 A STATE-OF-THE-ART 3 GEV BOOSTER FOR ASP booster, lattice, sextupole, injection 2317
 
  • G. Georgsson, N. Hauge
    Danfysik A/S, Jyllinge
  • S.P. Møller
    ISA, Aarhus
  DANFYSIK A/S will build the full-energy booster for the Australian Synchrotron Project. The Booster will accelerate the beam from the injection energy of 100 MeV to a maximum of 3.0 GeV. The Booster shall accelerate either a single bunch or a bunch train up to 150 ns. The current accelerated to 3 GeV will be in excess of 0.5 and 5 mA for the two modes, respectively. The circumference of the Booster is 130.2 m, and the lattice will have four-fold super-symmetry with four straight sections for RF, injection, special diagnostics and extraction. The lattice is designed to have many cells with combined-function magnets (dipole, quadrupole and sextupole fields) in order to reach a very small emittance of around 30 nmrad. A small emittance is beneficial, in particular for top-up operation. Details of the lattice design and beam dynamics of the booster will be presented.  
 
THPKF067 Progress of the DIAMOND Storage Ring and Injector Design. injection, storage-ring, booster, coupling 2418
 
  • S.L. Smith, D.J. Holder, J.K. Jones, J.A. Varley, N.G. Wyles
    CCLRC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • R. Bartolini, I.P.S. Martin, B. Singh
    Diamond, Oxfordshire
  DIAMOND is a state of the art 3 GeV synchrotron light source that will be available to users in 2007. Considerable further progress has been made on the accelerator physics design of the storage ring, booster and other associated injector systems. Detailed analysis of injection processes, lifetime, coupling, instabilities, feedback systems and dynamic aperture have been undertaken driven by the procurement activity and the desire to fully understand all aspects of the accelerator's performance.  
 
THPKF076 Plan to Upgrade the Advanced Light Source to Top-off Injection Operation injection, radiation, brightness, emittance 2442
 
  • D. Robin, B. J. Bailey, K.M. Baptiste, W. Barry, E. Byrne, J.-Y. Jung, S. Kwiatkowski, R.S. Mueller, H. Nishimura, S. Prestemon, S.L. Rossi, F. Sannibale, D. Schlueter, D. Shuman, C. Steier, G.D. Stover, T. Warwick
    LBNL, Berkeley, California
  • R.J. Donahue
    LBNL/ALS, Berkeley, California
  The brightness and thermal stability of the Advanced Light Source (ALS) is lifetime limited. Brightness improvements such as narrower gap insertion devices, smaller emittance coupling, and higher currents all result in short lifetimes. In addition current changes over a fill impact the thermal stability of both the storage ring and beamlines. In order to mitigate these limitations there is a plan to upgrade the injector of the ALS to full energy injection and to operate in a quasi-continuous filling (Top-Off) injection operation. With Top-Off, the ALS will increase its time-averaged current by two, reduce the vertical emmittance, and operate with smaller gap insertion devices. In this paper we describe our upgrade plan.  
 
THPLT066 Commissioning of 150MeV FFAG Synchronisation injection, extraction, acceleration, kicker 2643
 
  • Y. Yonemura, M. Matoba
    Kyushu University, Fukuoka
  • M. Aiba, M. Sugaya
    University of Tokyo, Tokyo
  • S. Machida, Y. Mori, A. Muto, J. Nakano, C. Ohmori, I. Sakai, Y. Sato, A. Takagi, T. Yokoi, M. Yoshii, M. Yoshimoto, Y. Yuasa
    KEK, Ibaraki
  • T. Uesugi
    NIRS, Chiba-shi
  • A. Yamazaki
    LNS, Sendai
  A 150MeV proton FFAG (Fixed Field Alternating Gradient) synchrotron has been constructed to be a prototype for various applications such as proton beam therapy. At the moment, all the components are assembled, and multi-turn injection and beam storage were successfully performed. We are in the phase of beam acceleration up to final energy and expect the beam extraction in a few months. In this paper, beam commissioning results such as multi-turn injection, orbit correction, tune survey and optimization of RF gymnastics will be presented.  
 
THPLT069 High Speed Beam Loss Monitor and its Deterioration by Radiation beam-losses, radiation, kicker, booster 2652
 
  • T. Kawakubo, T. Ishida, T. Sanami
    KEK, Ibaraki
  High speed loss monitor is very useful for tuning and operating the beam in an accelerator, especially in the injection and extraction period. We made a new type loss monitor by connecting a fiber to a photo-multiplier (PMT). In the case that the fiber is made of quartz, the source of the signal is Cherenkov effect. And in the case of scintillation fiber, the signal comes from the scintillation effect. The quartz is much stronger than the scintillator to the radiation, but generating light in the quartz is weaker than scintillator, especially in low energy beam. It is very easy to make this monitor and the fabrication cost is cheap. The monitor can observe the bunch loss with an order of 10 ns. After long time use under high irradiation, the signal of the monitor will decrease. Therefore, we also report the dependence of the signal strength on accumulated radiation in various types of material.