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Abstract 
Effective sorting of permanent magnet blocks for 

undulators can reduce the adverse effects of magnetic in-
homogeneities and engineering tolerances on the electron 
beam. For variably polarising undulators (VPUs) the 
numbers of different modes of operation make defining 
the objective function of a particular permutation more 
difficult than for a planar device. Factors required in 
defining a good objective function for a new APPLE-II 
type helical undulator for the SRS are discussed. These 
factors include calculating the magnetic field integrals, 
the particle trajectory and rms optical phase error. The 
effects of different weighting of these functions in the 
objective function are also discussed. A comparison of 
different optimisation techniques, including simulated 
annealing and Monte Carlo methods is also made. 

INTRODUCTION 
The APPLE-II type VPU was first proposed over ten 

years ago [1] and since then a number have been built 
world-wide at laboratories such as the ESRF [2], SSRL 
[3] and others. There are also a number being constructed 
at other labs including the SRS [4] and Diamond [5]. Real 
magnet blocks are not perfectly magnetised. They have 
errors associated with the direction and magnitude of the 
magnetic field, as well as in-homogeneities in the magnet 
blocks. Typically there are engineering tolerances on the 
dimensions and parallelism of the blocks too. All these 
factors mean that there is an optimum order in which the 
blocks should be placed to achieve the “best” undulator. 
This note will look at ways of quantifying the best order 
for the magnet blocks in an APPLE-II type undulator. 

Optimisation 
The process of optimisation for the APPLE-II undulator 

is simply defined. Each separate order of the magnet 
blocks defines a point in a configuration space (the space 
of all possible permutations). At each point in the 
configuration space there is a merit value defined by the 
merit function. One of the difficulties in writing a block 
sorting algorithm for an APPLE-II type undulator is in 
defining a merit function. Not only are there a huge 
number of points in the configuration space to consider  
but there are also several modes of operation of the 
undulator that have to be accounted for in a merit 
function. Two separate optimisation techniques will be 
looked at; one called the Monte-Carlo (MC) method and 
one based on a simulated annealing (SA) algorithm. 

The APPLE-II Undulator Model 
The method outlined in this paper has been applied to 

the new SRS APPLE-II undulator [4]. It will also be 
applied to the Diamond undulators. The modelling was 

carried out in Radia [6] using a simplified “square” block 
shape. Figure 1 shows a schematic of an APPLE-II device 
and the co-ordinate system used. 

 
Figure 1: Schematic of APPLE-II and co-ordinates. 

BLOCK SWOPPING ALGORITHM 
A procedure has been written in Mathematica that 

imports a set of measured block magnetisations for each 
component of the magnetic field. These vectors can then 
be arranged to form an APPLE-type undulator using the 
Radia code. The magnetic field of this device can then be 
calculated, on and off axis. From the magnetic field data 
all contributing factors to the merit function can be 
calculated. The algorithm can then swop one or more of 
the blocks in the device (including blocks from a given 
number of spare blocks) and the merit function is 
recalculated. The order is then optimised either by a SA 
or MC algorithm.  

MC Algorithm 
This is essentially a downhill optimisation process. For 

a particular block order there is an associated merit value, 
when blocks are swopped there is a new merit value. If 
the new merit value was better than the old one then the 
block swopping is accepted. If the merit value is worse 
then the block order for the lowest merit value so far 
achieved is used. The disadvantage of this method is that 
it will only find a local minimum. However it is simpler 
to implement than a SA algorithm because there is no 
need to define a temperature scale. 

SA Algorithm 
SA algorithms are now widely known and used for 

magnet sorting. Briefly, the system is said to be at a 
certain “temperature” and moves to a higher (worse) 
merit function value are allowed with a probability given 
by [ ]R Exp E T< − ∆ , where R is a random number 

between 0 and 1, T is the temperature of the system and 
E is the difference between the new and old merit value. 

Moves to lower merit values are always accepted. Over 
time (iterations) the temperature is decreased and a 
solution is “frozen” out. The advantage of this algorithm 
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is that it can escape from local minima and so more of the 
configuration space can be explored. Disadvantages are 
that it can be awkward setting the temperature and rate of 
temperature decrease. For these simulations the peak 
temperature was generally set to 2 to 3 times the mean of 
a range of 1000 random order merit functions values. 

DEFINING THE MERIT FUNCTION 
The merit function is the weighted sum of a number of 

components. To understand the components a brief 
explanation of each is given below. The values are all 
taken at the minimum gap of the undulator. Which modes 
each were evaluated for depended upon whether there 
was any correlation in the results. For example; there was 
found to be no correlation of the phase errors for 
horizontal and vertical modes, but the field integrals in 
those modes were correlated. The terms in square 
brackets indicate components’ abbreviated names. 

RMS phase error at poles, ��. This is a well known 

property of the beam trajectory through the device [7] and 
was calculated for horizontal, vertical and circular 

polarisation modes [H��, V��, C��]. 
Final angle of the beam. The final angle was recorded 

for horizontal polarisation mode only [FA]. 
‘Straightness’ range of beam excursion from axis. 

The range of max. and min. peak displacements from axis 
for a trajectory calculated from the on axis magnet field 
was recorded for horizontal polarisation mode [TR]. 

“Flatness” of the transverse field integrals. The 
longitudinal field integrals of the transverse components 
of the magnetic field were calculated at a number of 
horizontal positions. The “flatness” was defined as the 
rms distance each value was from a zero gradient 
(“horizontal”) line of best fit (LBF) [FIF]. 

Intercept of the transverse field integrals. This is 
simply the intercept of the previous LBF. Figure 2 shows 
an example field integral calculation. Zero y position is 
on axis and the blue line is the calculated field integral 
and the black the LBF [FII]. 

 
Figure 2: Example field integral data. 

Weighting 
To give each component an initial equal weighting they 

were weighted by a mean value calculated from a set of 
1000 random block orders. Components were then further 
weighted depending upon how important they were felt to 
be or how well they were being optimised. 

RESULTS 
Tables 1 and 2 give results for 10 000 iterations from 

different random starts for both algorithms. Typically this 
took 44 hours of computer time with a 3.2 GHz processor 
and 2 GB of RAM. The SA algorithm gives a greater % 
change than the MC one although both arrive at a similar 
answer. 

Table 1: MC results. 

Parameter Start Finish % Change 
Merit Value 9.1 4.73 48 

TR (m) 4.62E-05 3.32E-05 28.08 
FA (rad) 3.96E-05 7.29E-06 81.58 

By FII (T m) 1.05E-04 4.07E-07 99.61 
Bz FII (T m) 2.49E-04 4.75E-05 80.89 

By FIF 3.75E-04 3.50E-05 90.67 
Bz FIF 1.95E-04 9.74E-06 94.99 

H�� (°) 3.28 0.75 77.09 

V�� (°) 3.2 0.81 74.56 

C�� (°) 4 1.9 52.35 

Table 2: SA results. 

Parameter Start Finish % Change 
Merit Value 14.78 4.19 71.66 

TR (m) 1.05E-04 3.29E-05 68.76 

FA (rad) 6.62E-05 3.01E-06 95.45 

By FII (T m) 4.25E-04 1.35E-06 99.68 

Bz FII (T m) 3.72E-04 6.99E-06 98.12 

By FIF 5.64E-05 1.26E-05 77.62 

Bz FIF 2.32E-04 2.82E-05 87.81 

H�� (°) 3.03 1.72 43.28 

V�� (°) 2.69 1.59 40.98 

C�� (°) 4.76 1.79 62.5 
 
Figures 3 & 4 show the improvement in trajectory for 

vertical  and horizontal modes. Figure 5 gives an example 
of the improvement in the field integral. The initial value  
is blue and the optimised value red. All data is for the SA 
simulation. 

 
Figure 3: Vertical mode trajectory improvement 
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Figure 4: Horizontal mode trajectory improvement 

 
Figure 5: Bz integral improvement 

As can be seen, although the vertical mode trajectory 
has improved it has not optimised as well as the 
horizontal mode trajectory. For this reason another 
component was added to the merit function to include the 
vertical mode trajectory range.  

Improved Merit Function Results 
With the added component the SA algorithm was run 

again for 3 000 iterations. The final block order from the 
previous simulation was used as the starting point. 
Figures 6 & 7 show the trajectories and integrals. 

 

 
Figure 6: Horizontal (red) and vertical (blue) trajectory. 

 
Figure 7: Transverse field integrals Bz (red) By (blue). 

Comparison with Measured Field 
Figure 8 shows the initial measured magnetic field data 

compared to the Radia model. Bz is shown for horizontal 
mode and the gap was 50mm. The datasets are within 2% 
of each other, which corresponds to the accuracy of Radia 
[8]. 

 
Figure 8: Measured and calculated magnetic field. 

CONCLUSIONS & FURTHER WORK 
The results show that quite a significant improvement 

can be made to the electron beam trajectory through the 
device by changing the block order. By weighting certain 
factors in the merit function – for example the range of 
electron beam displacements off axis – they can be 
selectively improved upon instead of other factors. A 
minor modification had to be made to the merit function 
to include the vertical mode trajectory range. In the future 
a further modification should be made to allow for the 
true trajectory straightness. Presently only the maximum 
and minimum values of the electron orbit are considered. 
This means that a “dip” in the trajectory (as can be seen in 
Figure 6) can develop with little impact on the merit 
function. This situation could be improved by taking the 
co-ordinates of the turning points of the electron 
trajectory and fitting them to a horizontal straight line. 
The same could be done in the vertical mode of the 
device. This will be implemented for the Diamond 
APPLE-II VPU. 
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