A   B   C   D   E   F   G   H   I   K   L   M   N   O   P   Q   R   S   T   U   V   W    

dipole

            
Paper Title Other Keywords Page
MOXBCH01 Industrial Technology for Unprecendented Energy and Luminosity: the Large Hadron Collider superconducting-magnet, luminosity, collider, cryogenics 6
 
  • P. Lebrun
    CERN, Geneva
  With over 2.7 billion Swiss francs procurement contracts under execution in industry and the installation of major technical systems proceeding in its first 3.3 km sector, the Large Hadron Collider (LHC) construction is now in full swing at CERN, the European Organization for Nuclear Research. The LHC is not only the most challenging particle accelerator under construction, it is also the largest global project ever for a scientific instrument based on advanced technology. Starting from accelerator performance requirements, we recall how these can be met by an appropriate combination of technologies, such as high-field superconducting magnets, superfluid helium cryogenics, beam and insulation vacuum or power electronics, with particular emphasis on the developments required to meet demanding specifications, and the industrialization issues which had to be solved for achieving series production of precision components under tight quality assurance and within limited resources. This provides the opportunity for reviewing the production status of the different systems and the progress of the project.  
Video of talk
Transparencies
 
MOPKF049 Design Study for a 205 MeV Energy Recovery Linac Test Facility at the KEK linac, optics, emittance, simulation 420
 
  • E.-S. Kim
    PAL, Pohang
  • K. Yokoya
    KEK, Ibaraki
  We present a lattice and beam dynmics analysis for a 200 MeV energy recovery linac test facility at the KEK. The test facility consists of a photocathode rf gun, a 5 MeV injector, a merger, 200 MeV superconducting linac, TBA sections and beam dump line. Beam parameters and optimal optics to relaize the energy recovery linac are described. Simulation results on emittance growth due to HOMs in the superconducting linac and coherent synchrotron radiation in the designed lattice are presented.  
 
MOPKF055 A Study of CSR Induced Microbunching Using Numerical Simulations simulation, radiation, synchrotron, synchrotron-radiation 434
 
  • M.A. Bowler, H.L. Owen
    CCLRC/DL/ASTeC, Daresbury, Warrington, Cheshire
  Microbunching due to Coherent Synchrotron Radiation (CSR) has been predicted for high density bunches and has been 'observed' using numerical simulations by the code ELEGANT of M. Borland, which includes a 1D model of CSR. However, there is currently a debate as to whether this micro-bunching is a real physical effect or is a numerical artefact, possibly introduced by having to use macro-particles to model the electrons. In particular, the amplitude of the micro-bunching diminishes as the number of macroparticles increases, but the question remains open as to whether the amplitude converges to zero or a finite value. The micro-bunching produced by ELEGANT is being studied as a function of the numerical parameters of the code and also as a function of the range of bunch parameters and bending magnet strengths of relevance to the 180 degree bending arcs required for the proposed 4GLS at Daresbury Laboratory. Calculations with up to 2 million macroparticles have been carried out on a Linux workstation using gaussian bunches of FWHM of 2psec and charge of 1 nC, and show the existence of microbunching at the end of a 180 degree arc containing 5 TBA cells with magnet strengths of 0.5T. Further investigation of this problem is required.  
 
MOPKF059 Magnet Specification for the Daresbury Laboratory Energy Recovery Linac Prototype quadrupole, linac, booster, injection 443
 
  • N. Thompson, N. Marks
    CCLRC/DL/ASTeC, Daresbury, Warrington, Cheshire
  Daresbury Laboratory has funding for the design and construction of an Energy Recovery Linac (ERL) prototype to facilitate the R&D necessary for the 4th Generation Light Source (4GLS). In the prototype a 35MeV electron beam will be used to drive an Infra-Red Oscillator Free-Electron Laser. The ring consists of two 180°; triple bend achromats, two straight sections, an injection chicane, an extraction chicane and two bunch compression/decompression chicanes. A number of pre-existing magnets will be used in the ring so the new magnets have been designed to ensure compatibility with the existing designs, enabling common power supply, vacuum and control system specifications. This paper gives an overview of the magnet requirements for the facility and details of the engineering realisation.  
 
MOPKF062 Choice of Arc Design for the ERL Prototype at Daresbury Laboratory quadrupole, sextupole, linac, beam-transport 452
 
  • H.L. Owen, B.D. Muratori
    CCLRC/DL/ASTeC, Daresbury, Warrington, Cheshire
  The choice of arc design for the Energy Recovery Linac Prototype (ERLP) to be built at Daresbury Laboratory is investigated. Both the overall merits and disadvantages of a TBA arc and Bates bend are considered, and space restrictions particular to Daresbury Laboratory given. Some magnet parameters are given together with a summary of the layout of the ERLP.  
 
MOPKF073 Design Study of the Bending Sections between Harmonic Cascade FEL Stages sextupole, quadrupole, electron, simulation 485
 
  • W. Wan, J.N. Corlett, W. Fawley, A. Zholents
    LBNL, Berkeley, California
  The present design of LUX (linac based ultra-fast X-ray facility) includes a harmonic cascade FEL chain to generate coherent EUV and soft X-ray radiation. Four cascade stages, each consisting of two undulators acting as a modulator and a radiator, respectively, are envisioned to produce photons of approximate wavelengths 48 nm, 12 nm, 4 nm and 1 nm. Bending sections may be placed between the modulator and the radiator of each stage to adjust and maintain bunching of the electrons, to separate, in space, photons of different wavelengths and to optimize the use of real estate. In this note, the conceptual design of such a bending section, which may be used at all four stages, is presented. Preliminary tracking results show that it is possible to maintain bunch structure of nm length scale in the presence of errors, provided that there is adequate orbit correction and there are 2 families of trim quads and trim skew quads, respectively, in each bending section.  
 
MOPKF079 The Linac Coherent Light Source Photo-Injector Overview and Some Design Details gun, cathode, linac, emittance 500
 
  • D. Dowell, R. Akre, L.D. Bentson, P. Bolton, R.M. Boyce, R. Carr, J.E. Clendenin, S.M. Gierman, A. Gilevich, K. Kotturi, Z. Li, C. Limborg-Deprey, W. Linebarger, M. Ortega, J. Schmerge, P. Smith, L. Xiao
    SLAC, Menlo Park, California
  The Linac Coherent Light Source (LCLS)[*] is a SASE free electron laser using the last 1/3 of the SLAC two mile linac to produce 1.5 to 15 angstrom x-rays in a 100 meter long undulator. A new 135 MeV photo-injector will be built in an existing, off-axis vault at the 2/3 point of the main linac. The injector accelerator consists of a BNL/SLAC/UCLA s-band gun followed by two 3-meter long SLAC accelerator sections. The 5.6 MeV beam from the gun is matched into the first accelerator section and accelerated to 135 MeV before injection onto the main linac axis with a 35 degree bend [**]. Several modifications have been made to the rf gun, linac and beamline as well as the inclusion of several diagnostics have been incorporated into the injector design to achieve the required 1.2 micron projected emittance at a charge of 1 nC. In addition, a laser heater [***], will increase the uncorrelated energy spread to suppress coherent synchrotron radiation and longitudinal space charge instabilities in the main accelerator and bunch compressors [****]. The configuration and function of the major injector components will be described.

* Linac Coherent Light Source (LCLS) CDR No. SLAC-R-593 UC-414, 2002 ** C. Limborg et al., Proc. of the 2003 International FEL Conf *** R. Carr et al, Contrib. to these proceedings **** Z. Huang et al., Contrib. to these proceedings

 
 
MOPLT014 Testing of the LHC Magnets in Cryogenic Conditions: Current Experience and Near Future Outlook multipole, injection, instrumentation, sextupole 560
 
  • V. Chohan, M. Buzio, G. De Rijk, J. Miles, P. Pugnat, V. Remondino, S. Sanfilippo, A.D. Siemko, N. Smirnov, B. Vullierme, L. Walckiers
    CERN, Geneva
  For the Large Hadron Collider under construction at CERN, a necessary and primordial condition prior to its installation is that all the main twin-aperture Dipole and Quadrupole magnets are tested in the 1.9K cryogenic conditions. These tests are not feasible at the manufacturers and hence, are carried out at CERN at a purpose built facility on the site. This presentation will give an overall view of the issues related to the operation of the tests facility. In particular, it will give the goals that need to be met to ensure the magnet integrity and performance and the context & constraints on the test programme. Results accumulated from the tested magnets and the ensuing tests stream-lining will be presented, together with some of the explanations and hard limits. Finally, some improvements planned for efficient operation will be given within the confines of the testing programme as was foreseen and the project goals and deadlines.  
 
MOPLT026 Equipment Manufacturing and Test Data Tracking for the LHC site, feedback, cryogenics 596
 
  • E. Manola-Poggioli, S.-A. Chalard, C. Delamare, T. Ladzinski, S. Mallon-Amerigo, P. Martel, S. Petit, T. Pettersson, O. Rademakers Di Rosa, B. Rousseau, A.S. Suwalska, D. Widegren
    CERN, Geneva
  The MTF system was developed at CERN to capture the design, manufacturing and test data of equipment built for LHC. Today, more than 80.000 descriptions of LHC equipment are managed using the MTF. The system handles both production data and non-conformance issues. The acquisition of the equipment data is both an organisational and a technical challenge. On the organisational side many different aspects of production and management have to be taken into account. The LHC equipment suppliers, wherever their production facilities are located, whatever their computer skills or rates of production are, need a user friendly environment to provide the data with a very limited effort on the shop floor. For expensive equipment such as the LHC dipoles a reliable and robust non-conformance methodology must be put in place, the MTF provides the required information technology support tools. The EDMS Service has developed methods, training processes and tools to cope with an extensive use of the system, a use that will grow during the next years until the LHC is installed. This paper presents the experience acquired and the solutions put in place.  
 
MOPLT057 Proposal of a Strong RF Focusing Experiment at DAFNE lattice, focusing, luminosity, synchrotron 683
 
  • A. Gallo, D. Alesini, G. Benedetti, M.E. Biagini, C. Biscari, R. Boni, M. Boscolo, A. Clozza, G.O. Delle Monache, G. Di Pirro, A. Drago, A. Ghigo, S. Guiducci, M. Incurvati, C. Ligi, F. Marcellini, G. Mazzitelli, C. Milardi, L. Pellegrino, M.A. Preger, P. Raimondi, R. Ricci, U. Rotundo, C. Sanelli, M. Serio, F. Sgamma, B. Spataro, A. Stecchi, A. Stella, F. Tazzioli, C. Vaccarezza, M. Vescovi, M. Zobov
    INFN/LNF, Frascati (Roma)
  • E. Levichev, P.A. Piminov
    BINP SB RAS, Novosibirsk
  • C. Pagani
    INFN/LASA, Segrate (MI)
  The strong RF focusing is a recently proposed technique to obtain short bunches at the interaction point in the next generation colliders. A large momentum compaction factor together with a very high RF gradient across the bunch provide a modulation of the bunch length along the ring, which can be minimized at the Interaction Point (IP). No storage ring has been so far operated in such a regime, since it requires uncommonly high synchrotron tune values. In this paper we present the proposal of creating the experimental conditions to study the strong RF focusing in DAFNE. The proposed machine lattice providing the required high momentum compaction value, the upgrade of the RF system including the installation of a multi-cell superconducting cavity, the upgrade of the cryogenic plant and a list of the possible beam experiments are illustrated and discussed.  
 
MOPLT058 Status of CTF3 Stretcher-compressor and Transfer Line vacuum, synchrotron, linac, synchrotron-radiation 686
 
  • A. Ghigo, D. Alesini, C. Biscari, A. Clozza, A. Drago, A. Gallo, F. Marcellini, C. Milardi, B. Preger, M.A. Preger, C. Sanelli, M. Serio, F. Sgamma, A. Stecchi, A. Stella, M. Zobov
    INFN/LNF, Frascati (Roma)
  • R. Corsini, G. Geschonke
    CERN, Geneva
  The first part of the CTF3 transfer line is under installation. It includes a chicane which, because of its very flexible lattice and large aperture vacuum chamber, can change the bunch length in a wide range. The chicane can be used as a stretcher to lengthen the pulses coming from the linac in order to reduce the coherent synchrotron radiation (CSR) in the recombination rings. A possible use as a bunch compressor is also foreseen in order to make CSR experiments and to characterize beam instrumentation. This paper describes the final design of the vacuum chambers, including beam diagnostics components, and their laboratory tests. The installation status of the magnetic and vacuum chamber components together with the ancillary systems is reported.  
 
MOPLT099 NSC KIPT Accelerator on Nuclear and high Energy Physics quadrupole, electron, target, injection 761
 
  • I.S. Guk, A. Dovbnya, S.G. Kononenko, A.S. Tarasenko
    NSC/KIPT, Kharkov
  • J.I.M. Botman, M.J. Van der Wiel
    TUE, Eindhoven
  One of the main reasons for the outflow of experts in nuclear physics and adjacent areas of science from Ukraine is the absence of modern accelerating facilities, for conducting research in the present fields of interest worldwide in this area of knowledge. A qualitatively new level of research can be achieved by the construction of a new generation accelerator applying the latest developments in the field of electron beam acceleration, in particular on the basis of superconducting accelerating structures of the TESLA type. Such structures may be used for continuous, polarized electron beams, which is crucial e.g. for thin(?) experiments checking modern theoretical models of interactions of nuclear substance, and for beams with high current and extremely short pulses for research in free electron laser and neutron physics. Such a facility will create an opportunity for carrying out research representing the interest of scientists from other countries, which will promote the integration of Ukrainian science into European and worldwide research.  
 
MOPLT100 Magnetic Structure of the NSC KIPT Nuclear-and-high-energy-physics Electron Accelerator electron, storage-ring, injection, quadrupole 764
 
  • I.S. Guk, A. Dovbnya, S.G. Kononenko, F.A. Peev, A.S. Tarasenko
    NSC/KIPT, Kharkov
  • J.I.M. Botman, M.J. Van der Wiel
    TUE, Eindhoven
  Design options of the magnetic structure of a new proposed accelerator facility at NSC KIPT with a continuous-wave electron beam are described. The accelerator represents a recirculator, based on standard TESLA superconducting accelerating sections in one or two straight sections with a length of 5 or 19 meters. The magnetic system is designed on the basis of the magnetic elements of storage ring EUTERPE, transferred by Eindhoven University to NSC KIPT. The focusing and dispersion functions for several design choices of the magnetic structure are reported. Modeling of the beam movement in the accelerator has been carried out; the beam parameters during acceleration and on accelerator output have been calculated.  
 
MOPLT107 Nanosecond-timescale Intra-bunch-train Feedback for the Linear Collider: Results of the FONT2 Run feedback, linear-collider, collider, kicker 785
 
  • P. Burrows, T. Hartin, S.M. Hussain, S. Molloy, G.R. White
    Queen Mary University of London, London
  • C. Adolphsen, J.C. Frisch, L. Hendrickson, R.K. Jobe, T. Markiewicz, D.J. McCormick, J. Nelson, M.C. Ross, S. Smith, T.J. Smith
    SLAC, Menlo Park, California
  • R. Barlow, M. Dufau, A. Kalinin
    CCLRC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • G. Myatt, C. Perry
    OXFORDphysics, Oxford, Oxon
  We report on experimental results from the December 2003/January 2004 data run of the Feedback On Nanosecond Timescales (FONT) experiment at the Next Linear Collider Test Accelerator at SLAC. We built a second-generation prototype intra-train beam-based feedback system incorporating beam position monitors, fast analogue signal processors, a feedback circuit, fast-risetime amplifiers and stripline kickers. We applied a novel real-time charge-normalisation scheme to account for beam current variations along the train. We used the system to correct the position of the 170 nanosecond-long bunchtrain at NLCTA, in both 'feed forward' and 'feedback' modes. We achieved a latency of 53 nanoseconds, representing a significant improvement on FONT1 (2002), and providing a demonstration of intra-train feedback for the Linear Collider.  
 
MOPLT115 Numerical Simulations and Analyses of Beam-Induced Damage to the Tevatron Collimators simulation, proton, collimation, superconducting-magnet 806
 
  • A. Drozhdin, N. Mokhov, D. Still
    Fermilab, Batavia, Illinois
  • V. Samulyak
    BNL, Upton, Long Island, New York
  Numerical simulations are performed to analyze the Tevatron collimator damage happened in December 2003 that was induced by a failure in the CDF Roman Pot detector positioning during the collider run. Possible scenarios of this failure resulted in an excessive halo generation and superconducting magnet quench are studied via realistic simulations using the STRUCT and MARS14 codes. It is shown that the interaction of a misbehaved proton beam with the collimators result in a rapid local heating and a possible damage. A detailed consideration is given to the ablation process for the collimator material taking place in high vacuum. It is shown that ablation of tungsten (primary collimator) and stainless steel (secondary collimator) jaws results in creation of a groove in the jaw surface as was observed after the December's accident.  
 
MOPLT120 Proposals for Improvements of the Correction of Sextupole Dynamic Effects in the Tevatron Dipole Magnets injection, sextupole, luminosity, collider 818
 
  • P. Bauer, G. Ambrosio, J. Annala, J. DiMarco, R. Hanft, M. Lamm, M. Martens, P. Schlabach, D. Still, M. Tartaglia, J. Tompkins, G. Velev
    Fermilab, Batavia, Illinois
  It is well known that the sextupole (b2) components in the superconducting dipole magnets decay during the injection plateau and snap back rapidly at the start of the ramp to flat top current. These so-called dynamic effects were originally discovered in the Tevatron. They are compensated for by the chromaticity correctors distributed around the ring. Imperfect control of the chromaticity during the snapback can contribute to beam loss and emittance growth. A thorough investigation of the chromaticity correction in the Tevatron was launched in the context of Run II, including beam chromaticity measurements and extensive magnetic measurements on a series of spare Tevatron dipole magnets. The study has yielded new information about the effect of the powering history on the dynamic b2. A companion paper at this conference describes in detail the results of these magnetic measurements [reference to George Velev's paper]. Study findings have given directive to new proposals for improvement of the b2 snapback correction in the Tevatron, including a revised functional form for the snapback algorithm and the elimination of the beam-less pre-cycle. This paper reports the results of beam studies performed recently to test these improved procedures.  
 
MOPLT124 Control System of the Small Isochronous ring power-supply, injection, extraction, ion 830
 
  • J.A. Rodriguez, F. Marti
    NSCL, East Lansing, Michigan
  • E. Pozdeyev
    Jefferson Lab, Newport News, Virginia
  The purpose of this paper is to describe the control system of the Small Isochronous Ring (SIR) developed and built at the National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University (MSU). SIR is a small-scale experiment that simulates the dynamics of intense beams in large accelerators. A 20 to 30 keV hydrogen or deuterium ion bunch is injected in the ring, extracted after a variable number of turns and its longitudinal profile is studied. Information about the electronics used and software written to control different injection line, ring and extraction line elements is included. Some of these elements are magnets, electrostatic quadrupoles, electric and magnetic correctors, scanning wires, emittance measurement system, chopper and a fast Faraday cup.  
 
MOPLT141 IR Upgrade Plans for the PEP-II B-Factory luminosity, interaction-region, beam-beam-effects, permanent-magnet 869
 
  • M.K. Sullivan, S. Ecklund, N. Kurita, A. Ringwall, J. Seeman, U. Wienands
    SLAC, Menlo Park, California
  • M.E. Biagini
    INFN/LNF, Frascati (Roma)
  PEP-II, the SLAC, LBNL, LLNL B-factory has achieved a peak luminosity of over 7e33, more than twice the design luminosity, and plans to obtain a luminosity of over 1·1034 in the next year. In order to push the luminosity performance of PEP-II to even higher levels an upgrade to the interaction region is being designed. In the present design, the interaction point is a head-on collision with two strong horizontal dipole magnets (B1) located between 20-70 cm from the IP that bring the beams together and separate the beams after the collision. The first parasitic crossing (PC) is at 63 cm from the IP in the present by2 bunch spacing. The B1 magnets supply all of the beam separation under the present design. Future improvements to PEP-II performance include lowering the beta y * values of both rings. This will increase the beta y value at the PCs which increases the beam-beam effect at these non-colliding crossings. Introducing a horizontal crossing angle at the IP quickly increases the beam separation at the PCs but recent beam-beam studies indicate a significant luminosity reduction occurs when a crossing angle is introduced at the IP. We will discuss these issues and describe the present interaction region upgrade design.  
 
MOPLT175 A Method to Measure the Focusing Properties (R_Matrix) of a Magnet focusing, ion, heavy-ion, multipole 935
 
  • N. Tsoupas, L. Ahrens, K.A. Brown, D. Gassner, J. Glenn, Y.Y. Lee, T. Roser, P. Thieberger, J. Wei
    BNL, Upton, Long Island, New York
  We discuss a method that may be used to measure the focusing properties of a magnet. This method may prove valuable when applied to non-conventional magnets that deviate from the usual dipole magnets or other multipole magnets which are commonly used in a synchrotron. In this category of non-conventional magnets, fall special magnets, which come under the name Snakes. Such magnets are being used in synchrotron accelerators[*,**] to introduce artificial spin resonances to help overcome the intrinsic and/or imperfection spin resonances. This method of measuring the focusing properties of a magnet requires the use of low energy and high rigidity heavy-ions which may be obtained from the BNL Tandem accelerator.In brief the method consists on, injecting low emittance beamlets of lightly stripped heavy ions into a magnet and measuring the coordinates, of these narrowbeamlets, at the entrance and exit of the magnet.From the measurement of these coordinates of the narrowbeamlets we can deduce information on the R matrix and higher order matrix elements that define the focusing properties of the magnet.

* T. Roser, AIP Conf. Proc. 187 (1988) 1221** H.Huang, et. al. Phys. Rev. Lett. 73 (1994) 2982

 
 
MOPLT176 Mechanism of Electron Multipacting with a Long Bunch Proton Beam electron, quadrupole, proton, simulation 938
 
  • L. Wang, M. Blaskiewicz, J. Wei
    BNL, Upton, Long Island, New York
  • R.J. Macek
    LANL/LANSCE, Los Alamos, New Mexico
  The mechanism of electron multipacting in long bunched proton machine has been quantitatively described by the electron energy gain and electron motion. Some important parameters related to electron multipacting are investigated in detail. It is proved that multipacting is sensitive to beam intensity, longitudinal beam profile shape and transverse beam size. Agreement is achieved among our analysis, simulation and experiment.  
 
TUPKF012 A HOM Damped Planar Accelerating Structure damping, impedance, coupling, polarization 982
 
  • A. Blednykh, H. Henke
    TET, Berlin
  The problem of very fast higher order mode (HOM) suppression, in the order of 1ns, was investigated for a planar 30GHz accelerating structure. Both, damping and detuning were considered. A sufficient suppression could be achieved by damping waveguides in every cell in vertical and in horizontal direction. Finally, a scaled-up 10GHz model was built. It is a 35 cm long aluminum structure, which was machined by high-precision milling. In order to reduce the surface gradient on the input/output coupling irises a symmetrical RF coupler was developed. The HOM damping is accomplished by coupling six damping waveguides to each accelerating cell. The waveguides are loaded by a low resitivity RF load. The whole structure with waveguides and loads was optimized by means of the computer code GdfidL. The paper gives the design criteria and the results of s-parameter and bead-pull measurements.  
 
TUPKF078 High Current Superconducting Cavities at RHIC impedance, simulation, electron, linac 1120
 
  • R. Calaga, I. Ben-Zvi, Y. Zhao
    BNL, Upton, Long Island, New York
  • J. Sekutowicz
    Jefferson Lab, Newport News, Virginia
  A five-cell high current superconducting cavity for the electron cooling project at RHIC is under fabrication. Higher order modes (HOMs), one of main limiting factors for high current energy-recovery operation, are under investigation. Calculations of HOMs using time-domain methods in Mafia will be discussed and compared to calculations in the frequecy domain. A possible motivation towards a 2x2 superstructure using the current five-cell design will be discussed and results from Mafia will be presented. Beam breakup thresholds determined from numerical codes for the five-cell cavity as well as the superstructure will also be presented.  
 
TUPLT010 Aperture and Stability Studies for the CNGS Proton Beam Line target, extraction, injection, proton 1150
 
  • M. Meddahi, W. Herr
    CERN, Geneva
  The knowledge of the beam stability at the CNGS target is of great importance, both for the neutrino yield and for target rod resistance against non-symmetric beam impact. Therefore, simulating expected imperfections of the beam line elements and possible injection errors into the CNGS proton beam line, the beam spot stability at the target was investigated. Moreover, the mechanical aperture of the CNGS proton beam line was simulated and the results confirmed that the aperture is tight but sufficient.  
 
TUPLT043 Status of the Cooler Synchrotron COSY-Juelich injection, proton, polarization, electron 1246
 
  • B. Lorentz, U. Bechstedt, J. Dietrich, R. Eichhorn, R. Gebel, A. Lehrach, R. Maier, D. Prasuhn, A. Schnase, H. Schneider, R. Stassen, H. Stockhorst, R. Tölle
    FZJ/IKP, Jülich
  The cooler synchrotron COSY accelerates and stores unpolarized and polarized protons and deuterons in the momentum range between 300 MeV/c to 3.65 GeV/c. To provide high quality beams, an Electron Cooler at injection and a Stochastic Cooling System from 1.5 GeV/c up to maximum momentum are available. Vertically polarized proton beams with a polarization of more than 0.80 are delivered to internal and external experimental areas at different momenta. Externally, the maximum momentum is up to date restricted to approximately 3.4 GeV/c by the extraction elements installed in COSY. In 2003 deuteron beams with different combinations of vector and tensor polarization were made available for internal and external experiments. An rf dipole was installed, which is used to induce artificial depolarizing resonances. It can be used for an accurate determination of the momentum of the stored beams. The status of the cooler synchrotron COSY is presented and future plans are discussed.  
 
TUPLT051 Beam Optical Design of a Multi Charge Ion Recirculator for Charge Breeders ion, optics, quadrupole, space-charge 1267
 
  • R. Cee, W. Mittig, A.C.C. Villari
    GANIL, Caen
  Ions of high charge states as required for both stable and radioactive beams in order to optimally profit from the existing accelerating voltage can be produced by means of a charge breeder. However, the energy increase obtained is accompanied by an intensity decrease due to the low efficiency of the charge breeding process. With respect to the production of radioactive beams an enhancement of the breeding efficiency would be most desirable to avoid a high power primary beam as yet inevitable to counteract the loss in intensity. For this purpose the beam optics of an ion recirculation capable to separate the desired charge state and to reinject the remaining charge spectrum has been designed. The ions extracted from both sides of the charge breeder are focused by electrostatic quadrupole doublets and bent by two 180° dipole magnets. After one revolution the optics realises horizontally a (1:1) and vertically a (1:-1) point-to-point image independent from the charge state of the ions. The second order geometric aberrations as well as most of the chromatic aberrations vanish.  
 
TUPLT062 Design of the Proton Beam Line for the Trade Experiment quadrupole, target, emittance, cyclotron 1297
 
  • C. Ronsivalle, L. Picardi
    ENEA C.R. Frascati, Frascati (Roma)
  • S. Monti, F. Troiani
    ENEA C.R. Rome, Rome
  The TRADE (Triga Accelerator Driven Experiment)experiment, to be performed in the TRIGA reactor of the ENEA-Casaccia centre consists in the coupling of a 140-300 MeV, 0.5 mA proton beam produced by a cyclotron to a target hosted in the central thimble of the reactor scrammed to sub-criticality. A 30 m long beamline has been designed to transfer the beam injecting it from the top of the pool with special care of having low losses in TRIGA building where a limited shielding of the line is possible. A particular attention was paid to reduce the number and size of elements in the last part of the beamline that are immersed in the pool's water. The paper presents a description of the beam line, the design criteria and the results of beam dynamics calculations.  
 
TUPLT066 Study of a High-current 176 MHz RFQ as a Deuteron Injector for the SPES Project rfq, quadrupole, simulation, focusing 1306
 
  • M. Marchetto, M. Comunian, E. Fagotti, A. Palmieri, A. Pisent
    INFN/LNL, Legnaro, Padova
  The SPES project, aimed at the construction of a RIB facility at LNL, is initially based on the use of a primary proton beam, but it foresees a future development based on the usage of deuterons and light ions. In this article we report about the preliminary study of a 176 MHz RFQ to be used as an injector for such kind of beams. The structure explored foresees a ?four ladder? symmetric resonator, built in brazed copper. In particular beam dynamics, electrodynamics design and preliminary thermo-structural analysis of the cavity is presented.  
 
TUPLT087 Deflection Element for S-LSR storage-ring, ion, quadrupole, lattice 1357
 
  • M. Ikegami, H. Fadil, A. Noda, T. Shirai, M. Tanabe, H. Tongu
    Kyoto ICR, Uji, Kyoto
  • T. Fujimoto, K. Noda, H. Ogawa, S. Shibuya, T. Takeuchi
    NIRS, Chiba-shi
  • M. Grieser
    MPI-K, Heidelberg
  • H. Okamoto
    HU/AdSM, Higashi-Hiroshima
  Main lattice of the ion storage and cooler ring, S-LSR is composed of 6 dipole and 12 quadrupole magnets. The maximum magnetic field, the radius of curvature and gap height are 0.95 T, 1050 mm and 70 mm, respectively. The field measurement of the dipole magnets has been completed with use of Hall-probe position controlled by driving mechanism composed of stepping motors and ball-screws. In order to cancel out the momentum dispersion, the radial electric field is superposed with the magnetic field. The radial electric field is applied by the electrodes installed into the vacuum vessel set inside the rather limited gap of the dipole magnet. Good field quality is to be realized with use of intermediate electrodes. In the present paper, the results of the magnetic field measurements are presented together with the design of the superposed electric field.  
 
TUPLT092 Optics and Magnet Design for Proton Beam Transport Line at PEFP proton, optics, multipole, extraction 1372
 
  • H.-S. Kang, H.S. Han, S.H. Jeong, Y.G. Jung, D.E. Kim, M. Kim, H.G. Lee, T.-Y. Lee, H.S. Suh
    PAL, Pohang
  The PEFP proton linac is designed to have two proton beam extraction lines at the 20-MeV and 100-MeV end, respectively. Each extraction line has 5 to 6 beamlines for proton beam users. The proton beam transport system for users? experiments will be prepared for this purpose. At the beginning, the beam optics for the proton beam transport system is designed with the TRACE code. The optics should be designed so as to meet the users? various requirements which might be to control the beam size and intensity at the beam target, and the timing of the proton beam. The magnet to distribute the proton beam to many beamlines is an AC magnet which has an AC frequency of 15 Hz, and is powered with a programmable AC power supply. In this paper, the result of the optics design will be presented and the magnet design will be described.  
 
TUPLT102 Field Study of the 4T Superconducting Magnet for Rapid Cycling Heavy Ion Synchrotrons ion, synchrotron, heavy-ion, simulation 1390
 
  • V.A. Mikhaylov, P.G. Akishin, A.V. Butenko, A.D. Kovalenko
    JINR, Dubna, Moscow Region
  The problem of the magnetic field optimization of a 4T dipole magnet with circular aperture of 100-110 mm for rapid cycling synchrotron is considered. A single layer low inductance coil made of hollow superconducting high current cable operating at 30 kA is used. The magnetic field ramp rate up to 4 T/s should be achievable. Mathematical method to minimize sextupole and higher order non-linearities to the tolerable values by variation of angular coil turn position is developed. The results of numerical simulation for 2D part magnetic field are presented. The further possibilities to improve the field quality for similar lattice magnets and their application for heavy ion synchrotrons and boosters are discussed.  
 
TUPLT112 Radiation Damage to the Elements of the Nuclotron-type Dipole of SIS100 ion, vacuum, beam-losses, proton 1408
 
  • E. Mustafin, G. Moritz, G. Walter
    GSI, Darmstadt
  • L. Latysheva, N. Sobolevskiy
    RAS/INR, Moscow
  Radiation damage to various elements of the Nuclotron-type dipole of SIS100 sensitive to irradiation was calculated. Among the elements of consideration were the superconducting cables, insulating materials, ceramic insertions and high-current by-pass diodes. The Monte-Carlo particle transport code SHIELD was used to simulate propagation of the lost ions and protons together with the products of nuclear interactions in the material of the elements. The results for the proton projectiles were cross-checked using the particle transport code MARS, and a good agreement between the codes were found. It was found that the lifetime of the organic materials under irradiation are much more restrictive limit for the tolerable level of beam particle losses than the danger of the quench events.  
 
TUPLT132 Investigation of Injection through Bending Magnet Fringe Fields in X-rays Source NESTOR injection, storage-ring, linac, vacuum 1434
 
  • A. Mytsykov, P. Gladkikh, A.V. Rezaev, A.Y. Zelinsky
    NSC/KIPT, Kharkov
  In paper injection in the X-rays source NESTOR through fringe fields of a bending magnet is considered. The simulation of a motion of a beam of charged particles through 3-d fields of magnetic devices of the injection channel, which ones is located on a ring, are performed. The focusing properties of the injection channel are determined.  
 
TUPLT136 Proton Beam Line for the ISIS Second Target Station target, extraction, septum, quadrupole 1443
 
  • D.J. Adams
    CCLRC/RAL/ASTeC, Chilton, Didcot, Oxon
  The ISIS facility, based at the Rutherford Appleton Laboratory in the UK, is an intense pulsed source of Muons and Neutrons used for condensed matter research. The accelerator facility delivers an 800 MeV proton beam of 2.5x1013 protons per pulse at 50 Hz. As part of the facility upgrade, which includes increasing the source intensity to 3.7x1013 protons per pulse using a dual harmonic RF system, it is planned to share the source with a second, 10 Hz, target station. A beam line supplying this target will extract from the existing target station beam line. Measurements and models characterising the optical functions around the extraction point of the existing line are discussed. The optical design, diagnostics and beam correction systems for second target station beam line are presented.  
 
TUPLT142 Status of Design of Muon Beamline for the Muon Ionisation Cooling Experiment emittance, target, quadrupole, proton 1461
 
  • K. Tilley
    CCLRC/RAL/ISIS, Chilton, Didcot, Oxon
  The MICE collaboration proposes to install a Muon Ionisation Cooling Experiment at the ISIS facility, at Rutherford Appleton Laboratory. This experiment will be the first demonstration of ionisation cooling as a means to reduce the large transverse emittance of the muon beam, produced during the early stages of a neutrino factory. In order to permit a realistic demonstration of cooling, a source of muons must be produced, possessing particular qualities, notably in emittance and momenta. This paper describes the present design for the muon beamline source, and the plans for its implementation at RAL.  
 
TUPLT177 RHIC Optics Measurements at Different Working Point optics, injection, quadrupole, closed-orbit 1541
 
  • R. Calaga, M. Bai, S. Peggs, T. Roser, T. Satogata
    BNL, Upton, Long Island, New York
  Working point scans at RHIC were performed during 2004 to determine the effect on lifetime and luminosity. Linear optics were measured for different working point tunes by exciting coherent oscillations with the aid of RHIC AC dipoles. Two methods to measure the beta functions and phases are presented and compared: a conventional technique, and a new method based on singular value decomposition (SVD). The performance of a 3-bump beta wave algorithm to identify quadrupole error sources is also presented.  
 
TUPLT189 Dipole and Quaqdrupole Sorting for the SNS Ring quadrupole, resonance, multipole, sextupole 1574
 
  • D. Raparia, A.V. Fedotov, Y.Y. Lee, J. Wei
    BNL, Upton, Long Island, New York
  The Spallation Neutron Source (SNS) accumulator ring is a high intensity ring and must have low uncontrolled losses for hands on maintenance. To achieve these low losses one needs very tight tolerance. These tight tolerances have been achieved through shimming the magnets and sorting. Dipoles are solid core magnets and had very good field quality but magnet to magnet variation were sorted out according to ITF, since all the dipole are powered with one power supply. Typically, sorting is done to minimize linear effects in beam dynamics. Here, sorting of quadrupoles was done according to a scheme which allows to reduce unwanted strength of nonlinear resonances. As a result, the strength of sextupole resonances for our base line tune-box was strongly reduced which was confirmed by a subsequent beam dynamics simulation.  
 
TUPLT191 Transverse Optics Improvements for RHIC Run 4 optics, power-supply, sextupole, injection 1580
 
  • J. Van Zeijts
    BNL, Upton, Long Island, New York
  The magnetic settings in RHIC are driven by an online model, and the quality of the resulting lattice functions depend on the correctness of the settings, including knowledge of the magnet transfer-functions. Here we first present the different inputs into the online model, including dipole sextupole compenents, used to set tunes and chromaticities along the ramp. Next, based on an analysis of measured tunes and chromaticities along the fy03 polarized proton ramp, we present predictions for quadrupole transfer-function changes. The changes are implemented for the fy04 Au ramp, and we show the improved model agreement for tunes, and chromaticities along the ramp, and measured transverse phase-advance at store. We also describe model improvements for derived observables like the quality of transverse bump closure and observed luminosity ratios between individual interaction points.  
 
WEXCH01 Experience with LHC Magnets from Prototyping to Large-scale Industrial Production and Integration target, quadrupole, superconducting-magnet, sextupole 118
 
  • L. Rossi
    CERN, Geneva
  The construction of the LHC superconducting magnets is approaching one third of its completion. At the end of 2003, main dipoles cold masses for more than one octant were delivered; meanwhile the winding for the second octant was almost completed. The other big magnets, like the main quadrupoles and the insertion quadrupoles, have entered into series production as well. Providing more than 20 km of superconducting magnets, with the quality required for an accelerator like LHC, is an unprecedented challenge in term of complexity that has required several steps from the construction of 1 meter-long magnets in the laboratory to today production of more than one 15 meter-long magnet per day in Industry. The work and its organization is made even more complex by the fact that CERN supplies most of the critical components and part of the main tooling to the magnet manufacturers, both for cost reduction and for quality issues. In this paper the critical aspects of the construction and the time plan will be reviewed and the actual achievements in term of quality and construction time will be compared with the expectations.  
Video of talk
Transparencies
 
WEYCH01 Fast Pulsed SC Magnets synchrotron, ion, antiproton, storage-ring 132
 
  • G. Moritz
    GSI, Darmstadt
  The demand for high beam intensities leads to the requirement of fast pulsed magnets for synchrotrons. An example is the proposed 'International Facility for Beams of Ions and Antiprotons' at GSI, which will consist of two synchrotrons in one tunnel and several storage rings. The high field ramp rate and repetition frequency introduce many magnet design problems and constraints in the operation of the accelerator. Persistent currents in the superconductor and eddy currents in wire, cable, iron and vacuum chamber reduce the field quality and generate cryogenic losses. Due to the large number of magnet cycles during the lifetime of such a magnet, special attention has to be paid to magnet material fatigue problems. The large charging voltages put some constraints on the use of cold diodes for quench protection. R&D has started at GSI, in collaboration with many institutions, to comply with the constraints mentioned above. Model dipoles were built and tested. The results of the R&D are reported. The advantages of the use of low field, fast pulsed superconducting, compared to resistive, magnets will be discussed  
Video of talk
Transparencies
 
WEOCCH02 Construction Status and Issues of the Spallation Neutron Source Ring injection, extraction, kicker, vacuum 156
 
  • J. Wei
    BNL, Upton, Long Island, New York
  (For the Spallation Neutron Source collaboration) The Spallation Neutron Source (SNS) accelerator complex is now in its sixth year of a seven-year construction cycle. The design, fabrication, test, and assembly of the accumulator ring and its transport lines is approaching the final stage. In order to reach the design goal of this high-power ring to deliver 1.5 MW beam power (1.5$× 1014 protons of 1 GeV kinetic energy at a repetition rate of 60 Hz), stringent measures have been implemented to ensure the quality of the accelerator systems. This paper reviews the progress of the ring and transport systems with emphasis on the challenging technical issues and their solutions inccurred during the construction period.  
Video of talk
Transparencies
 
WEXLH01 Non-destructive Beam Measurements quadrupole, betatron, resonance, emittance 165
 
  • M. Bai
    BNL, Upton, Long Island, New York
  In high energy accelerators especially storage rings, non-destructive beam measurements are highly desirable to minimize the impact on the beam quality. In principle, the non-destructive tools can be either passive detectors like Schottky, or active devices which excite either longitudinal or transverse beam motions for the corresponding measurements. An example of such a device is ac dipole, a magnet with oscillating field, which can be used to achieve large coherent betatron oscillations. It has been demonstrated in the Brookhaven AGS that by adiabatically exciting the beam, the beam emittance growth due to the filamentation in the phase space can be avoided. This paper overviews both techniques in general. In particular, this paper also presents the beam tune measurement with Schottky detector, phase advance measurement as well as non-linear resonance measurements with the ac dipoles in the Brookhaven RHIC.  
Video of talk
Transparencies
 
WEOALH03 Installation Strategy for the LHC Main Dipoles injection, dynamic-aperture, multipole, resonance 176
 
  • S.D. Fartoukh
    CERN, Geneva
  All positions in the LHC machine are not equivalent in terms of beam requirements on the geometry and the field quality of the main dipoles. In the presence of slightly or strongly out-of tolerance magnets, a well-defined installation strategy will therefore contribute to preserve or even optimize the performance of the machine. In view of present state of the production, we have anticipated a list of potential issues (geometry, transfer function, field direction and random b3) which, combined by order of priority, have been taken into account to define a robust installation algorithm for the LHC main dipoles. Among the different possible strategies, the proposed one has been optimised in terms of simplicity and flexibility in order not to slow down and complicate the installation process. Its output is a prescription for installing the available dipoles in sequence while reducing to an absolute minimum the number of holes required by geometry or field quality issues.  
Video of talk
Transparencies
 
WEPKF002 Magnets for the CANDLE Booster Synchrotron, Design and Prototyping booster, simulation, synchrotron, vacuum 1588
 
  • V.G. Khachatryan, Y.L. Martirosyan, A. Petrosyan
    CANDLE, Yerevan
  CANDLE booster synchrotron magnetic lattice contains 48 dipoles of H-shape. Detailed magnetic and mechanical design of those magnets is performed within the framework of the project. In this report, the design considerations of the dipole magnet, including the magnetic field simulation is presented. The main features of the fabricated first prototype dipole magnet are discussed.  
 
WEPKF006 Field Quality and Hysteresis of LHC Superconducting Corrector Magnets multipole, injection, quadrupole, target 1600
 
  • A. Santrich Badal, M. Allitt, C. Giloux, M. Karppinen, A.M. Lombardi, V. Remondino, W.  Venturini Delsolaro, R. Wolf
    CERN, Geneva
  • M. Bagre, P. Khare, T. Maurya, A. Puntambekar
    CAT, Indore (M.P.)
  The Large Hadron Collider (LHC) will use some 6400 superconducting corrector magnets. There are 19 corrector types. These are assembled 14 different types of magnets of which 4 are nested. They are being manufactured by 4 firms in Europe and 3 in India. The magnetic field quality is measured at room temperature by 12 magnetic measurement benches employed by the corrector manufacturers. CERN performs magnetic measurement at 4.2K and at 1.9K on a small subset of corrector magnets. The paper discusses the correlation between the warm and cold field measurements. The field quality is compared to the magnet design expectations and to the target field quality for LHC. Many corrector circuits will be powered in a way which cannot be predicted before LHC will start operation and which even then may change between physics runs. The measured magnetic hysteresis and its influence on possible setting errors during operation is discussed, in particular for the orbit correctors and the tuning/trim quadrupole magnet circuits.  
 
WEPKF008 A Strategy for Sampling of the Field Quality of the LHC Dipoles multipole, target, injection, dynamic-aperture 1606
 
  • L. Bottura, S.D. Fartoukh, V. Granata, E. Todesco
    CERN, Geneva
  We have measured the magnetic field of a considerable fraction of the superconducting LHC main dipoles, of the order of 300 in warm conditions and 100 in cold conditions. All LHC dipoles will be measured in warm conditions at the manufacturers to steer the production inside the acceptance limits imposed by beam dynamics. Using the available data we analysed the distributions of the main field and higher order field errors in warm and cold conditions, as well as the distribution of the warm-to-cold correlation. Based on this analysis we predict the minimum number of magnets that should be measured in cold conditions in order to guarantee that (1) the production is controlled within the specified limits (2) the field is known to a sufficient level for a sound installation and (3) the uncertainty on the knowledge of the magnetic field of the LHC dipoles is small enough for the commissioning of the accelerator and to insure operation of the machine in any condition, including higher energy. The main outcome of this analysis is that cold measurements on a fraction of the order of one third of the total production, i.e. approximately 400 dipoles, will be sufficient to achieve the above objectives.  
 
WEPKF009 A Scaling Law for Predicting Snap-back in Superconducting Accelerator Magnets sextupole, injection, multipole, magnet-design 1609
 
  • T. Pieloni, L. Bottura, S. Sanfilippo
    CERN, Geneva
  • G. Ambrosio, P. Bauer
    Fermilab, Batavia, Illinois
  • M. Haverkamp
    METROLAB, Plan-les-Ouates
  The decay of the sextupole component in the bending dipoles during injection and the subsequent snap-back at particle acceleration are issues of common concern, albeit at different levels of criticality, for all superconducting colliders built (Tevatron, HERA, RHIC) or in construction (LHC) to date. The main difficulty is the correction of the relatively large and fast sextupole change during snap-back. Motivated by the above considerations, we have conducted an extended study of sextupole snap-back on two different magnet families, the Tevatron and the LHC bending dipoles, using the same measurement method. We show in this paper that it is possible to generalise all the results obtained by using a simple, exponential scaling law. Furthermore, we show that for magnets of the same family the parameters of the scaling law correlate linearly. This finding could be exploited during accelerator operation to produce accurate forecast of the snap-back correction based solely on beam-based measurements.  
 
WEPKF010 Design of an Automatic System for the Electrical Quality Assurance during the Assembly of the Electrical Circuits of the LHC instrumentation, sextupole, quadrupole, superconducting-magnet 1612
 
  • D. Bozzini, V. Chareyre, A. Jacob, K.H. Mess, S. Russenschuck, R. Solaz Cerdan
    CERN, Geneva
  During the assembly of the LHC one of the challenges will be the correct wiring of the 1712 circuits powering the 10094 magnet units, for which all-together 70000 splices have to be done. Considering the complexity of the electrical scheme the risk of wrong wiring is high. Errors, if not detected during the assembly phase, will perturb the LHC operation. A method has been developed to verify automatically the cabling scheme. It first detects the continuity of a portion of circuit and then verifies the correct polarity and type of the magnets in the circuit. A 108-meter LHC cell is the shortest length that can be tested. The system is composed of a unit to be placed at the center of the cell and two de-multiplexers positioned at the extremities of the cell. The central unit contains a data acquisition system where in total 217 signals can be acquired and more than 3000 voltage combinations are possible. Pointing to different databases, a LabVIEW program automatically executes the test procedure, generates, and stores the reports. The hardware and software design, the data flow between databases, and the testing methodology applied to the different circuit types are described.  
 
WEPKF012 LHC Dipole Axis, Spool Piece Alignment and Field Angle in Warm and Cold Conditions alignment, laser, quadrupole, sextupole 1618
 
  • M. Coccoli, M. Buzio, J. Garcia Perez
    CERN, Geneva
  The installation and commissioning of the LHC dipoles requires the knowledge of the magnetic axis and of the spool piece corrector alignment at the operating conditions. The installation is based at present on the use of geometric information derived from mechanical measurements performed in warm conditions, with the assumption that the geometric and magnetic axis are coincident. Any discrepancies between mechanical and magnetic axis and unforeseen geometry variations from ambient to cold operating temperature can introuduce important uncertaintes in the prediction of the alignment at operational conditions. Such prediction is studied through correlations between measurements performed at room and liquid helium temperature. A statistic analysis of the measurement data available is presented showing uncertainties on the correctors alignment. They are compared with beam-based specifications of the positioning of the spool piece.  
 
WEPKF014 Magnetic Field Tracking Experiments for LHC quadrupole, feedback, injection, power-supply 1621
 
  • V. Granata, J. Billan, F. Bordry, L. Bottura, P. Coutinho Ferreira, E. Effinger, G. Fernqvist, P. Galbraith, Q. King, J. Pett, A. Raimondo, A. Rijllart, H. Thiesen
    CERN, Geneva
  At the Large Hadron Collider (LHC) at CERN one of the fundamental requirements during the energy ramp is that the ratio between the field produced by the quadrupoles and the field in the dipoles remains constant in order to minimize the variation of the betatron tune that could induce particle loss. With a series of tracking experiments it has been demonstrated that this ratio can be maintained constant to better than 10-4 throughout the same current ramp as foreseen for the LHC. A technique has been developed to optimise the dipole and quadrupole current ramps to obtain the required ratio of B2/B1. Measurements performed by modulating the current with a harmonic function (so-called k-modulation) demonstrated that it is possible to modulate the strength of an individual quadrupole to determine the magnetic center through beam-based measurements.  
 
WEPKF016 Instrumental Uncertainty in Measuring the Geometry of the LHC Main Dipoles. laser, simulation, extraction, alignment 1627
 
  • M. La China, G. Gubello, W. Scandale
    CERN, Geneva
  In the Large Hadron Collider 1232 superconducting dipoles will bend the two 7 TeV energy beams along a 27 km-circumference trajectory. The series production (assigned to three European firms) will require a well-defined procedure to check, in every magnet, the respect of the dimensional specifications. To verify the tolerances of few tenths of millimeter over the 15-meter length in each cold mass, a laser tracker is necessarily used. To access the two beam apertures and to increase the measurement accuracies, the laser tracker is placed in different stations around the dipole defining a 'multi-station measuring procedure'. The noise affecting all the data taken so far suggested a careful analysis of the procedure itself. Through the computer modeling (based on a Monte Carlo algorithm), the statistical error was quantified and compared to the experimental error. From this comparison the critical aspects of low accuracy rooted in the multi-station procedure were better understood, allowing the optimization of the procedure itself for the forthcoming series production.  
 
WEPKF019 Magnetic Measurement Systems for the LHC Dipole Assembly Firms site, power-supply, controls, alignment 1636
 
  • H. Reymond, J. Billan, J. Garcia Perez, D. Giloteaux, A. Raimondo, V. Remondino, A. Rijllart
    CERN, Geneva
  The LHC lattice superconducting dipole magnets are actually under construction in three European industries. Due to the extremely high magnet performance required for the LHC, these magnets have to be built with high accuracy during all the steps of their assembling. In order to detect defects in the earliest production phases and to ensure the quality of the magnetic field as specified by the CERN contracts, dedicated measurement benches have been built and installed in each industry to validate the magnetic field quality at two important production stages. This paper describes the initial requirements and the implementation of the magnetic measurement systems. Details on the technical solutions, the present status and measurement results are presented.  
 
WEPKF021 Non-destructive Testing of Bus-bar Joints Powering LHC Superconducting Magnets, by Using Gamma Sources quadrupole, superconducting-magnet, photon, target 1642
 
  • B. Skoczen
    CERN, Geneva
  • J. Kulka
    AGH, Cracow
  The main LHC superconducting magnets (dipoles and quadrupoles) are powered by using Rutherford type cables, stabilized electrically and thermally with copper profiles. The portions of cables are connected to each other by a soft soldering technique (Sn96Ag4) with the overlapping length corresponding to one pitch of the superconducting strands. The splice constitutes a ?composite? structure with the interchanging layers of Sn96Ag4 and NbTi superconductor, located inside a Cu cage. In order to assure a high level of reliability (failure probability not exceeding 10-8) for some 10000 connections in the LHC, a non-destructive technique of checking the quantity of solder in the joint is planned to be implemented. The technique is based on a gamma ray source (241_Am) and the detection is position-sensitive in the transmission mode. 5 scintillating detectors of gamma rays are used and their accumulated length corresponds to the length of the radioactive source (120 mm). The method can be used in-situ, the equipment being optimized and portable, with implementation of direct on-line operation mode. The relevant criteria of acceptance of the splices have been defined. The first results of application of this technique will be shown.  
 
WEPKF022 Electro-mechanical Aspects of the Interconnection of the LHC Superconducting Corrector Magnets quadrupole, sextupole, octupole, monitoring 1645
 
  • J.-P.G. Tock, D. Bozzini, F. Laurent, S. Russenschuck, B. Skoczen
    CERN, Geneva
  In addition to the main 1232 bending dipoles and 474 focusing and defocusing quadrupoles, more than 6800 superconducting corrector magnets are included in the LHC machine. They are housed in the superfluid helium enclosures of the main cryomagnets. Among them, the closed orbit correctors (sextupole and octupole) are integrated in the main quadrupole helium vessel and they are powered via an externally routed cryogenic line (line N). During the assembly, these corrector magnets have to be connected according to a complex electrical scheme based on the optical requirements of the LHC machine. Along the 27-km long LHC machine, 440 interconnection boxes are installed and will allow the powering of the correctors by means of a 42-wires auxiliary bus-bar cable, of which the corresponding wires have to be routed to the SSS from the interconnection box. Stringent requirements in terms of volume, mechanical resistance, electrical conductance and insulation, reliability, and respect of the electrical schematics apply during the assembly and splicing of the junctions inside the line-N box. The activities and their sequence, aiming at ensuring the fulfilment of these requirements are presented. The planned activities (assembly, ultrasonic welding, general and electrical inspection, and electrical qualification) and the interactions between the various intervening teams are described.  
 
WEPKF024 The Geometry of the LHC Main Dipole sextupole, site 1648
 
  • E.Y. Wildner, J. Beauquis, G. Gubello, M. La China, W. Scandale
    CERN, Geneva
  The 15 m long main dipole of the Large Hadron Collider has a curvature following the beam trajectory with the aim to minimize the necessary coil aperture. To avoid feed-down effects and mechanical aperture restrictions strong constraints have to be imposed on the construction of the magnet in terms of tolerances and stability of the cold mass during transport, cryostating, cold tests and installation in the LHC tunnel. In this paper we show the behaviour of the shape of the magnet using available measurements taken at different stages of construction and assembly. In particular we discuss the evolution of the sagitta and the positioning of the corrector magnets that are used to compensate the multipole field errors. We propose alignment procedures to be used in case magnets are out of tolerance after transport and cold tests. The twist of the magnet and its relation to the field angle will also be discussed.  
 
WEPKF027 R&D Vacuum Issues of the Future GSI Accelerator Facilities ion, vacuum, target, synchrotron 1657
 
  • H.R. Sprenger, M.C. Bellachioma, M. Bender, H. Kollmus, A. Kraemer, J. Kurdal, P.J. Spiller
    GSI, Darmstadt
  The new GSI accelerator facilities are planned to deliver heavy ion beams of increased energy and highest intensity. Whereas the energy is planned to be increased roughly by a factor of 10, the ion beam intensities are planned to be enlarged by three orders of magnitude. To achieve highest beam intensities, medium charged heavy ions (e.g. U28+) are accelerated. Since the ionization cross sections for these ions are comparably high, a UHV-accelerator system with a base pressure in the low 10-12mbar regime is required, even under the influence of ion beam loss induced desorption processes. An intensive program was started to upgrade the UHV system of the existing synchrotron SIS18 (bakeable) and to design and lay out the UHV systems of the future synchrotron SIS100 and SIS300 (mainly cryogenic). The strategy of this program includes basic research on the physics of the ion induced desorption effects as well as technical developments, design and prototyping on bakeable UHV components (vacuum chambers, diagnostics, bakeout-control, pumping speed), collimator for controlled ion beam loss, NEG coating and cryogenic vacuum components.  
 
WEPKF029 The Vacuum System of the Australian Synchrotron vacuum, synchrotron, storage-ring, synchrotron-radiation 1663
 
  • E. Huttel
    FZK-ISS-ANKA, Karlsruhe
  • B. Barg, A. Jackson, B. Mountford
    ASP, Melbourne
  A 3 GeV Synchrotron Radiation Source is being built in Melbourne, Australia. The storage ring has a circumference of 216 m and has a 14 fold DBA structure. The vacuum chambers of the storage ring will be made from stainless steel. They consist of a beam chamber (width 70, height 32mm ) connected to an ante chamber, where lumped absorbers and lumped ion pumps are installed. No distributed absorber and pumps are foreseen. The nominal pumping speed of the complete ring is 31 000 l/s. The vacuum chamber of an achromat will be baked ex situ and installed under vacuum. The design of the chamber, the pump configuration and the expected vacuum behaviour will be presented.  
 
WEPKF030 The Storage Ring Magnets of the Australian Synchrotron quadrupole, sextupole, storage-ring, focusing 1666
 
  • E. Huttel
    FZK-ISS-ANKA, Karlsruhe
  • B. Barg, A. Jackson, G. LeBlanc
    ASP, Melbourne
  • J. Tanabe
    SLAC, Menlo Park, California
  A 3 GeV Synchrotron Radiation Source is being built up in Melbourne, Australia. The storage ring has a circumference of 216 m and has a 14 fold DBA structure. For the storage ring the following magnets are required: 28 gradient dipoles, with B = 1.3 T, B’ = 3.35 T/m, 56 quadrupoles with a gradient of B’ = 18 T/m, 28 quadrupoles with a gradient of 9 T/m, 56 sextupoles with d2B/dr2 = 320 T/m2 and 42 with 150 T/m2. The design of pole faces was done by scaling the SPEAR III pole face to the required gap and bore of the ASP storage ring magnets. The sextupoles will be equipped with coils for horizontal and vertical correction and for a skew quadrupole. The design of the magnets and the calculated magnetic properties will be presented.  
 
WEPKF031 Magnetic Field Correction of the Bending Magnets of the 1.5 GeV HDSM microtron, linac, electron, coupling 1669
 
  • F. Hagenbuck, P. Jennewein, K.-H. Kaiser
    IKP, Mainz
  Beam dynamics of the Harmonic Double Sided Microtron (HDSM), the fourth stage of MAMI, require a very precise magnetic field in the inhomogeneous bending magnets. By measuring the vertical field component By in and on both sides of the midplane, the complete set of field components Bx, By, Bz was determined in the whole gap. Starting from this the asymmetric pole surface current distribution necessary to correct both symmetric and antisymmetric field errors was calculated. However, tracking calculations showed that the influence of skewed field components on the beam deflection are negligible, so that symmetric field corrections are sufficient. Nevertheless, in order to demonstrate the functioning, a set of asymmetric correction coils was built and successfully tested. The symmetric coils are designed to reduce field errors below 2*10-4. Deflection errors in the fringe field region near the magnet corners, which cannot be corrected by surface currents, will be compensated by vertical iron shims in combination with small dipoles on each beam pipe.  
 
WEPKF032 A General Method for 2d Magnet Pole Design synchrotron, quadrupole, storage-ring, cyclotron 1672
 
  • Z. Martí, J. Campmany, M. Traveria
    LLS, Bellaterra (Cerdanyola del Vallès)
  Accurate conventional combined magnets working in saturation are currently required to fulfil the increasing demands on low emittance accelerators with long straight sections required by the newest Synchrotron Light Sources. This fact yields stringent requirements on pole profile design, manufacture and characterization. The aim of this poster is to present a general method for designing two-dimensional pole profiles. To this end, we have set up a procedure with which to select an optimum pole profile in 2D without the constraint of relying on a set of initial assumptions, not only a particular set of initial parameters but even a particular pole profile model. Moreover, we have developed a group of codes that can be compiled and run on MS-DOS or UNIX which use POISSON or OPERA-2d codes. This procedure also includes the evaluation of the sensitivity of the final pole profile to geometrical and current intensity errors for tolerance estimation, a big requirement in this context. In order to test the feasibility of this method, we have applied it to the case of the 1.2 T combined magnet of the new synchrotron to be built nearby Barcelona.  
 
WEPKF033 Application of Finite Volume Integral Approach to Computing of 3D Magnetic Fields Created by Distributed Iron-dominated Electromagnet Structures undulator, insertion-device, insertion, permanent-magnet 1675
 
  • O.V. Chubar, C. Benabderrahmane, O. Marcouillé, F. Marteau
    SOLEIL, Gif-sur-Yvette
  • J. Chavanne, P. Elleaume
    ESRF, Grenoble
  Iron-dominated electromagnet structures are traditionally considered as a domain of applications of the Finite-Element Method (FEM). FEM computer codes provide high accuracy for "close circuit" type geometries, however they are much less efficient for distributed geometries consisting of many spatially separated magnets interacting with each other. Examples of such geometries related to particle accelerators are insertion devices, quadrupole and sextupole magnets located close to each other, magnets with combined functions. Application of the finite volume integral approach implemented in the Radia 3D magnetostatics code to solving such geometries is described. In this approach, space around individual magnets does not require any meshing. An adaptive segmentation of iron parts, with the segmenting planes being roughly perpendicular or parallel to the expected directions of magnetic flux lines, minimizes dramatically the necessary CPU and memory resources. If a geometry is, nevertheless, too big for its complete interaction matrix to fit into memory, a special scheme of relaxation "by parts" can be applied. The results of calculations made for the SOLEIL electromagnet undulator HU256 will be presented.  
 
WEPKF057 Design and Study of a Superferric Model Dipole and Quadrupole Magnets for the GSI Fast-pulsed Synchrotron SIS100. quadrupole, synchrotron, insertion, ion 1735
 
  • A.D. Kovalenko, N.N. Agapov, V. Bartenev, A. Donyagin, I. Eliseeva, H.G. Khodzhibagiyan, G.L. Kuznetsov, A. Smirnov, M.A. Voevodin
    JINR, Dubna, Moscow Region
  • E. Fischer, G. Moritz
    GSI, Darmstadt
  New experimental results from the investigation of a model superferric Nuclotron-type dipole and quadrupole magnets are presented. The magnets operate at pulse repetition rate f = 1Hz, providing peak magnetic field B = 2 T and the field gradient G = 34 T/m in the dipoles and quadrupoles respectively. The superconducting coil is made from a hollow multi-filamentary NbTi cable cooled with two phase helium flow. Different possibilities were investigated to reduce AC power losses in the case of a cold iron yoke (T=4.5K). The achieved results are discussed. The value of 9W/m has been obtained for dipole magnet with the yoke at T=50K. The first 50 K yoke quadrupole was designed and tested. Other problems, connected with the magnetic field quality, mechanical and cryogenic stability of the magnets under SIS100 operating conditions are also discussed.  
 
WEPKF060 Bending Magnets for the SAGA Storage Ring: Manufacturing and Magnetic Measurements storage-ring, multipole, focusing, electron 1738
 
  • S.V. Sinyatkin, I.N. Churkin, O.B. Kiselev, V. Korchuganov, A.B. Ogurtsov, A.V. Philipchenko, L.M. Schegolev, K.K. Schreiner, A.G. Steshov, V. Ushakov
    BINP SB RAS, Novosibirsk
  • M. Kuroda, Y. Tsuchida
    Saga Synchrotron Light Source, Industry Promotion Division, Saga City
  The paper describes the design, the manufacture and the magnetic measurement of the dipole bending magnets (BM) for SR Source storage ring (prefecture SAGA, Japan) carried out in BINP, Novosibirsk, Russia. The requirement was to create the laminated C-shape BMs with the 3.2 m radius and parallel edges. The magnetic field homogeneity must be not worth than ±2? 10-4 inside the working area: H = 30+40mm and V = ±20mm at 0.26T (250 MeV), and H = ± 28mm and V = ±20mm at 1.46 T (1.4GeV). The BMs were designed on the basis of the 2-D 3-D modeling taking into account the laminated core. The BMs yokes were produced with the help of the technology of the high temperature gluing. The computer simulations are in a good agreement with the magnetic measurements. The main parameters of the magnetic fields satisfy to the requirements and are presented. The features of the design, manufacturing and precise magnetic measurements of SAGA BMs are discussed.  
 
WEPKF061 Study of Electrical Steel Magnetic Properties for Fast Cycling Magnets of SIS100 and SIS300 Rings superconducting-magnet, induction, power-supply, pick-up 1741
 
  • I. Bogdanov, S. Kozub, A. Shcherbakov, L. Tkachenko
    IHEP Protvino, Protvino, Moscow Region
  • E. Fischer, F. Klos, G. Moritz, C. Muehle
    GSI, Darmstadt
  The operation conditions of yoke steels in superconducting magnets of the SIS100 and SIS300 are at 4.2 K and unipolar cycles with high magnetic induction. The results of measurements of different classes of electrical steels, both isotropic and anisotropic, in the operating conditions of superconducting dipoles are presented. The measurements are carried out on ring samples in quasistatic mode. Dependence of B(H) as well as values of Hc and hysteresis losses in bipolar and unipolar cycles are determined from hysteresis loops at different temperatures. The anisotropy of steels is measured at room temperature on the strip samples, cut along the rolling direction and across one. The comparison of results on ring and strip samples is carried out. The results of calculations of hysteresis and eddy current losses in iron yoke of fast-cycling dipole for the SIS300 are presented. The recommendations on choice of grade steels for fast cycle superconducting magnets are given.  
 
WEPKF062 Study of the Quench Process in Fast-cycling Dipole for the SIS300 Ring power-supply, simulation, superconducting-magnet, dumping 1744
 
  • I. Bogdanov, S. Kozub, A. Shcherbakov, L. Tkachenko, S. Zintchenko, V. Zubko
    IHEP Protvino, Protvino, Moscow Region
  • J. Kaugerts, G. Moritz
    GSI, Darmstadt
  The results of numerical quench process simulation in the coil of superconducting dipole with magnetic field of 6 T and 100-mm aperture for high-energy ion and proton synchrotron facility SIS300 are presented. The peculiarities of quench process developed in dipole are discussed for several variants of quench conditions. The coil quench behavior determines the features, scopes, and limitations in possible quench protection scheme. Main design characteristics of the preferable protection system are considered.  
 
WEPKF063 Comparison of Three Designs of Wide Aperture Dipole for SIS300 Ring magnet-design 1747
 
  • L. Tkachenko, I. Bogdanov, S. Kozub, A. Shcherbakov, I. Slabodchikov, V. Sytnik, V. Zubko
    IHEP Protvino, Protvino, Moscow Region
  • J. Kaugerts, G. Moritz
    GSI, Darmstadt
  The GSI Fast-Pulsed Synchrotron Project is found now under development. The last stage of this machine is the SIS300 ring, which will use superconducting dipoles with 100-mm aperture, 6-T magnetic field amplitude and 1-T/s field ramp rate. This dipole has to posses minimal heat losses both in the coil and in the iron yoke. This article considers three designs of such dipole. The main distinction of these designs is the different thickness of stainless steel collars, which are supported the coil. The collars in the first design hold all forces arisen in the magnet. The second design needs collars only for assembly of the coil and cooling down of the magnet. An iron yoke in this design will withstand ponderomotive forces. The third design has no collars and the iron yoke will hold all forces, including preload, forces originated during cooling down and ponderomotive forces. The different mechanical, magnetic and thermal characteristics are presented and comparative analysis of these designs is carried out.  
 
WEPKF064 Methods for Reducing Cable Losses in Fast-Cycling Dipoles for the SIS300 Ring coupling, simulation, cryogenics 1750
 
  • L. Tkachenko, I. Bogdanov, S. Kozub, A. Shcherbakov, I. Slabodchikov, V. Zubko
    IHEP Protvino, Protvino, Moscow Region
  • G. Moritz
    GSI, Darmstadt
  • V. Sytnikov
    RCSRDI, Moscow
  A new synchrotron facility is being designed for the acceleration of high intensity and high-energy ion and proton beams at GSI, Darmstadt. The main magnetic elements of the second stage (SIS300) are superconducting dipoles with 100 mm aperture, 6-T magnetic field amplitude, and 1 T/s field ramp rate. The main requirements for these magnets, in addition to high field quality, are minimal heat losses, both in the coil and in the iron yoke, at an acceptable temperature margin. An increase of the temperature margin can be achieved by increasing the volume of superconductor in the cable. However, increasing the number of strands in the cable results in a growth of the cable width. Since coupling losses in the cable are proportional to the fourth power of cable width, these losses rise dramatically. This presentation considers and analyses different ways of reducing these cable heat losses. The calculated results of heat losses for different geometries, based on various cable designs, as well as the parameters of optimal cable designs, based on computer simulations, are presented.  
 
WEPKF065 Study of Thermal Stability and Quench Process of HTS Dipole superconductivity, simulation, superconducting-magnet, magnet-design 1753
 
  • V. Zubko, I. Bogdanov, S. Kozub, A. Shcherbakov, L. Tkachenko
    IHEP Protvino, Protvino, Moscow Region
  The dipole with a coil made from HTS composite on a Bi2223 basis and placed in the ferromagnetic yoke has been developed and produced in IHEP. A designed magnetic field of the dipole in 20-mm aperture is 1 T at temperature of liquid nitrogen. The numerical analysis of factors, having influence on thermal stability of the magnet, as well as the computer simulations of dipole heating during quench was carried out. An anisotropy of voltage-current characteristics of HTS tapes in a magnetic field is taken into account in calculations of quench process. The measured results of voltage-current characteristics during powering and quench of the coil are in a good agreement with the numerical calculations  
 
WEPKF066 Stability of Fast-cycling Dipole for SIS300 Ring coupling, superconducting-magnet, simulation, lattice 1756
 
  • V. Zubko, I. Bogdanov, S. Kozub, A. Shcherbakov, L. Tkachenko, S. Zintchenko
    IHEP Protvino, Protvino, Moscow Region
  • M. Kauschke, G. Moritz
    GSI, Darmstadt
  Funding AgencyShould not exceed 200 charactersFootnotesFootnotes: Not exceeding 200 chaThe main requirement to the superconducting dipole with 100-mm aperture, 6-T magnetic field amplitude and 1-T/s field ramp rate for the SIS300 accelerator, developed in the GSI, Darmstadt, is a stability of the magnet influenced by various heat releases arising during operation mode. The computer simulation of the heating of superconducting dipoles and cooling helium during the SIS300 operating cycle was carried out. The analysis of stability is based on the numerical solution of the heat balance equation in the coil and in a single?phase helium flow. Temperature margin of the superconducting dipole during the SIS300 operating cycle was calculated. Possible ways to increase the temperature margin are discussed.  
 
WEPKF074 Magnetic Field Measurements of the LHC Inner Triplet Quadrupoles Produced at Fermilab quadrupole, alignment, interaction-region, injection 1777
 
  • G. Velev, R. Bossert, R. Carcagno, J. DiMarco, S. Feher, H. Glass, V. Kashikhin, J.S. Kerby, M. Lamm, T. Nicol, L. Nobrega, D. Orris, T. Page, T. Peterson, R. Rabehl, P. Schlabach, J. Strait, C. Sylvester, M. Tartaglia, J. Tompkins, A.V. Zlobin
    Fermilab, Batavia, Illinois
  Production of 18 superconducting low-beta quadrupoles (MQXB) for the LHC is well advanced. These 5.5 m long magnets are designed to operate at 1.9 K with a peak field gradient of 215 T/m in the 70 mm apertures. Two MQXB cold masses with a dipole orbit corrector between them form a single cryogenic unit (LQXB) which is the Q2 optical element of the final focus triplets in the LHC interaction regions. A program of magnetic field quality and alignment measurements of the cold masses are performed at room temperature during magnet fabrication and LQXB assembly as well as at superfluid helium temperature. Results of these measurements are summarized in this paper.  
 
WEPKF075 Measurements of Sextupole Decay and Snapback in Tevatron Dipole Magnets injection, sextupole, acceleration, superconductivity 1780
 
  • G. Velev, J. Annala, P. Bauer, J. DiMarco, H. Glass, R. Hanft, R. Kephart, M. Lamm, M. Martens, P. Schlabach, C. Sylvester, M. Tartaglia, J. Tompkins
    Fermilab, Batavia, Illinois
  To optimize the performance of the Fermilab Tevatron accelerator in Collider Run II, we have undertaken a systematic study of the drift and subsequent snapback of dipole magnet harmonics. The study has mostly focused on the dynamic behavior of the normal sextupole component, b2, as measured in a sample of spare Tevatron dipoles at the Fermilab Magnet Test Facility. We measured the dependence of the decay amplitude and the snapback time on Tevatron ramp parameters and magnet operational history. A series of beam studies was also performed [*]. This paper summarizes the magnetic measurement results and describes an optimization of the b2 correction scheme which is derived from these measurements.

* P.Bauer et al. These proceedings.

 
 
WEPKF086 A Model for Determining Dipole, Quadrupole and Combined Function Magnet Costs quadrupole, superconducting-magnet, linac, diagnostics 1807
 
  • R. Palmer, J.S. Berg
    BNL, Upton, Long Island, New York
  One of the most important considerations in designing large accelerators is cost. Magnet costs are a significant component of that. This paper describes a model for estimating magnet costs. The reasoning behind the cost model is explained, and the parameters of the model are chosen so as to correctly give the costs for existing magnets.  
 
WEPLT005 Building Truncated Taylor Maps with Mathematica and Applications to FFAG closed-orbit, quadrupole, lattice, focusing 1822
 
  • D. Kaltchev
    TRIUMF, Vancouver
  Lie algebra tools coded directly in Mathematica have been used to compute the off-momentum closed orbit, orbit length and horizontal tune of Fixed Field Alternating Gradient (FFAG) lattices proposed for muon acceleration. The sample FFAG cell considered consists of quadrupoles and alternating gradient magnets. A high order Taylor map is needed, valid over a wide momentum range. We describe the algorithm and Mathematica operators needed to create and concatenate individual element maps (presented as Lie exponential operators) and compare our results with those obtained with a high-order differential algebra code – COSY. The speed achieved is inferior to the differential algebra method.  
 
WEPLT010 Design and Fabrication of Superfluid Helium Heat Exchanger Tubes for the LHC Superconducting Magnets vacuum, electron, quadrupole, site 1837
 
  • F.F. Bertinelli, G. Favre, L.M.A. Ferreira, S.J. Mathot, L. Rossi, F. Savary
    CERN, Geneva
  • E. Boter
    CELLS, Bellaterra (Cerdanyola del Vallès)
  The dipole and quadrupole cold masses of the LHC machine require about 1700 heat exchanger tubes (HET). In operation the HET carries a two-phase flow of superfluid helium at sub-atmospheric pressure. The HET consists of an oxygen-free, seamless copper tube equipped with stainless steel ends. After an evaluation of different design alternatives, a design based on the technologies of vacuum brazing and electron beam welding has been adopted. Presence of these multiple technologies at CERN and synergies with the cleaning, handling and transport of other 15-metre components for LHC, motivated CERN to undertake this series fabrication on site. The raw copper tubes are procured in Industry, presenting challenging issues of geometric precision. Organisation of the HET fabrication includes cryomeasurements to validate cleaning procedures, characterization of welding procedures, buckling design by FEA and experimental verification, quality control during series production. The series fabrication of these long, multi-technological components is continuing successfully, respecting the project?s tight budgetary and planning constraints.  
 
WEPLT014 Mechanical Dynamic Load of the LHC Arc Cryo-magnets during the LHC Installation acceleration, monitoring, quadrupole, simulation 1849
 
  • O. Capatina, K. Artoos, G. Huet, B. Nicquevert
    CERN, Geneva
  About 1700 LHC main superconducting dipoles and quadrupoles will have to be transported and handled between the assembly, the magnet measurements and the storage that precedes the final installation in the LHC tunnel. To ensure the required mechanic and geometric integrity of the cryo-magnets, transport specifications and allowed acceleration loads were defined after detailed dynamic analysis. A large number of cryo-magnets are now arriving at CERN on a regular basis. The logistics for the handling and transport are monitored with tri-axial acceleration monitoring devices that are installed on each cryo-magnet. Measurements are made to commission new equipment like overhead cranes, tunnel transport and handling devices to guarantee that the defined acceleration limits are respected. The results from the acceleration monitoring that are stored in the same quality assurance system as the cryo-magnets allowed to give a first idea of the level of the mechanical dynamic load on each magnet throughout the logistics chain and were used to detect details such as out-of-specification accelerations that needed improvement.  
 
WEPLT017 Numerical Studies of the Impact of the Separation Dipoles and Insertion Quadrupoles Field Quality on the Dynamic Aperture of the CERN LHC quadrupole, insertion, injection, multipole 1858
 
  • M. Giovannozzi, O.S. Brüning, S.D. Fartoukh, T. Risselada, F. Schmidt
    CERN, Geneva
  A wide range of magnets, both warm and superconducting, will be used in the LHC. In addition to main dipoles, quadrupoles are used to focus the beam in regular arcs. Special dipoles separate or merge the two beams in insertion regions. A few very strong superconducting quadrupoles squeeze the beam to achieve the required luminosity, while warm quadrupoles are used in the collimation insertions. At injection the main dipoles largely dominate beam dynamics, but contributions from smaller classes of magnets should not be neglected. Peculiar optical configurations may dramatically enhance beam dynamics effects of few magnetic elements. This paper will focus on the effect of insertion quadrupoles, e.g. wide-aperture, and warm quadrupoles, as well as separation dipoles presenting on the dynamic aperture of the LHC machine.  
 
WEPLT021 Towards an Ontology Based Search Mechanism for the EDMS at CERN collider, hadron 1870
 
  • A. Jimeno Yepes, B. Rousseau
    CERN, Geneva
  CERN is building its new accelerator, the LHC. All the data flow generated during its lifecycle is stored in the EDMS (Engineering Data Management System) developed at CERN. For such a system it is compulsory to have a performant search mechanism to guarantee that the involved people gets the data at the required time. Due to the size of the collection and the diversity of people, organizations, divisions . To overcome this problem, an approach based on a hand-crafted domain specific ontology has been tested in order to improve the information retrieval task within the technical documentation for the LHC Equipment Catalog. The experiments have shown that using the ontology an improvement on the base line has been produced and encorages IE techniques to refine the base ontology.  
 
WEPLT022 Transport and Installation of Cryo-magnets in CERN's Large Hadron Collider Tunnel acceleration, factory, collider, hadron 1873
 
  • K. Kershaw, K. Artoos, O. Capatina, A.Y. Coin, M. Gielen, C. Hauviller
    CERN, Geneva
  The arcs of the Large Hadron Collider (LHC) will contain around 1700 main superconducting dipoles and quadrupoles. The long and heavy magnets are supported on fragile composite support posts inside a cryostat to reduce the heat in-leak to the magnets' super fluid helium bath. The presence of fragile components and the need to avoid geometry changes make the cryo-magnets very difficult to handle and transport. The transport and installation of the LHC cryo-magnets in the LEP tunnels originally designed for smaller, lighter LEP magnets has required development of completely new handling solutions. The paper explains the constraints imposed by the cryo-magnet characteristics, the existing tunnel infrastructure and schedule considerations. The development and realisation of transport and handling solutions are described, starting from conceptual design, through manufacture and testing to the installation of the first cryo-magnet. Integration studies to verify and reserve space needed for manoeuvre and the preparation of the infrastructure for transport and installation operations are also presented. The paper includes conclusions and some of the lessons learned.  
 
WEPLT023 Transverse Resistive Wall Impedance and Wake Function with Inductive Bypass impedance, vacuum, simulation, betatron 1876
 
  • A. Koschik, F. Caspers, E. Métral, L. Vos
    CERN, Geneva
  • B. Zotter
    Honorary CERN Staff Member, Grand-Saconnex
  We analyze the resistive wall impedance with an "inductive bypass" due to alternate current paths in the outer vacuum chamber proper. Also the corresponding wake function has been obtained which is useful for the simulation of beam stability in the time domain. Results are presented for the LHC.  
 
WEPLT024 Scheduling the Installation of the LHC Injection Lines injection, radiation, quadrupole, vacuum 1879
 
  • L. Lari, H. Gaillard, V. Mertens
    CERN, Geneva
  The installation of the two LHC injection lines has to fit within tight milestones of the LHC project and of CERN?s accelerator activity in general. For instance, the transfer line from the SPS to LHC point 8 (to fill the anti-clockwise LHC ring) should be tested with beam before the end of 2004 since the SPS will not run in 2005. It will first serve during the LHC sector test in 2006. Time constraints are also very strong on the installation of the transfer line from the SPS to LHC point 2 (for the clockwise LHC ring): its tunnel is the sole access for the LHC cryo-magnets and a large part of the beam line can only be installed once practically all LHC cryo-magnets are in place. Of course, the line must be operational when the LHC starts. This paper presents the various constraints and how they are taken into account for the logistics and installation planning of the LHC injection lines.  
 
WEPLT027 Connection Cryostats for LHC Dispersion Suppressors alignment, vacuum, shielding, radiation 1888
 
  • S. Marque, T. Colombet, M. Genet, B. Skoczen
    CERN, Geneva
  The lattice of the Large Hadron Collider (LHC) being built at CERN is based on 8 standard arcs of 2.8 km length. Each arc is bounded on either side by Dispersion Suppressors connected to the arc by connection cryostats providing 15m long drift spaces. As for a dipole magnet, the connection cryostat provides a continuity of beam and insulation vacuum, electrical powering, cryogenic circuits, thermal and radiation shielding. In total 16 modules will be constructed. The stringent functional specification has led to various analyses. Among them, a light mechanical structure has been developed to obtain a stiffness comparable to a dipole magnet, for alignment purpose. Thermal studies, included λ front propagation, have been performed to ensure a cooling time down to 1.9K within the time budget. A special cooling scheme around the beam tubes has been chosen to cope with heat loads produced during operation. We will report on the general design of the module and on the manufacturing process adopted to guarantee the tight alignment of the beam tubes once the module installed in the machine. Special emphasis will be given on thermo-mechanical analysis, λ front propagation and on beam-tubes cooling scheme.  
 
WEPLT062 Wakefield Calculations for TTF-II impedance, linac, electromagnetic-fields, diagnostics 1987
 
  • I. Zagorodnov, T. Weiland
    TEMF, Darmstadt
  • M. Dohlus
    DESY, Hamburg
  In this paper we estimate long- and short-range wake functions for new elements to be used in TESLA Test Facility (TTF) - II. The wake potentials of the LOLA-IV structure and the 3rd harmonic section are calculated numerically for very short bunches and analytical approximations for wake functions in short and long ranges are obtained by fitting procedures based on analytical estimations. The numerical results are obtained with code ECHO for high relativistic Gaussian bunches with RMS deviation up to 0.015 mm. The calculations are carried out for the complete structures (including bellows, rounding of the irises and the different end cell geometries) supplied with ingoing and outgoing pipes. The low frequency spectra of the wake potentials is calculated using the Prony-Pisarenko method.  
 
WEPLT075 Status Report on the Beam Dynamics Developments for the SPIRAL 2 Project linac, quadrupole, ion, rfq 2023
 
  • R. Duperrier, D. Uriot
    CEA/DSM/DAPNIA, Gif-sur-Yvette
  • P. Bertrand, F. Varenne
    GANIL, Caen
  • J.-L. Biarrotte
    IPN, Orsay
  • J.-M. De Conto
    ISN, Grenoble
  • E. Froidefond
    LPSC, Grenoble
  • N. Pichoff
    CEA/DAM, Bruyères-le-Châtel
  The driver for the SPIRAL 2 project aims to accelerate a 5 mA D+ beam up to 20 A.MeV and a 1 mA beam for Q/A=1/3 up to 14.5 A.MeV. It operates in a continuous wave regime (cw), is designed for a maximum efficiency in the transmission of intense beams. Recent studies have led to change the reference design. The current design consists in an injector (ECR sources + LEBTs with the possibility to inject from several sources + a Radio Frequency Quadrupole) followed by a superconducting section based on an array of independently phased cavities where the transverse focalisation is performed by warm quadrupoles. This paper presents the beam dynamics studies associated to these new choices, the HEBT design and the fast chopping in the MEBT.  
 
WEPLT081 Numerical Evaluation of Geometric Impedance for SOLEIL impedance, vacuum, collective-effects, coupling 2041
 
  • R. Nagaoka
    SOLEIL, Gif-sur-Yvette
  Good knowledge and minimisation of the coupling impedance is of great importance for the future storage ring SOLEIL, envisaged to operate in both high current multibunch and high bunch intensity modes. Three-dimensional computations of the geometric impedance of various vacuum chamber components have been made with the code GdfidL, which allows parallel processing with a cluster of computers, rendering the computation with a small mesh size and a long integrated distance feasible. Many treated objects were found to exhibit large asymmetry in the two transverse planes, as well as resonant behaviour at high frequencies, both of which being non-straightforward to follow with the conventional analytical methods and 2-dimensional calculations. In particular, strongly trapped modes found for the flange impedance resulted in an unacceptably low vertical multibunch instability threshold, which urged a modification of the original cavity-like structure. The dependence of the dipole chamber impedance on the vertical slot size was followed to determine the optimal slot opening. Characteristics of the total broadband impedance obtained, along with relative contributions are also presented.  
 
WEPLT095 Modified Polarizabilities and Wall Impedance for Shielded Perforated Beam Pipes with General Shape impedance, coupling, vacuum, shielding 2074
 
  • S. Petracca, T. Demma
    U. Sannio, Benevento
  We extend previous results [*] concerning the modified polarizability of (electrically small) holes/slots in the wall of a circular beam liner surrounded by a coaxial circular tube to the most general liner and cold bore geometries. We obtain an equivalent wall impedance to describe the electromagnetic boundary conditions at perforated walls for this most general case, and use a general perturbational approach [**] for computing the pertinent longitudinal and transverse coupling impedances.

* R.L. Gluckstern, CERN SL 92-06 (AP), 1992, CERN SL 92-31 (AP), 1992; R.L. Gluckstern, B. Zotter, CERN SL 96-56 (AP), 1996.** S. Petracca, Part. Acc., {\bf 50}, 211, 1995; id., Phys. Rev. E, 60 (3),1999.

 
 
WEPLT114 Field Measurements in the AGS Warm Snake resonance, coupling, simulation, betatron 2116
 
  • J. Takano, M. Okamura
    RIKEN, Saitama
  • R. Alforque, R. Belkin, G. Ganetis, A.K. Jain, W.W. MacKay, T. Roser, R. Thomas, J. Tuozzolo
    BNL, Upton, Long Island, New York
  • T. Hattori
    RLNR, Tokyo
  A new warm snake has been produced for avoiding the transverse coupling resonance in the Alternating Gradient Synchrotron (AGS) at Brookhaven National Laboratory (BNL). The warm snake is the world?s first normal conducting helical dipole partial snake which has a double pitch structure to allow spin rotation with no net beam offset or deflection with a single magnet. The warm snake is 2.6m long, and has a field of 1.5 Tesla for a 9 degrees spin rotation. The pitches, current density, and shims were optimized by using OPERA_3D / TOSCA. The magnetic field harmonics have been measured using a system of 51 mm long, 34 mm radius tangential coils. The axial variation of the dipole field angle agrees very well with the calculations, indicating no significant construction errors. However, the measured transfer function shows a discrepancy of 4% which may be caused by BH-curve differences, deformation of the iron and packing factor of the laminations. To correct the beam trajectory the operating current was adjusted and shims were installed on the end plates. These optimization studies, and comparison with measurements, will be shown.  
 
WEPLT148 Dynamical Map for Combined Function Magnets with Solenoid, Dipole and Quadrupole Fields quadrupole, interaction-region, lattice, closed-orbit 2185
 
  • A. Wolski, M. Venturini
    LBNL, Berkeley, California
  The interaction regions of colliders invariably include strong solenoid fields. Where quadrupoles and dipoles are embedded in the solenoid, the beam dynamics in the combined fields can be complicated to model using the traditional approach of interleaving slices of different fields. The complexity increases if the design trajectory is offset from the magnetic axis; this is the case, for example, in PEP-II. In this paper, we present maps for combined solenoid, dipole and quadrupole fields that provide a much simpler alternative to the traditional approach, and show that the deviation of the design trajectory from the magnetic axis can be handled in a straightforward manner. We illustrate the techniques presented by reference to the PEP-II interaction region.  
 
WEPLT167 A Cure for Multipass Beam Breakup in Recirculating Linacs feedback, linac, recirculation, simulation 2218
 
  • B.C. Yunn
    Jefferson Lab, Newport News, Virginia
  We investigate a method to control the multipass dipole beam breakup instability in a recirculating linac including energy recovery. Effectiveness of an external feedback system for such a goal is shown clearly in a simplified model. We also verify the theoretical result with a simulation study.  
 
WEPLT181 Measurement of Multipole Strengths from RHIC BPM Data multipole, resonance, lattice, betatron 2242
 
  • R. Tomas, M. Bai, W. Fischer
    BNL, Upton, Long Island, New York
  • F. Franchi, G. Rumolo
    GSI, Darmstadt
  Recently resonance driving terms were successfully measured in the CERN SPS and the BNL RHIC from the Fourier spectrum of BPM data. Based on these measurements a new analysis has been derived to extract multipole strengths.In this paper we present experimental measurements of sextupolar and skew quadrupolar strengths carried out at RHIC. Also discussed is the possibility of a non-destructive measurement using an AC dipole.  
 
WEPLT182 Non-linear Modeling of the RHIC Interaction Regions multipole, quadrupole, interaction-region, lattice 2245
 
  • R. Tomas, W. Fischer, A.K. Jain, Y. Luo, F.C. Pilat
    BNL, Upton, Long Island, New York
  For RHIC's collision lattices the dominant sources of transverse non-linearities are located in the interaction regions. The field quality is available for most of the magnets in the interaction regions from the magnetic measurements, or from extrapolations of these measurements. We discuss the implementation of these measurements on the MADX models of the Blue and the Yellow rings and their impact on beam stability.  
 
WEPLT184 Preliminary Estimation of the Electron Cloud in RHIC electron, proton, vacuum, simulation 2251
 
  • L. Wang, P. He, J. Wei
    BNL, Upton, Long Island, New York
  Electron cloud due to beam induce multipacting is suspected to be one of the source of pressure rises in RHIC. This paper estimates the possible electron cloud in RHIC. Various parameters related electron multipacting has been investigated.  
 
THPKF005 The Australian Synchrotron Project Storage Ring and Injection System Overview storage-ring, synchrotron, lattice, injection 2263
 
  • G. LeBlanc, M.J. Boland, Y.E. Tan
    ASP, Melbourne
  This paper describes the Australian Synchrotron storage ring. The storage ring is a 3 GeV machine with 14 cells and a circumference of 216 m. The unit cell is based on a Double Bend Achromat (DBA) structure. The design of the magnet lattice and the results of simulations pertaining to the storage ring performance are presented.  
 
THPKF007 Canadian Light Source Status and Commissioning Results quadrupole, injection, storage-ring, sextupole 2269
 
  • L. Dallin, R. Berg, J.C. Bergstrom, X. Shen, R.M. Silzer, J.M. Vogt, M.S. de Jong
    CLS, Saskatoon, Saskatchewan
  The storage ring for the Canadian Light Source (CLS) was completed in August 2003. By January 2004, after about shifts of commissioning beam currents of up to 25 mA with 0.7 hr lifetimes were achieved. Injection times for 25 mA are about 4 minutes. Commissioning activities include global orbit correction, measurement of machine parameters and beam-based diagnostices. Features of the CLS are a compact lattice (170 m) for a 2.9 GeV storage ring, high performance magnets and a superconducting RF cavity. By July, when beamlines become operational, currents up to 100 mA with 4 hour lifetimes are expected.  
 
THPKF013 Terahertz Diagnostics for the Femtosecond X-ray Source at BESSY laser, electron, radiation, undulator 2284
 
  • K. Holldack, S. Khan, R. Mitzner, T. Quast, G. Wustefeld
    BESSY GmbH, Berlin
  A longitudinal electron density modulation caused by femtoslicing in a storage ring is accompanied by a strong broad band coherent THz-light emission between 0.3 and 10 THz at certain synchrotron radiation emitting devices downstream of the interaction region. A technique to use the THz signal for the control of the overlap of laser and electron bunch using fast infrared bolometers is described. A new dedicated THz extraction port at a bending magnet as well as a spectroscopic setup based on a Martin Puplett spectrometer will be commissioned in May 2004 together with the new femtoslicing source at BESSY.

* A. Zholentz, M. Zoloterev, PRL 76/1996, 912** H.-J. Baecker et al., these proceedings

 
 
THPKF026 An Update on the SESAME Light Source lattice, quadrupole, sextupole, dynamic-aperture 2323
 
  • D. Einfeld
    CELLS, Bellaterra (Cerdanyola del Vallès)
  • M. Attal, G. Vignola
    SESAME, Amman
  During the past three years, the SESAME machine design has been optimised gradually taking into consideration the users demand in the Middle East region. The earlier design concept was to upgrade BESSY I to an energy of 1GeV, now SESAME is a 2.5GeV 3rd generation light source. A recent design review has recommended changing the machine lattice and layout to give greater flexibility for future upgrading and modification, the longest possible beam lines and the longest possible insertion devices, all of that with the limitation of the space available for the machine within the building. By shifting the machine by 6m from the centre of the building (in one direction) it was possible to increase the circumference of the storage ring by 3.6m into 128.4m and beam lines with lengths of 37.7m achieved, while the longest beam line in the old design was only 33.1m, this also increased the total length of the beam lines from 378.2m in the old design into 391.0m. An outline of these optimisations with their influence on the machine output is presented here. Furthermore the beam dynamics, the design of the main components of the storage ring and the first set of beam lines will be discussed.  
 
THPKF028 Upgrade of the Cryomodule Prototype before its Implementation in SOLEIL damping, storage-ring, impedance, synchrotron 2329
 
  • P. Bosland
    CEA/DSM, Gif-sur-Yvette
  • P. Bredy, S. Chel, G. Devanz
    CEA/DSM/DAPNIA, Gif-sur-Yvette
  • R. Losito
    CERN, Geneva
  • P. Marchand, K. Tavakoli, C. Thomas-Madec
    SOLEIL, Gif-sur-Yvette
  In the Storage Ring (SR) of the Synchrotron SOLEIL light source, two cryomodules will provide the maximum power of 600 kW required at the nominal energy of 2.75 GeV with the full beam current of 500 mA. A cryomodule prototype, housing two 352 MHz superconducting single-cell cavities with strong damping of the Higher Order Modes has been built and successfully tested in the ESRF storage ring. Even though the achieved performance (3 MV and 380 kW) does meet the SOLEIL requirement for the 1st year of operation, the cryomodule prototype will be upgraded before its installation in the SR early 2005. Modifications will be made on the internal cryogenic system, and also on the power and dipolar HOM couplers. That requires a complete disassembling and reassembling of the cryomodule, which is being carried out at CERN in the framework of collaboration between SOLEIL, CEA and CERN. Additional 3D RF calculations have been performed on the full SOLEIL RF structure in order to get a more detailed description of the dipolar modes damping and of the dipolar HOM couplers tuning. A second cryomodule, similar to the modified prototype, will be built and installed in the SR about one year later.  
 
THPKF030 Progress Report on the construction of SOLEIL storage-ring, quadrupole, booster, sextupole 2335
 
  • J.-M. Filhol
    SOLEIL, Gif-sur-Yvette
  The construction of SOLEIL, the French new SR facility, was launched in Jan 2002. The construction of the building has started in Aug 2003 and will enable a progressive beneficial occupancy from summer 2004 onwards. It is foreseen to achieve the commissioning of the 100 MeV Linac by the end of 2004, of the 3 Hz Booster in spring 2005 and of the 2.75 GeV Storage Ring by the end of 2005. All the major components have been ordered and some have already been delivered : the Booster and SR dipole magnets, the Linac sections and the Booster RF cavity. Some innovative development have been initiated specifically for SOLEIL: A 352 MHz SC RF cavity, solid state RF amplifiers for the Booster (40 kW) and the Ring (2 x 190 kW), BPM digital electronics, Al NEG coated vacuum vessels for all straight parts of the ring, or electromagnetic undulators to provide high brilliance polarized light in the VUV range. In order to provide the best performances, significant attention was paid at each design stage (optics, magnets, BPM, vacuum and RF systems,..), involving a large effort of simulation, using 6D tracking codes, or evaluating in detail the contribution of each component to the machine impedance.

on behalf of the SOLEIL project team

 
 
THPKF033 Prospects for Long-term Lattice Upgrade at the ESRF emittance, lattice, quadrupole, optics 2344
 
  • A. Ropert, P. Elleaume, L. Farvacque, Y. Papaphilippou, T. Perron
    ESRF, Grenoble
  Twelve years after commissioning, the ESRF delivers routinely X-rays of brilliance, a factor hundred higher than the design target, to 45 beamlines. Further long-term improvements to the storage ring performance concern the reduction of the horizontal emittance leading to an increase of the brilliance and/or the increase of the number of beamlines from insertion device source points. In this paper, we review the different scenarios that can be envisaged with keeping untouched the existing tunnel and beamlines. Among them, the concept of the Double DBA structure that combines the reduction of emittance (a factor of 8) and the increase of the number of straight sections (64 instead of 32) looks the most attractive. Some of the challenging issues of such a scheme (squeezed space between magnets, innovative combined function magnets of unprecedented small aperture, small dynamic aperture) will be discussed.  
 
THPKF068 An Advanced Light Source Proposed for the South Eastern USA lattice, emittance, quadrupole, brightness 2421
 
  • V.P. Suller, M.G. Fedurin, J. Hormes
    LSU/CAMD, Baton Rouge, Louisiana
  • D. Einfeld
    CELLS, Bellaterra (Cerdanyola del Vallès)
  • G. Vignola
    SESAME, Amman
  At this time CAMD, a 1.3 GeV second generation storage ring, is the only synchrotron radiation facility in the Southeastern USA. To cater for the increasing demand for synchrotron light in this region a study is being made for a new high performance source. In keeping with its role as a regional source, it must be economical to construct and operate yet provide high brightness beams from its Insertion Devices. These will need to span both the soft X-ray region (1-2 keV) and the X-ray region up to at least 13 keV. A high brightness 3rd generation source is described which exhibits a beam emittance less than 10 nm rads at an energy of 2.5 GeV. By using a lattice cell derived from the Theoretical Minimum Emittance type, this performance is achieved in a circumference of only approximately 160 m. The economical, yet flexible, lattice uses vertically focusing gradient in the dipoles. The lattice functions and other parameters are presented of both a 12 cell double bend design and a 10 cell triple bend. The 12 cell gives a horizontal emittance of 8.5 nm rads and the 10 cell 4.6 nm rads. The dynamical stability of both lattices is described together with the beam performance from the anticipated insertion devices. The current status of the proposal is explained.  
 
THPLT011 Longitudinal Loss Distribution along the LHC quadrupole, beam-losses, simulation, proton 2484
 
  • E.B. Holzer, B. Dehning
    CERN, Geneva
  For the design and calibration of the LHC beam loss monitoring system it is essential to have good predictions of the expected longitudinal loss distributions. For this purpose a complete and detailed aperture model of one LHC sector was compiled and included with the tracking code MAD. The positions of all beam pipe bellows are included in the model as well. Therefore, it allows investigating the loss pattern due to misalignment effects, in addition to steady beam losses (beam halo, beam-beam and beam-rest gas interactions) and orbit errors. Loss maps of halo particles originating from the betatron cleaning insertion have been created for proton and ion beams. The distribution of particle losses along the beam pipe is folded with the result of GEANT simulations of the shower development through the magnets and cold masses. They link the loss of a beam particle on the aperture to particle fluencies outside of the cryostats, where the beam loss monitors will be installed. These simulations determine the positioning of the loss monitors, the longitudinal distance one detector has to cover to achieve the required resolution as well as all calibration factors for the individual detectors. The model also serves to identify hot spots, which can limit the performance of the LHC.  
 
THPLT014 Coupler Structures for the LHC Beam-pipe Waveguide Mode Reflectometer coupling, higher-order-mode, vacuum, simulation 2493
 
  • T. Kroyer
    TU Vienna, Vienna
  • F. Caspers
    CERN, Geneva
  The LHC reflectometer will be used to detect and localize obstacles and other kinds of discontinuities in the LHC beam screen. An important part of this device is the RF coupler element, which provides the interface between the circular beam screen and the measurement equipment. Two different scenarios of operation are considered. The first option consists in carrying out measurements during assembly by directly branching a coupler to the end of the beam screen. The other one is a permanent installation to be used in situ requiring a different kind of coupler to keep the aperture free. The goal is to achieve a reasonably well-matched spurious mode-free excitation over a 25% bandwidth for the TM01 and the T·1011 mode, respectively. The fulfillment of the required features is severely complicated by space and material restrictions arising mainly from vacuum and installation constraints.  
 
THPLT016 LHC Orbit Feedback Tests at the SPS feedback, damping, closed-orbit, alignment 2499
 
  • J. Wenninger, J. Andersson, L.K. Jensen, R.O. Jones, M. Lamont, R. Steinhagen
    CERN, Geneva
  The real-time orbit feedback system foreseen for the LHC will be an essential component for reliable and safe machine operation. A test setup including a number of beam position monitors equipped with the LHC acquisition and readout system have been installed in the SPS ring to perform prototyping work on such an orbit feedback. A closed loop digital feedback was implemented and tested with LHC beams on the SPS during the 2003 machine run. The feedback loop was tested successfully at up to 100 Hz. The performance of the feedback loop and of its constituents will be described.  
 
THPLT028 High Precision Cavity Beam Position Monitor resonance, background, coupling, damping 2535
 
  • A. Liapine, H. Henke
    TET, Berlin
  A cavity beam position monitor is proposed for measuring the beam deflection in the TESLA energy spectrometer. The precision of the measurement has to be better than 1 micrometer. A slotted cavity is chosen as pick-up in order to reject the background signals and enhance the precision and the dynamic range of the monitor. The paper gives the design overview for two prototypes with operating frequencies of 1.5 GHz and 5.5 GHz, respectively. The results obtained on the test bench with direct conversion electronics are presented. A resolution of about 100 nm was achieved.  
 
THPLT033 The Heavy Ion Gantry of the HICAT-facility ion, beam-transport, heavy-ion, light-ion 2550
 
  • U. Weinrich, R. Fuchs
    GSI, Darmstadt
  • P. Emde
    MAN Technologie AG, Mainz
  The Heavy Ion Cancer Therapy Project HICAT at the University Hospital of Heidelberg is under construction. One unique feature of the treatment facility is the first heavy ion gantry in the world. The Gantry will allow the patient treatment with different ion species up to 430 MeV/u with full geometrical flexibility. This functionality has to be maintained for up to 300 000 rotations over the envisaged life cycle of 15 years. GSI has taken the responsibility to coordinate the design and construction of all the different required components. At the time of the conference the design will be finished and the construction started. The contribution will report on challenging construction items like the survey and alignment strategy, safety aspects, flexibility of the ion optics. In order to gain confidence on the principle a test bench with the last part of the gantry was already mounted in a fixed manner at GSI and beam measurements were performed. The results of these tests will also be reported.  
 
THPLT039 SVD Based Orbit Correction Incorporating Corrector Limitations at DELTA synchrotron, storage-ring, beam-losses, multipole 2568
 
  • M. Grewe, P. Hartmann, G. Schmidt, K. Wille
    DELTA, Dortmund
  Singular Value Decompostion (SVD) of the orbit response matrix has become an invaluable tool for orbit correction at storage rings worldwide. SVD based orbit correction has now been realised at DELTA, a 1.5 GeV electron storage ring. However, due to special orbit demands at DELTA and possibly by magnetic imperfections within the storage ring, we frequently have to face corrector limitations during the process of orbit correction. This work focuses on presenting an analytic algorithm on how to treat these limitations when seeking for an optimal SVD based orbit correction. In contrast to previously published methods, this approach is fairly easy to implement and does not afford an numerical solver. Concepts and results will be presented.  
 
THPLT057 An RF Deflector Design for 6d Phase Space Characterization of the Sparc Beam simulation, emittance, linac, quadrupole 2616
 
  • C. Vaccarezza, D. Alesini
    INFN/LNF, Frascati (Roma)
  • M. Amadei, P. Cascavola, A. Mostacci, L. Palumbo
    Rome University La Sapienza, Roma
  • J. Rosenzweig
    UCLA, Los Angeles, California
  The characterization of the longitudinal and transverse phase space of the beam provided by the SPARC photoinjector is a crucial point to establish the performance quality of the photoinjector itself. By means of an RF deflector and a dispersive system, the six dimensional beam phase space can be analyzed. A five cell SW aluminum prototype of the SPARC RF deflector has been realized and tested. We report in this paper the design issues together with the RF measurement results. The simulation results of the 6D phase space reconstruction of the SPARC beam are also presented.  
 
THPLT072 Magnet and RF Systems of Small Pulse Synchrotron for Radiotherapy quadrupole, synchrotron, proton, sextupole 2661
 
  • K. Endo, K. Egawa, Z. Fang, S. Yamanaka
    KEK, Ibaraki
  To cure the malignant tumor it is desirable to equalize the treatment level to everybody anywhere he lives in. Proton and/or carbon-ion therapy are now considered as a powerful remedy as the radiation dose can be easily concentrated to the target volume by utilizing the Bragg?s peak. If a small medical accelerator is developed at a reasonable cost, it has a big potential to promote the advanced medical treatment with the accelerator in every place. This pulse synchrotron aims to reduce the size of the accelerator by generating the high magnetic field in a short time which leads to a compact ring of high field magnets. Acceleration time is only 5 msec by using the discharge current of a capacitor bank as large as 200 kA at peak, almost equivalent to half sinusoidal 50 Hz. Part of the discharge current is branched to excite the quadrupole magnets to assure the tracking between the dipole and quadrupole fields. Pulsed power technique is also adopted to drive the RF power tubes. Both magnet and RF systems have been developed and being extensively studied. Technological sides of both systems will be treated in details as well as the computational beam behaviors in this pulse synchrotron.  
 
THPLT083 Femto-second Bunch Length Measurement using the RF Deflector electron, radiation, linac, coupling 2691
 
  • S. Kashiwagi, G. Isoyama, R. Kato, K.K. Kobayashi, Y. Matsui, A. Saeki, J. Yang
    ISIR, Osaka
  • H. Hayano, M. Kuriki
    KEK, Ibaraki
  • M. Kudo, M. Washio
    RISE, Tokyo
  The traveling wave type rf cavities operating in dipole mode (TM110-like) is being developed for a measurement of femto-second electron bunch. The femto-second electron bunch is used the pulse radiolysis experiments for the studies on radiation physics and chemistry with femto-second time resolution. The resonant frequency is tuned to the designing value 2856 MHz, which is accelerating frequency of a photo-injector linac at ISIR Osaka University. Further, we are planning to apply the design of the traveling wave rf deflector to a X-band crab cavities for the Global Linear Collider (GLC) project. In this conference, we will report the design of the traveling wave rf deflector and the result of cold test.  
 
THPLT154 Design of an X-ray Imaging System for the Low-Energy Ring of PEP-II photon, positron, vacuum, radiation 2819
 
  • A.S. Fisher, D. Arnett, H. De Staebler, S. Debarger, R.K. Jobe, D. Kharakh, D.J. McCormick, M. Petree, M.C. Ross, J. Seeman, B. Smith
    SLAC, Menlo Park, California
  • J. Albert, D. Hitlin
    CALTECH, Pasadena, California
  • J. Button-Shafer, J.A. Kadyk
    LBNL, Berkeley, California
  An x-ray beam-size monitor for positrons in the low-energy ring (LER) of the PEP-II B Factory at SLAC is being designed to accommodate the present 2-A, 3.1-GeV beam and anticipated currents of up to 4.7 A. The final photon stop of an arc will be rebuilt to pass dipole radiation through cooled apertures to optics 17 m from the source. Zone-plate imaging there can achieve a resolution of 6 microns, compared to 35 for a pinhole camera. Two multilayer x-ray mirrors precede the zone plate, limiting the bandwidth to 1%, in order to avoid chromatic blurring and protect the zone plate. Despite the narrow bandwidth, the zone plate?s larger diameter compared to a pinhole camera allows for a comparable photon flux. We will image all 1700 LER bunches and also measure them individually, searching for variations along the train due to electron-cloud and beam-beam effects, using a scanning detector conceptually derived from a wire scanner. A mask with three narrow slots at different orientations will scan the image to obtain three projections. In one passage, signals from a fast scintillator and photomultiplier will be rapidly digitized and sorted to profile each bunch.