

Novel Ideas and R&D for High Intensity Neutrino Beams

Ken Peach

CCLRC Rutherford Appleton Laboratory EPAC 2004, Lucerne

Outline

- Conventional Neutrino Beams
- Neutrino Phenomenology
- Existing and planned neutrino beams
- "Off Axis" and "Super" neutrino beams
- Factories
- Summary
- Acknowledgement
 - There is an enormous amount of work being done by the 300+ accelerator and particle physicists who make the "NuFACT" community. I acknowledge their dedication, enthusiasm and inventiveness
- Apology
 - Most of the topics mentioned in this talk, and many that are not, are each worth at least half an hour to do full justice. Apologies to those whose work is not mentioned, or mentioned-but-not-adequately-discussed.
 - I have tried to acknowledge sources of material where possible.

CONVENTIONAL NEUTRINO BEAMS

- Main components
 - Proton Beam
 - Energy, Intensity, frequency
 - Target
 - Horn (focussing)
 - Decay Region
 - Beam Dump
 - Detector

Note										
Fo	r ar	ıy (cla	ass	of) expe	riment					
N_{ev}	∝	Ρ	×	Μ	(× <mark>E</mark> _v)					
		Beam Power		Target Mass	Neutrino Energy					

Example of a Neutrino Beam

West Area Neutrino Facility at CERN SPS

CCLRC

... because Neutrino Physics has changed!!!

• 1950's and early 60's

CLRC

- Nature (and existence) of the neutrino
 - (Reines & Cowan, Lederman, Schwartz and Steinberger)
- Late 1960s, 1970s, 1980s
 - Structure of the nucleon
 - F_2 , xF_3 etc
 - Structure of the weak current
 - Neutral currents, $sin_2\theta_w$ etc
- Now, and future
 - Nature of the neutrino
 - Neutrino Mass and Neutrino Oscillations
 - Standard Model assumption of massless neutrinos is wrong!
 - Note: difficult to add neutrino mass to SM a la Higgs
 - Lack of Charge → additional mass-like (Majorana) terms
- New Physics at last!!!!
 Novel ideas for High intensity Neutrino Beams

 $\theta_{23} = (46.1^{+4.1}_{-5.1})^{\circ}$

 $\theta_{12} = (33.2^{+1.8}_{-1.6})^{\circ}$

 $\theta_{13} < 11^{\circ}$

What do we know? $\left|\Delta m_{32}^2\right| = (2.3^{+0.35}_{-0.45}) \times 10^{-3} \,\mathrm{eV}^2$ $\frac{1}{\sqrt{3}}$ $\Delta m_{21}^2 = (6.9^{+0.75}_{-0.40}) \times 10^{-5} \,\mathrm{eV}^2$ $\overline{5}$ $-\frac{1}{\sqrt{3}}$

 δ, α, β unknown

 $Sign(\Delta m_{32}^2)$ unknown

Maltoni et al, hep-ph/04051272

Ignores LSND - wait for MiniBooNE

'tri-bi-maximal' Perkins, Harrison & Scott

 $\cong \begin{pmatrix} 1 & .2 & .003 \\ -.2 & 1 & .04 \\ .007 & -.04 & 1 \end{pmatrix}$

absolute mass scale ? Less than ~ few eV (electron neutrino)

Novel ideas for High intensity Neutrino Beams

Where is the electron density ; ρ is the density (g/cm³) ; E is the neutrino energy (GeV)

(Richter: hep-ph/0008222)

 $c_{ij}\text{=}\text{cos}\theta_{ij},\,s_{ij}\text{=}\text{sin}\theta_{ij}$

What to Measure?

Neutrinos

- v_e disappearance
- $v_e \rightarrow v_\mu$ appearance
- $v_e \rightarrow v_{\tau}$ appearance

 v_{μ} disappearance $v_{\mu} \rightarrow v_{e}$ appearance $v_{\mu} \rightarrow v_{\tau}$ appearance

... and the corresponding antineutrino interactions

Note: the beam requirements for these experiments are:

high intensity

known spectrum

known flux

known composition

(preferably no background)

Reactor experiments

Non-accelerator!

- (almost) pure anti-electron neutrinos
- Flux and spectrum determined by the power curve
- Existing experiments (Chooz, Palo Verde, KAMLAND) use a single detector
- Experiments currently planned use 2 detectors
 - ~200m to measure the spectrum and flux, and ~1000m to measure the spectral distortion due to oscillations
 - Given good measurements of Δm_{12}^2 and θ_{12} , measures or constrains θ_{13} .

CCLRC The need for long baselines

Novel Ideas for High Intensity Neutrino Beams

S Brice, Neutrino 2004 Ken Peach

Experiments under construction

NuMI / MINOS

Target Hall

120 GeV protons from the MAIN

Decay Pipe

D Autiero, Neutrino 2004

Ken Peach

The "Off Axis" trick

- T2K (Tokai [J-PARC] to SuperKamiokande)
 - Under construction
- NOVA (Fermilab to "somewhere near MINOS")
 - Under consideration
- C2GT (CERN [CNGS] to Gulf of Taranto)
 - Being worked upon
- BNL
 - Proposal in preparation

NuMI Off Axis

- •~ 2 GeV energy :
 - Below τ threshold
 - Relatively high rates per proton, especially for antineutrinos
- •Matter effects to differentiate mass hierarchies
- •Baselines 700 1000 km

Michael, NuFACT03 Novel Ideas for High Intensity Neutrino Beams

C2GT (CNGS to Gulf of Taranto)

F.Dydak et.al.

- OA-CNGS
- Movable underwater Cherenkov det. (r=150m), 2Mt fid vol, L=1,200~1,600km
- ~5,000 vμ CC/year
- Disappearance & Appearance
- sin²2θ₁₃~0.008 @90%
- Technology to be established (underwater, light collection, LE PID,...)

"conventional beams with better proton drivers"

Notes:

- 1. Original motivation: How much can be done with just the front end of a neutrino factory?
- 2. Many other uses for high power proton drivers

CERN → **Frejus**

$CERN \rightarrow Frejus$

Neutrino Beams

4MW 2.2GeV Superconducting Proton Linac (SPL) @ CERN

- Low energy wide band (E,~0.3GeV)
- Water Cherenkov $40 \rightarrow 400$ kt (UNO)
- ~18,000 v_u CC/year/400kt
- O_{R_2} GPV
- Small matter effect
- SPL in R&D, UNO in conceptual design

UNO Detector Conceptual Design

10%

A Water Cherenkov Detector optimized for:

- Light attenuation length limit
- PMT pressure limit
- Cost (built-in staging)

APS nu Study at ANL, Dec

60x60x60m³x3 Total Vol: 650 kton Fid. Vol: 440 kton (20xSuperK) # of 20" PMTs: 56,000 Only optical # of 8" PMTs: 14,900

SPL

MW-Linac: SPL (Superconducting Proton Linac)

M. Mezzetto, "Physics Potential of SPL part I: Super Beam", NUFACT02, London, 1-6 July 2002

Mezzetto, NuFACT03

Novel ideas for High intensity Neutrino Beams

Fluxes for SPL beam

- Low energy wide band beam
- Less NC π^0 BG for v_e search

Mezzetto, NuFACT03

BNL to ???

28 GeV protons, 1 MW beam power 500 kT Water Cherenkov detector 5 10⁷ sec of running, Conventional Horn based beam

Fermilab Proton Driver (PD)

8 GeV synchrotron option

- Original concept (May 2002, Fermilab-TM-2169)
- Large aperture (100x150mm)
 magnets
- LINAC 400MeV \rightarrow 600MeV
- MI cycle time $1.87s \rightarrow 1.53s$

→ Net results : MI power of 1.9MW

8 GeV superconducting linac

- Recent study
- Direct injection
 - 2MW @ 8GeV & 40~120GeV(MI)
- Future flexibility
 - Issue: Cost?

Increase MI power by x5~6 (2MW) \rightarrow Improve MINOS & NOvA sensitivities

B.Foster and D.Michael, BNL-APS SB WS Mar.04

Potential Flexibility of LINAC

B.Foster and D.Michael, BNL-APS SB WS Mar.04

Neutrinos NOT from π **decay!**

 Generate the neutrino beams from unstable particles in storage rings with long straight sections

CP-violation

The Neutrino Factory

Muon Decays per Yea I

CPV: > 10²⁰ muon decays

Conventional v beams

π,μ & K decay Some flavour selectivity Contamination

Reactor v beams

Pure v_e Huge Fluxes Very low energy (MeV)

Super Conventional v beams

π, (& some μ) decay Flavour selectivity (v_{μ}) Low Contamination at E<200MeV

The Neutrino Factory

β beams

L = 2800 km, $\sin^2 2\theta_{13}=0.04$

SCCLRC β -beam ($\nu_e \rightarrow \nu_\mu$ appearance)

- Need $E_{v_{a}} > 100 \text{ MeV}$
 - Conventional (high energy) neutrino beams
 - Come from K decays
 - small fraction of beam
- New idea (Zucchelli)
 - $-\beta$ beams
 - Pure electron (anti) neutrino beams

from

accelerated radioactive ions

Possible β^+ emitters (v_e)

Isotope	Ζ	Α	A/Z	T _{1/2}	Q _{β (gs>gs)}	Q _{β eff.}	E _{β av.}	E _{v av.}	<e_lab> (MeV)</e_lab>
				S	MeV	MeV	MeV	MeV	(@450 GeV/p)
8 B	5	8	1.6	0.77	17.0	13.9	6.55	7.37	4145
10C	6	10	1.7	19.3	2.6	1.9	0.81	1.08	585
140	8	14	1.8	70.6	4.1	1.8	0.78	1.05	538
150	8	15	1.9	122.2	1.7	1.7	0.74	1.00	479
18Ne	10	18	1.8	1.67	3.4	3.4	1.50	1.86	930
19Ne	10	19	1.9	17.34	2.2	2.2	0.96	1.25	594
21Na	11	21	1.9	22.49	2.5	2.5	1.10	1.41	662
33Ar	18	33	1.8	0.173	10.6	8.2	3.97	4.19	2058
34Ar	18	34	1.9	0.845	5.0	5.0	2.29	2.67	1270
35Ar	18	35	1.9	1.775	4.9	4.9	2.27	2.65	1227
37K	19	37	1.9	1.226	5.1	5.1	2.35	2.72	1259
80Rb	37	80	2.2	34	4.7	4.5	2.04	2.48	1031

Possible β^{-} emitters ($\overline{v_{e}}$)

lsotope	Ζ	Α	A/Z	T _{1/2}	Q _{β (gs>gs)}	$Q_{\beta \text{ eff.}}$	E _{β av.}	E _{v av.}	<e_lab> (MeV)</e_lab>
				S	MeV	MeV	MeV	MeV	(@ 450 GeV/p)
6He	2	6	3.0	0.807	3.5	3.5	1.57	1.94	582
8He	2	8	4.0	0.119	10.7	9.1	4.35	4.80	1079
8Li	3	8	2.7	0.838	16.0	13.0	6.24	6.72	2268
9Li	3	9	3.0	0.178	13.6	11.9	5.73	6.20	1860
11Be	4	11	2.8	13.81	11.5	9.8	4.65	5.11	1671
15C	6	15	2.5	2.449	9.8	6.4	2.87	3.55	1279
16C	6	16	2.7	0.747	8.0	4.5	2.05	2.46	830
16N	7	16	2.3	7.13	10.4	5.9	4.59	1.33	525
17N	7	17	2.4	4.173	8.7	3.8	1.71	2.10	779
18N	7	18	2.6	0.624	13.9	8.0	5.33	2.67	933
23Ne	10	23	2.3	37.24	4.4	4.2	1.90	2.31	904
25Ne	10	25	2.5	0.602	7.3	6.9	3.18	3.73	1344
25Na	11	25	2.3	59.1	3.8	3.4	1.51	1.90	750
26Na	11	26	2.4	1.072	9.3	7.2	3.34	3.81	1450

⁶He

- From ECR source
 - 2.0x10¹³ ions per second
- PS after acceleration:
 - 1.0 x10¹³ ions per batch
- SPS after acceleration:
 - 0.9x10¹³ ions per batch
- Decay ring:
 - 2.0x10¹⁴ ions
- 50 % losses
 - 10¹⁴ ions in four 10ns

- From ECR source:
 - 0.8x10¹¹ ions per second
- PS after acceleration
 - 5.2 x10¹¹ ions per batch
- SPS after acceleration
 4.9 x10¹¹ ions per batch
- Decay ring:
 - 9.1x10¹² ions
- **50 % losses:**
 - 5x10¹² ions in four 10 ns
- FOR 3 ISOL targets
 1.3 x10¹³ ions

A Neutrino Factory is ...

... an accelerator complex designed to produce >10²⁰ muon decays per year directed at a detector thousands of km away

Neutrino Factory Challenges

Parameters

- Need to know that θ_{13} is not zero
 - Other parameters well known to fix (E_u,L)
- Technology
 - Proton driver
 - RCS or LINAC?
 - Proton energy?
 - HARP, E910, MIPP
 - Target
 - MW beam power
 - Mercury, solid, liquid-cooled, pellet, ...
 - Pion/muon collection and/or cooling
 - Magnetic Horns or Solenoids?
 - Phase Rotators, FFAG's, cooling?
 - RF and acceleration
 - RLA's or FFAG's?
 - Muon Storage Ring
 - Racetrack, triangular or bow-tie
 - Conventional or FFAG?
- Other uses of high power protons & muons?

The FFAG model

- High Power Proton Driver
 Muon g-2
 - Muon Factory (PRISM)
 - Muon LFV

٠

- Muon Factory-II (PRISM-II)
 - Muon EDM
- Neutrino Factory
 - Based on 1 MW proton beam
- Neutrino Factory-II
 - Based on 4.4 MW proton beam

Another Neutrino Factory

Key Challenges

Targets

Muon Cooling

- ~ same power as SNS targets
 - Open
 - Small
 - See previous talk

- <u>Certainly</u> needed for a muon collider
- <u>Almost certainly</u> needed for a neutrino factory
 - <u>(combined</u>
 FFAG/cooling or
 ring-coolers?)

... after engineering ...

reality (simplified)

Proposal

Ken Peach

Novel ideas for High intensity Neutrino Beams

Neutrino Factory R&D

- High Power proton drivers
 - MW power, ns pulses
- RF
 - 30% of the cost?
- Cooling
 - How much? (20% of the cost?)
- RLA or FFAG?
 - Which is cheaper?

domain of 99% CL effect for maximal CP violation

