Paper | Title | Other Keywords | Page | ||||||
---|---|---|---|---|---|---|---|---|---|
MOXACH01 | Worldwide Perspectives in Accelerators and the Rôle of CERN | proton, linear-collider, luminosity, factory | 1 | ||||||
|
After an analysis of the most probable medium and long-term evolution of Particle Accelerators and their worldwide perspectives, the presentation focuses on the specific role of CERN. It emphasizes CERNs mandate as defined by its convention, which is not only to build and operate the laboratory as a centre of excellence but to organize and steer particle physics in Europe. It should be the place where a coherent strategy for the whole field of European Particle Physics is discussed and elaborated in the best interest of the whole community. CERN should act as the driving force in the centre of a network of multilateral collaborating institutes where each laboratory brings its own contribution towards a common goal in a coordinated way following its specific skills and resources. It should favour mutual exchanges and collaborations to enable developments covering the whole range of CERN's activities from pure physics to accelerator and detector R&D. This is a necessary condition not only to make the LHC a success as the highest priority during the next few years, but also for Europe to continue its leading role in the quest to push further the high energy frontier in the future. That will require even more challenging and more complex facilities which will only be possible if built as unique and complementary in world-wide collaborations.
|
|
|
Video of talk
|
|
Transparencies
|
|
||
MOXBCH01 | Industrial Technology for Unprecendented Energy and Luminosity: the Large Hadron Collider | superconducting-magnet, dipole, luminosity, cryogenics | 6 | ||||||
|
With over 2.7 billion Swiss francs procurement contracts under execution in industry and the installation of major technical systems proceeding in its first 3.3 km sector, the Large Hadron Collider (LHC) construction is now in full swing at CERN, the European Organization for Nuclear Research. The LHC is not only the most challenging particle accelerator under construction, it is also the largest global project ever for a scientific instrument based on advanced technology. Starting from accelerator performance requirements, we recall how these can be met by an appropriate combination of technologies, such as high-field superconducting magnets, superfluid helium cryogenics, beam and insulation vacuum or power electronics, with particular emphasis on the developments required to meet demanding specifications, and the industrialization issues which had to be solved for achieving series production of precision components under tight quality assurance and within limited resources. This provides the opportunity for reviewing the production status of the different systems and the progress of the project.
|
|
|
Video of talk
|
|
Transparencies
|
|
||
MOZCH01 | Technologies for Electron-positron Linear Colliders | linear-collider, electron, luminosity, klystron | 26 | ||||||
|
High energy electron-positron Linear Collider designs based on room temperature and superconducting technologies have been developed and are currently under consideration by the International Technology Recommendation Panel. This paper will review the requirements and state of development of technologies required to support a linear collider meeting the performance goals outlined by the world high energy physics community. In addition it will summarize the cold/warm comparative study completed in the U.S. with particular emphasis on unique aspects related to availability and risk analysis.
|
|
|
Video of talk
|
|
Transparencies
|
|
||
MOZCH02 | Start to End Simulations of Low Emittance Tuning and Stabilization | simulation, luminosity, linear-collider, linac | 31 | ||||||
|
The principal beam dynamics challenge to the subsystems between the damping ring and the collision point of future linear colliders is expected to be the tuning and stabilization required to preserve the transverse emittance and to collide nanometer-scale beams. Recent efforts have focused on realistically modelling the operation and tuning of this region, dubbed the Low Emittance Transport (LET). We report on the development of simulation codes which permit integrated simulation of this complex region, and on early results of these simulations. Future directions of LET simulation are also revealed.
|
|
|
Video of talk
|
|
Transparencies
|
|
||
MOOCH03 | Status of a Linac RF Unit Demonstration for the NLC/GLC X-band Linear Collider | linac, linear-collider, klystron, feedback | 42 | ||||||
|
Designs for a future TeV scale electron-positron X-band linear collider (NLC/GLC) require main linac units which produce and deliver 450 MW of rf power at 11.424 GHz to eight 60 cm accelerator structures. The design of this rf unit includes a SLED-II pulse compression system with a gain of approximately three at a compression ratio of four, followed by an overmoded transmission and distribution system. We have designed, constructed, and operated such a system as part of the 8-Pack project at SLAC. Four 50 MW X-band klystrons, running off a common 400 kV solid-state modulator, drive a dual-moded SLED-II pulse compression system. The compressed power is delivered to structures in the NLCTA beamline. Four 60 cm accelerator structures are currently installed and powered, with four additional structures and associated high power components available for installation late in 2004. We describe the layout of our system and the various high-power components which comprise it. We also present preliminary data on the processing and initial high-power operation of this system.
|
|
|
Video of talk
|
|
Transparencies
|
|
||
MOPLT015 | Reliability Issues of the LHC Beam Dumping System | dumping, extraction, kicker, hadron | 563 | ||||||
|
The Beam Dumping System of the Large Hadron Collider, presently under construction at CERN, must function with utmost reliability to protect the personnel, minimize the risk of severe damage to the machine and avoid undue impact to the environment. The dumping action must be synchronized with the particle free gap and the field of the extraction and dilution elements must be well adjusted to the beam energy. The measures taken to arrive at a reliable and safe system will be described, like the adoption of fault tolerant design principles and other safety related features as comprehensive monitoring, diagnostics and protection facilities. These issues will be discussed in the general framework of the IEC standard recommendations for safety critical systems. Some examples related to the most critical functions will be included.
|
|
|
||||||
MOPLT032 | Breakdown Resistance of Refractory Metals Compared to Copper | site, vacuum, cathode, instrumentation | 614 | ||||||
|
The behaviour of Mo, W and Cu with respect to electrical breakdown in ultra high vacuum has been investigated by means of a capacitor discharge method. The maximum stable electric field and the field enhancement factor, beta, have been measured between electrodes of the same material in a sphere/plane geometry for anode and cathode, respectively. The maximum stable field increases as a function of the number of breakdown events for W and Mo. In contrast, no systematic increase is observed for Cu. The highest values obtained are typically 500 MV/m for W, 350 MV/m for Mo and only 180 MV/m for Cu. This conditioning, found for the refractory metals, corresponds to a simultaneous decrease of beta and is therefore related to the field emission properties of the surface and their modification upon sparking. Accordingly, high beta values and no applicable field increase occur for Cu even after repeated breakdown. The results are in agreement with rf breakdown experiments [*] performed on prototype 30 GHz accelerating structures for the CLIC accelerator.
|
* W. Wuensch, C. Achard, S. Döbert, H. H. Braun, I. Syratchev, M. Taborelli, I. Wilson, "A Demonstration of High Gradient Acceleration", CERN-AB-2003-048-RF; CLIC-Note-569, Proc. PAC2003. |
|
||||||
MOPLT042 | Interaction of the CERN Large Hadron Collider (LHC) Beam with Solid Metallic Targets | target, proton, simulation, heavy-ion | 641 | ||||||
|
The LHC will operate at 7 TeV with a luminosity of 1034 cm-2s-1. This requires two beams, each with 2808 bunches. The nominal intensity per bunch is 1.1 1011 protons. The energy stored in each beam of 350 MJ could heat and melt 500 kg of copper. Protection of machine equipment in the presence of such powerful beams is essential. In this paper the mechanisms causing equipment damage in case of a failure of the machine protection system are discussed. An energetic heavy ion beam induces strong radial hydrodynamic motion in the target that drastically reduces the density in the beam heated region [*], leading to a much longer range for particles in the material. For the interaction of the LHC proton beams with a target a similar effect is expected. We carried out two-dimensional hydrodynamic simulations of the heating of a solid copper block with a face area of 2cm x 2cm irradiated by the LHC beam with nominal parameters. We estimate that after an impact of about 100 bunches the beam heated region has expanded drastically. The density in the inner 0.5 mm decreases by about a factor of 10. The temperature in this region is about 10 eV and the pressure about 15 GPa. The material in the heated region is in plasma state while the rest of the target is in a liquid state. The bulk of the following beam will not be absorbed and continue to tunnel further and further into the target. The results allow estimating the length of a sacrificial absorber, if such device should be installed for an LHC upgrade. A very interesting "spinoff" from this work would be the study of high-energy-density states of matter induced by the LHC beam, because a specific energy deposition of 200 kJ/g is achieved after 2.5 micros.
|
* N.Tahir et al., Phys. Rev. E, 63, 2001 |
|
||||||
MOPLT044 | Longitudinal Positron Polarisation in HERA-II | luminosity, optics, proton, quadrupole | 644 | ||||||
|
Following the installation of two more pairs of spin rotators in the course of the HERA Luminosity Upgrade, longitudinal positron spin polarisation has now been generated simultaneously at all three positron(electron) interaction points in HERA at the routine energy of 27.5 GeV. The maximum attained so far is 54 percent. The theoretical maximum for this configuration and in the presence of realistic errors is 57.0 percent. This is the first time in the history of high energy electron storage ring physics that the naturally occurring vertical polarisation has been, with the aid of spin rotators, converted to longitudinal polarisation at three interaction points simultaneously. We describe the measures needed to attain polarisation in light of the HERA Upgrade and the resulting recent performance.
|
|
|
||||||
MOPLT048 | High Current Switch-mode Power Converter Prototype for LHC Project 6kA, 8V | simulation, power-supply, positron, quadrupole | 656 | ||||||
|
For the Large Hadron Collider (LHC) accelerator being constructed on the CERN site, very precise variable DC currents are required. The company JEMA had during year 2002, designed, manufactured and tested a power converter prototype according to CERN specifications, particularly demanding in terms of dc stability and dynamic response. The power converter is formed by four sub-converters 8V, 2kA in parallel. Isolation between mains input and magnet load is at high frequency done, 40 kHz, which means a volume reduction and better mains perturbations rejection. IGBT inverter soft switch-mode power conversion in ZVS operation reduces dramatically commutation losses, increasing total efficiency of the power converter. The sub-converter, regulated by a wide band width current loop in ACC mode, follows the current reference calculated by the overall voltage loop, providing a good sharing of the output currents and high output stability. The design of the water cooled power converter, results in a very reduce volume and modular structure, providing the system a very flexible exchangeability. The power converter was tested and accepted by CERN into year 2003, some minor points were left to be adjusted during the pre-series stage.
|
|
|
||||||
MOPLT053 | On Parasitic Crossings and their Limitations to e+e- Storage Ring Colliders | luminosity, beam-beam-effects, storage-ring, factory | 671 | ||||||
|
We treat the problem of parasitic crossing in e+e- storage ring colliders analytically. Analytical formulae for the beam lifetime limited by the combined effects of beam-beam interactions at interaction point and at parasitic crossings are derived, and applied to the by-2 colliding mode of PEP-II low energy ring.
|
|
|
||||||
MOPLT089 | SOS-diode Based Pulser for the Injection System of the Collider VEPP-2000 | injection, kicker, positron, electron | 743 | ||||||
|
We describe high voltage pulsers for supplying of kickers of the collider VEPP-2000 injection system. The high voltage pulse is formed as a result of a sharp break of a high current, accumulated previously in storage elements, by means SOS-diode. Pulse forming lines or inductances could be used as the storage elements. The generators form the quasi-rectangular pulses on the 50-Ohm load. The generator scheme is described also.
|
|
|
||||||
MOPLT107 | Nanosecond-timescale Intra-bunch-train Feedback for the Linear Collider: Results of the FONT2 Run | feedback, linear-collider, kicker, dipole | 785 | ||||||
|
We report on experimental results from the December 2003/January 2004 data run of the Feedback On Nanosecond Timescales (FONT) experiment at the Next Linear Collider Test Accelerator at SLAC. We built a second-generation prototype intra-train beam-based feedback system incorporating beam position monitors, fast analogue signal processors, a feedback circuit, fast-risetime amplifiers and stripline kickers. We applied a novel real-time charge-normalisation scheme to account for beam current variations along the train. We used the system to correct the position of the 170 nanosecond-long bunchtrain at NLCTA, in both 'feed forward' and 'feedback' modes. We achieved a latency of 53 nanoseconds, representing a significant improvement on FONT1 (2002), and providing a demonstration of intra-train feedback for the Linear Collider.
|
|
|
||||||
MOPLT120 | Proposals for Improvements of the Correction of Sextupole Dynamic Effects in the Tevatron Dipole Magnets | injection, dipole, sextupole, luminosity | 818 | ||||||
|
It is well known that the sextupole (b2) components in the superconducting dipole magnets decay during the injection plateau and snap back rapidly at the start of the ramp to flat top current. These so-called dynamic effects were originally discovered in the Tevatron. They are compensated for by the chromaticity correctors distributed around the ring. Imperfect control of the chromaticity during the snapback can contribute to beam loss and emittance growth. A thorough investigation of the chromaticity correction in the Tevatron was launched in the context of Run II, including beam chromaticity measurements and extensive magnetic measurements on a series of spare Tevatron dipole magnets. The study has yielded new information about the effect of the powering history on the dynamic b2. A companion paper at this conference describes in detail the results of these magnetic measurements [reference to George Velev's paper]. Study findings have given directive to new proposals for improvement of the b2 snapback correction in the Tevatron, including a revised functional form for the snapback algorithm and the elimination of the beam-less pre-cycle. This paper reports the results of beam studies performed recently to test these improved procedures.
|
|
|
||||||
MOPLT131 | Emittance Dilution Simulations for Normal Conducting and Superconducting Linear Colliders | emittance, linac, simulation, damping | 845 | ||||||
|
An electron (or positron) multi-bunch train traversing several thousand accelerator structures can be distorted by long-range wakefields left behind the accelerated bunches. These wakefields can at the very least, give rise to a dilution in the emittance of the beam and, at worst can lead to a beam break up instability. We investigate the emittance dilution that occurs for various frequency errors (corresponding to small errors made in the design or fabrication of the structure) for the GLC/NLC (Global Linear Collider/Next Linear Collider) and for TESLA (Terra Electron Superconducting Linear Accelerator). Resonant effects, which can be particularly damaging, are studied for X-band and L-band linacs. Simulations are performed with the computer codes LIAR[1] and L-MAFIA[2].
|
[1] R. Assman et al, LIAR, SLAC-PUB AP-103[2] The MAFIA Collaboration, MAFIA: L - The Linear Accelerator Tracking Code, CST GmbH, Darmstadt (1994) |
|
||||||
MOPLT134 | X-Band Linear Collider R&D in Accelerating Structures through Advanced Computing | simulation, impedance, damping, linear-collider | 851 | ||||||
|
The X-band linear collider design, GLC/NLC, requires accelerating structures in the main linac to operate at 65 MV/m and to be able to control emittance growth due to dipole wakefields generated by 100 micron bunch trains. The approach to high gradient has focused mainly on testing structures for acceptable breakdown rates at the desired gradient through experiments since the problem is analytically challenging. In suppressing dipole wakefields, the damped, detuned structure (DDS) has shown capable of meeting design requirements but the analysis using equivalent circuits has thus far been limited to the lowest two dipole bands. This paper describes a computational approach that addresses these design issues through large-scale simulations, using a suite of parallel electromagnetic codes developed under the DOE SciDAC Accelerator Simulation Project. Numerical results on peak field calculation, dark current generation, and wakefield computation will be presented on the H60VG4S17 DDS structure, considered to be the baseline design for the NLC.
|
|
|
||||||
MOPLT136 | Reliability Simulations for a Linear Collider | simulation, linear-collider, luminosity, positron | 857 | ||||||
|
A new flexible tool for evaluating accelerator reliability was developed as part of the US Linear Collider Technology Comparison Study. The linear collider designs considered were based on the GLC/NLC X-band and TESLA Superconducting proposals, but modified to meet the US physics requirements. To better model some of the complexities of actual operation, a simulation program was written, which included details such as partial fixes or workarounds, hot-swappable repairs, multiple simultaneous repairs, cooldown periods before access, staged recovery from an outage, and both opportunistic and scheduled machine development. The main linacs and damping rings were modeled in detail with component counts taken from the designs, and using MTBFs and MTTRs from existing accelerator experience. Other regions were assigned a nominal overall failure rate. Variants such as a single tunnel or conventional positron source were also evaluated, and estimates made of the sensitivity to recovery or repair times. While neither design was predicted to be sufficiently reliable given present experience, the required improvements were estimated to increase the overall project cost by only a few percent.
|
|
|
||||||
MOPLT138 | Vibrational Stability of GLC/NLC Linear Collider: Status and R&D Plans | site, simulation, luminosity, ground-motion | 863 | ||||||
|
Luminosity stability of the X-band linear collider will be provided by beam-based train by train steering feedbacks in the linac and at the IP, optional active stabilization of the final doublet, being developed to counteract possible excessive vibration of the detector, and optional fast intratrain feedback that would allow delivering major part of the luminosity while other systems are being commissioned. Control and reduction of the beam jitter originating from vibration of collider components is part of our strategy described in this paper.
|
|
|
||||||
MOPLT144 | Design for a 1036 Super-B-factory at PEP-II | luminosity, interaction-region, factory, injection | 878 | ||||||
|
Design studies are underway to arrive at a complete parameter set for a very high luminosity e+e- Super B-Factory (SBF) in the luminosity range approaching 1036/cm2/s. The design is based on a collider in the PEP-II tunnel but with an upgraded RF system (higher frequency), magnets, vacuum system, and interaction region. The accelerator physics issues associated with this design are reviewed as well as the site and power constraints. Near term future studies will be discussed.
|
|
|
||||||
MOPLT153 | Electron-Ion Collider at CEBAF: New Insights and Conceptual Progress | ion, electron, luminosity, proton | 893 | ||||||
|
We report on progress in conceptual development of the proposed high luminosity (up to 1035/cm2s) and efficient spin manipulation (using figure 8 boosters and collider rings) Electron-Ion Collider at CEBAF based on use of polarized 5-7 GeV electrons in superconduction energy recovering linac (ERL with circulator ring, kicker-operated) and 30-150 GeV ion storage ring (polarized p, d. He3, Li and unpolarized nuclei up to Ar, all totally stripped). Ultra-high luminosity is envisioned to be achievable with short ion bunches and crab-crossing at 1.5 GHz bunch collision rate interaction points. Our recent studies concentrated on simulation of beam-beam interaction, preventing the electron cloud instability, calculating luminosity lifetime due to Touschek effect in ion beam and background scattering of ions, experiments on energy recovery at CEBAF, and other. These studies have been incorporated in the development of the luminosity calculator and in formulating minimum requirements to the polarized electron and ion sources
|
|
|
||||||
MOPLT174 | Electron Acceleration for e-RHIC with the Non-scaling FFAG | acceleration, electron, emittance, synchrotron | 932 | ||||||
|
A non-scaling FFAG lattice design to accelerate electrons from 3.2 to 10 GeV is described. This is one of the possible solutions for the future electron-ion collider (eRHIC) at Relativistic Heavy Ion Collier (RHIC) at Brookhaven National Laboratory (BNL). This e-RHIC proposal requires acceleration of the low emittance electrons up to energy of 10 GeV. To reduce a high cost of the full energy super-conducting linear accelerator an alternative approach with the FFAG is considered. The report describes the 1277 meters circumference non-scaling FFAG ring. The Courant-Snyder functions, orbit offsets, momentum compaction, and path length dependences on momentum during acceleration are presented.
|
|
|
||||||
TUPKF063 | Current Status of the Next Linear Collider X-band Klystron Development Program | klystron, gun, vacuum, focusing | 1090 | ||||||
|
Klystrons capable of driving accelerator sections in the Next Linear Collider have been developed at SLAC during the last decade. In addition to fourteen 50 MW solenoid-focused devices and a 50 MW Periodic Permanent Magnet focused (PPM) klystron, a 500 kV 75 MW PPM klystron was tested in 1999 to 80 MW with 3-microsecond pulses, but very low duty. Subsequent 75 MW prototypes aimed for low-cost manufacture by employing reusable focusing structures external to the vacuum, similar to a solenoid electromagnet. During the PPM klystron development, several partners (CPI, EEV and Toshiba) have participated by constructing partial or complete PPM klystrons. After early failures during testing of the first two devices, SLAC has recently tested this design (XP3-3) to the full NLC specifications of 75 MW, 1.6 microseconds pulse length, and 120 Hz. This 14.4 kW operation came with a tube efficiency of 50%. The XP3 3 average and peak output power, together with the focusing method, arguably makes it the most advanced high power klystron ever built anywhere in the world. Design considerations and the latest testing results for these latest prototypes will be presented.
|
|
|
||||||
TUPKF067 | High Power Magnicons at Decimeter Wavelength for Muon and Electron-Positron Colliders | gun, electron, linac, acceleration | 1099 | ||||||
|
The CLIC drive linac requires pulsed RF amplifiers with a power of 50 MW at 937 MHz. In turn the muon collider requires 100 MW, 800 MHz RF amplifiers for the final stages of acceleration. In this paper conceptual designs of magnicons for these applications are presented. In addition to the typical magnicon advantages in power and efficiency, the designs offers substantially shorter tube length compared to either single- or multiple-beam klystrons.
|
|
|
||||||
WEOACH03 | Achievement of 35 MV/m in the TESLA Superconducting Cavities Using Electropolishing as a Surface Treatment | linac, electron, superconductivity, coupling | 129 | ||||||
|
The Tera Electronvolt Superconducting Linear Accelerator TESLA is the only linear electron-positron collider project based on superconductor technology for particle accelaration. In the first stage with 500 GeV center-of-mass energy an accelerating field of 23.4MV/m is needed in the superconducting niobium cavities which are operated at a temperature of 2 K and a quality factor Q0 of 1010. This performance has been reliably achieved in the cavities of the TESLA Test Facility (TTF) accelerator. The upgrade of TESLA to 800 GeV requires accelerating gradients of 35 MV/m. Using an improved cavity treatment by electrolytic polishing it has been possible to raise the gradient to 35 - 43 MV/m in single cell resonators. Here we report on the successful transfer of the electropolishing technique to multi-cell cavities. Presently four nine-cell cavities have achieved 35 MV/m at Q_0 = 5 × 109, and a fifth cavity could be excited to 39 MV/m. In two high-power tests it could be verified that EP-cavities preserve their excellent performance after welding into the helium cryostat and assembly of the high-power coupler. One cavity has been operated for 1100 hours at the TESLA-800 gradient of 35 MV/m and 57 hours at 36 MV/m without loss in performance.
|
|
|
Video of talk
|
|
Transparencies
|
|
||
WEYCH02 | Technical Issues for Large Accelerators based on High Gradient SC Cavities | electron, vacuum, linac, radiation | 137 | ||||||
|
The perspective to build large accelerators based on high gradient superconducting cavities is posing a number of new problems that have been addressed in the preparation of the TESLA project. Starting from the experience gained with the past large installations, such as LEP2 at CERN and CEBAF at JLab, in this paper I discuss the new demands and the solution envisaged. Industrial production issues are focussed in terms of large scale production, reviewed quality control criteria and cost reduction. The impact on component design and engineering together with the expected improvements in term of performances and reliability are also outlined.
|
|
|
Video of talk
|
|
Transparencies
|
|
||
WEILH01 | Methods for Successful Technology Transfer in Physics | radiation, electron, instrumentation, plasma | 198 | ||||||
|
The development of accelerators for scientific research generates significant technologies of interest to industry. As physicists and technologists we also require strong partnerships with industry in order that it may supply us with the instrumentation and systems we require for new apparatus. We will discuss the methods developed for the UK Particle Physics and Astronomy Research Council (PPARC) and applied on behalf of CERN to encourage successful knowledge transfer into industry. Case studies will illustrate the hurdles that must be surmounted and effective methods to build successful partnerships, licensing opportunities and spinout companies. Factors considered will include assessment of the commercial potential of technologies, personal motivations for academic/industrial collaboration, sources of funding, and effects on the academic groups involved in knowledge transfer activity.
|
|
|
Video of talk
|
|
Transparencies
|
|
||
WEILH03 | Industrial Response to RF Power Requirements | power-supply, linear-collider, monitoring, feedback | 202 | ||||||
|
Today, high-energy physics machines are broadly speaking of two kinds. Some machines are dedicated to providing a service using particle acceleration as an intermediate step (light sources, neutron spallation sources, cancer therapy equipment etc.)and occasionally, particle colliders are built in which the particles are used directly to probe the nature and origin of matter. The latter machines have developed to a point where the technology needed is often at the extreme edge of what is understood, let alone of what is currently achievable. In addition the scope of supply and the level of equipment integration demanded of industry is increasing as RF skills become scarcer. This reduces the supplier base so placing greater demands on those remaining. To help offset this problem, companies should be brought 'inside' the project team at an early stage of the machine design so that better account can be taken of limitations, preferences and competing obligations that the companies may have. A more collaborative approach should result in projects being completed in a shorter time, to a lower cost, and with a more certain outcome.
|
|
|
Video of talk
|
|
Transparencies
|
|
||
WEPKF007 | Vacuum Characterisation of a Woven Carbon Fiber Cryosorber in Presence of H2 | vacuum, electron, injection, scattering | 1603 | ||||||
|
Some of the cryogenic components in the Large Hadron Collider (LHC) will operate at 4.5 K. The H2 desorption will rapidly increase to the saturated vapour pressure, 3 orders of magnitude larger than the design pressure. Therefore, the use of cryosorbers is mandatory to provide the required pumping capacity and pumping speed. The behaviour of a woven carbon fiber to be used as a cryosorber has been studied under H2 injection. The pumping speed and capacity measured in the range 6 to 30 K are described. Observations made with an electron microscope are shown. A proposed pumping mechanism and the implications to the LHC are discussed.
|
|
|
||||||
WEPKF015 | The Design of Cold to Warm Transitions of the LHC | vacuum, electron, insertion, impedance | 1624 | ||||||
|
The Large Hadron Collider (LHC) is the next accelerator being constructed on the CERN site to be operational in 2007. It will accelerate and collide 7 TeV protons and heavier ions up to lead. More than 2000 cryomagnets working at 1.9 or 4.5 k will form part of the magnetic lattice of the LHC. The transitions from cryogenic temperatures to room temperature zones will be achieved by 200 cold to warm transitions (CWTs). The CWTs will compensate for longitudinal and transversal displacements between beam screens and cold bores, ensuring vacuum continuity without limiting the aperture for the beam. The transverse impedance contribution is kept below the assigned total budget of 1 MΩ/m by means of a 5 μm thick Cu coating that also minimises the dynamic heat load through image currents. Tests have been performed that confirm that the static heat load per CWT to the cryomagnets remains below 2.5 W, hence validating the design.
|
|
|
||||||
WEPKF034 | The Modified DAFNE Wigglers | wiggler, sextupole, betatron, octupole | 1678 | ||||||
|
Modifications to the pole shape of a spare wiggler have been tested to increase the width of the good field region, with the aim of reducing the effect of nonlinearities affecting the dynamic aperture and the beam-beam interaction. Additional plates realized with the same material of the pole have been machined in several shapes and glued on the poles. Accurate measurements of the vertical field component on the horizontal symmetry plane of the magnet have been performed to find the best profile. The particle motion inside the measured field has been simulated to minimize the field integral on the trajectory, to determine the wiggler transfer matrix and to estimate the amount of non linear contributions. All wigglers in the collider have been modified to the optimized pole shape. Measurements with beam performed with the modified wigglers show a significant reduction of nonlinearities.
|
|
|
||||||
WEPKF037 | Structural Analysis of an Integrated Model of Short Straight Section, Service Module, Jumper Connection and Magnet Interconnects for the Large Hadron Collider | alignment, vacuum, hadron, ground-motion | 1684 | ||||||
|
The Short Straight Section (SSS) of the Large Hadron Collider (LHC) houses a twin quadrupole.The cryogens are fed to the SSS through a Jumper Connection between service modules of Cryogenic Distribution Line (QRL) and SSS.A Finite Element analysis has been performed in collaboration with CERN for the unified model of SSS of LHC,consisting of cold mass, cold supports,vacuum vessel and its bellows, interconnects, jumper connection and alignment jacks. The model has been developed to understand coupling between the quadrupole magnet and the service module due to ground motion and during the realignment or global smoothening of the LHC arc. The model incorporates experimental stiffness values for support posts, internal pipes and jacks and calculated stiffness for magnet-to-magnet interconnects. The computation space and time has been reduced by executing a two step linear static analycal approach with an initial trial analytical approach cycle in which the program estimates the behavior of the flexibles. A special routine is developed within ANSYS,using APDL which selects the correct secant stiffness of flexibles(by applying a user interactive logical algorithm)from their non-linear force displacement characteristics.
|
|
|
||||||
WEPKF038 | The Alignment Jacks of the LHC Cryomagnets | alignment, vacuum, radiation, quadrupole | 1687 | ||||||
|
The precise alignment of the some 1700 cryomagnets of the LHC collider, requires the use of some 7000 jacks. The specific requirements and the need for an cost-effective solution for this large production, justified the development and industrialisation of a dedicated mechanical jack which was developed, and is now being produced, in the framework of a collaboration between CERN and the Center for Advanced Technology in India. Three jacks support each of the 32-ton heavy, 15-meter long cryo-dipoles of LHC, and provide the required alignment features. The main requirements are a setting resolution of 0.05 mm, and a range of movement of 20 mm in the horizontal and 40 mm in the vertical direction. Each jack has two degrees of controlled movement in the horizontal and vertical direction, whereas the remaining horizontal movement is left free. By a suitable choice of the layout of the three jacks, the full range of alignment of a cryo-magnet can be obtained. The design of the jacks evolved from a preliminary value analysis between various concepts, towards the complete engineering of the retained concept, selection of the most appropriate and cost-effective industrial production processes and setting-up of an effective quality assurance policy. Building and testing of 36 prototype jacks allowed an extensive experimental validation of their performance at CERN, where they were operated in the String 2 facility, and yielded an improved understanding for cost-effective steering of the production processes before launching the series production. Presently, the mass production of the jacks is in progress with two Indian manufacturers, and some 1500 jacks have already been delivered to CERN. Considering the successful performance of the jacks, it is now envisaged to extend the use of the same type of jacks to provide the even higher-demanding alignment of the low-beta quadrupoles of LHC.
|
|
|
||||||
WEPKF047 | A Super Strong Adjustable Permanent Magnet for the Final Focus Quadrupole in a Linear Collider | quadrupole, permanent-magnet, linear-collider, simulation | 1708 | ||||||
|
A super strong magnet, which utilizes permanent magnet material and saturated iron, is considered as a candidate for the final focus quadrupole in a linear collider beamline. This modified Halbach magnet configuration can have a higher magnetic field gradient than a normal permanent magnet quadrupole (PMQ) or electromagnet. There are some issues to be solved if a PMQ is to be used as a final focus quadrupole: the variation of its strength with temperature and the need for the field strength to be deliberately changed. One can use special temperature compensation material to improve the temperature dependence with just a small decrease in field gradient compared to a magnet without temperature compensation. The required field variability can be obtained by slicing the magnet into pieces along the beamline direction and rotating these slices. Results of performance measurements on the PMQ with variable strength will be reported including the realization of the temperature compensation technique.
|
|
|
||||||
WEPKF048 | Characteristics of Ground Motion at KEK and SPring-8 | ground-motion, site, power-supply, linear-collider | 1711 | ||||||
|
Authors Y. Nakayama, T. Ito, (JPOWER); R. Sugahara, S. Takeda, H.Yamaoka, M.Yoshioka (KEK); S.Matsui, C.Zhang (SPring-8); S. Yamashita (ICEPP): Abstract Stability of ground is preferable for accelerator beam operation. We have measured ground motion of ground at the KEKB and SPring-8 site, where the ground has quite different characteristics each other. In this paper, some of analysis results are shown, and the characteristics of the ground motion at the KEKB site and those at the Spring-8 site are compared.
|
|
|
||||||
WEPKF076 | Solid-state Marx Bank Modulator for the Next Linear Collider | klystron, cathode, pulsed-power, linear-collider | 1783 | ||||||
|
The Next Generation Linear Collider (NLC) will require hundreds to thousands of pulse modulators to service more than 3300 klystrons. DTI recently investigated the use of a solid-state Marx switch topology for the NLC, and has transitioned this work into the development of a full-scale, 500 V solid state Marx system. Combined with recent advances in semiconductor technology and packaging, these efforts have moved the performance of the Marx pulser far ahead of early estimates. The Marx pulser eliminates the pulse transformer, which is associated with significant loss of performance and a 15-20% penalty in the efficiency of a conventional modulator. The increase in efficiency attributable to the Marx topology can account for over $100M in power cost savings over ten years of NLC operation, an amount comparable to the acquisition costs of the pulsed power systems. In this paper, DTI will discuss the design and development of the Marx Bank modulator. Its performance scales to 125 ns risetime (10-90%) for either a 500 kV, 265 A pulse (for one klystron), or a 500 kV, 530 A pulse (for two klystrons). The use of a unique, common mode inductive charging system allows transfer of filament power without separate isolation transformers.
|
|
|
||||||
WEPLT011 | Transport and Handling of LHC Components: a Permanent Challenge | shielding, site, simulation, cryogenics | 1840 | ||||||
|
The LHC project, collider and experiments, is an assembly of thousands of elements, large or small, heavy or light, fragile. Every one of those has own transport requirements that constituting for us a real challenge to handle. The manoeuvres could be simple, but the complex environment and narrow underground spaces may lead to difficulties in integration, routing and execution. Examples of transport and handling of typical LHC elements will be detailed: the 17m long, 35t heavy but fragile cryomagnets from the surface to the final destination in the tunnel, the delicate cryogenic cold-boxes down to pits and detector components. This challenge did not only require a lot of imagination but also the close cooperation between all involved parties, in particular with colleagues from safety, cryogenics, civil engineering, integration and logistics.
|
|
|
||||||
WEPLT020 | Installation of A Particle Accelerator: from Theory to Practice. The LHC Example | site, feedback, vacuum, survey | 1867 | ||||||
|
Installing and commissioning the thousands of equipments constituting a Particle Accelerator is a lengthy and complex process. A large number of multidisciplinary teams are involved over a long period lasting usually many years. Diverse boundary constrains must be taken into account: space, a long and narrow tunnel with few accesses, time, with milestones set many years in advance, and obviously budget. A strict organisation associated with the management tools and the right people is the only way to arrive to a success. The keywords are: Knowledge: A unique and up-to-date database of all the elements and their location, Integration: Study the physical position of the elements, suppress the interferences and define the installation methodology, Prevision: Schedule all the activities and update on-line, In-situ management and supervision: Teams dedicated to follow-up, corrective actions and orphan jobs, Safety. After presenting the planned overall organization, the paper will present practical achievements with the example of the LHC machine installation.
|
|
|
||||||
WEPLT021 | Towards an Ontology Based Search Mechanism for the EDMS at CERN | dipole, hadron | 1870 | ||||||
|
CERN is building its new accelerator, the LHC. All the data flow generated during its lifecycle is stored in the EDMS (Engineering Data Management System) developed at CERN. For such a system it is compulsory to have a performant search mechanism to guarantee that the involved people gets the data at the required time. Due to the size of the collection and the diversity of people, organizations, divisions . To overcome this problem, an approach based on a hand-crafted domain specific ontology has been tested in order to improve the information retrieval task within the technical documentation for the LHC Equipment Catalog. The experiments have shown that using the ontology an improvement on the base line has been produced and encorages IE techniques to refine the base ontology.
|
|
|
||||||
WEPLT022 | Transport and Installation of Cryo-magnets in CERN's Large Hadron Collider Tunnel | acceleration, factory, dipole, hadron | 1873 | ||||||
|
The arcs of the Large Hadron Collider (LHC) will contain around 1700 main superconducting dipoles and quadrupoles. The long and heavy magnets are supported on fragile composite support posts inside a cryostat to reduce the heat in-leak to the magnets' super fluid helium bath. The presence of fragile components and the need to avoid geometry changes make the cryo-magnets very difficult to handle and transport. The transport and installation of the LHC cryo-magnets in the LEP tunnels originally designed for smaller, lighter LEP magnets has required development of completely new handling solutions. The paper explains the constraints imposed by the cryo-magnet characteristics, the existing tunnel infrastructure and schedule considerations. The development and realisation of transport and handling solutions are described, starting from conceptual design, through manufacture and testing to the installation of the first cryo-magnet. Integration studies to verify and reserve space needed for manoeuvre and the preparation of the infrastructure for transport and installation operations are also presented. The paper includes conclusions and some of the lessons learned.
|
|
|
||||||
WEPLT025 | LHC Reference Database : Towards a Mechanical, Optical and Electrical Layout Database | vacuum, instrumentation, radio-frequency, injection | 1882 | ||||||
|
The LHC project has entered a phase of integration and installation of thousands of diverse components. The Hardware Commissioning work has also started. Collecting and distributing reliable and coherent information on the equipments and their layout becomes a crucial requirement in the lifecycle of the project. Existing database tools had to evolve to a more generic model to cover not only optical layout, but also the mechanical and the electrical aspects. This paper explains the requirements, the implementation and the benefits of this new database model.
|
|
|
||||||
WEPLT037 | A J2EE Solution for Technical Infrastructure Monitoring at CERN | monitoring, controls, laser, vacuum | 1912 | ||||||
|
The Technical Infrastructure Monitoring project (TIM) will design and implement the future control system for CERN's technical infrastructure. The control system will be built using standard components including industrial PLCs, Java Enterprise Edition (J2EE) including Enterprise Java Beans and the Java Message Service and relational databases. This paper describes how these standard technologies are used to build a flexible, scalable, robust and reliable control system.
|
|
|
||||||
WEPLT040 | Layout Drawings of the LHC Collider | vacuum, cryogenics, site, survey | 1921 | ||||||
|
The team in charge of the LHC integration largely uses 3D scenes combining functional positions of equipments and the 3D CAD model issued from the Cern Drawing Directory (CDD) repository. This is made possible through the Digital Mock-Up tool developed at CERN. Giving dimensions in 3D context is a challenge with the current 3D CAD tools used at CERN. Requirements from users groups have made clear a need for automatic production of 2D layout drawings. This paper presents the retained solution to create on-request dimensioned drawings, to publish them, while maintaining coherence and consistency with the 3D integration scenes. Reliability of the information, on-line availability of the latest layout changes on dimensions and positions of equipments, and the maintenance of the facility will also be described.
|
|
|
||||||
WEPLT094 | Electromagnetic Fields of an Off-axis Bunched Beam in a Circular Pipe with Finite Conductivity and Thickness - II | multipole, quadrupole, hadron, electromagnetic-fields | 2071 | ||||||
|
The general exact solution exploited [*] is applied, introducing suitable dimensionless parameters, and using appropriate asymptotic limiting forms, to compute the wake field multipoles for the different paradigm cases of LHC and DAPHNE.
|
* R. P. Croce, Th. Demma, S. Petracca "Electromagnetic Fields of an Off-axis Bunch in a Circular Pipe with Finite Conductivity and Thickness", these proceedings |
|
||||||
WEPLT157 | Single-bunch Electron Cloud Effects in the GLC/NLC, US-cold and TESLA Low Emittance Transport Lines | electron, emittance, positron, focusing | 2209 | ||||||
|
In the beam pipe of the Beam Delivery System (BDS) and Bunch Compressor system (BCS) of a linear collider, ionization of residual gasses and secondary emission may lead to amplification of an initial electron signal during the bunch train passage and ultimately give rise to an electron-cloud. A positron beam passing through the linear collider beam delivery may experience unwanted additional focusing due to interaction with the electron cloud. This typically leads to an increase in the beam size at the interaction point (IP) when the cloud density is high. Interaction with the electron cloud in the bunch compressor could also potentially cause an instability. This paper examines the severity of the electron cloud effects in the BCS and BDS of both the GLC/NLC and US-Cold linear collider design through the use of specially developed simulation codes. An estimate of the critical cloud density is given for the BDS and BCS of both designs.
|
|
|
||||||
THOBCH02 | DAFNE Operation with the FINUDA Experiment | quadrupole, wiggler, luminosity, coupling | 233 | ||||||
|
DAFNE operation restarted in September 2003, after a six months shut-down for the installation of FINUDA, a magnetic detector dedicated to the study of hypernuclear Physics. FINUDA is the third experiment running, in sequence, at DAFNE and operates while keeping on place the other detector KLOE. During the shut-down both the Interaction Regions have been equipped with remotely controlled rotating quadrupoles in order to operate at different solenoid fields. Among many other hardware upgrades one of the most significant is the reshaping of the wiggler pole profile to improve the field quality and the machine dynamic aperture. Commissioning of the collider in the new configuration has been completed in short time. The peak luminosity delivered to FINUDA has reached 6 1031 s-1 cm-2, with a daily integrated value exceeding 3 pb-1.
|
Work presented by C. Milardi on behalf of the DAFNE Team |
|
Video of talk
|
|
Transparencies
|
|
||
THPLT026 | Beam Profile Measurements at PETRA with the Laserwire Compton Scattering Monitor | laser, photon, positron, background | 2529 | ||||||
|
The vertical beam profile at the PETRA positron storage ring has been measured using a laserwire scanner. A laserwire monitor is a device which can measure high brilliant beam profiles by scanning a finely focused laser beam non-invasively across the charged particle beam. Evaluation of the Compton scattered photon flux as a function of the laser beam position yields the transverse beam profile. The aim of the experiment at PETRA is to obtain the profile of the positron beam at several GeV energy and several nC bunch charge. Key elements of laserwire systems are currently being studied and are described in this paper such as laser beam optics, a fast scanning system and a photon calorimeter. Results are presented from positron beam profile scans using orbit bumps and a fast scanning scheme.
|
|
|
||||||
THPLT036 | New Discretization Scheme for Wake Field Computation in Cylindrically Symmetric Structures | alignment, linear-collider, collective-effects, simulation | 2559 | ||||||
|
Collective effects due to wake fields are a limiting factor in almost every new front line accelerator. Since the early 80's computer codes such as TBCI and MAFIA have been developed for computing wake fields in realistic accelerator structures. With the advent of linear collider studies and small wavelength FEL projects these codes had to face a severe limitation. For the very short bunches in these new accelerators combined with the need for an analysis of very long sections the discrete dispersion became a serious drawback. This effect of having only discrete field values rather than continous ones can be overcome by special algorithms such as semi-implicit integrators as used e.g. in the wake field code ECHO. In this paper we present a new explicit approach which combines the advantage of explicit algorithms (fast) with the absence of dispersion in beam direction.
|
|
|
||||||
THPLT107 | VEPP-4M Optical Beam Profile Monitor with a One-turn Temporal Resolution | pick-up, diagnostics, synchrotron, betatron | 2733 | ||||||
|
The transverse beam profile monitor based on Hamamatsu multi-anode photomultiplier with 16 anode strips is used at the VEPP-4M collider. The monitor is applied to study turn-to-turn dynamics of the transverse beam profile during 131 000 turns. The device provides a permanent measurement of synchrotron and betatron frequencies as well.
|
|
|
||||||
THPLT108 | The Study of the Beam TAILS with the Optical Coronagraph | vacuum, simulation, scattering, storage-ring | 2736 | ||||||
|
Optical white-light Lyot coronograph is applied at the VEPP-4M collider to study the "tails" of the transverse beam profile. The device is used for investigation of the beam-beam effects.
|
|
|
||||||
THPLT109 | The Upgraded Optical Diagnostic of the VEPP-4M Collider | diagnostics, electron, positron, booster | 2739 | ||||||
|
The upgraded optical diagnostic of the VEPP-4M collider is described. The system abilities are improved sufficiently in comparing with the previous version. Now the diagnostic supplies the data about an electron/positron beam transversal and longitudinal size, shape and position. It is applied to study the electron beam "tails" and turn-to-turn beam profile dynamics. The system is used to tune of the beam pass-by from the VEPP-3 booster to the VEPP-4M collider and provides the permanent measurements of the synchrotron and betatron frequencies.
|
|
|