A   B   C   D   E   F   G   H   I   K   L   M   N   O   P   Q   R   S   T   U   V   W    

power-supply

  
Paper Title Other Keywords Page
MOPLT003 Upgrading the LNLS Control System from a Proprietary to a Commercial Communications Environment target, monitoring, feedback, linac 530
 
  • J.G.R.S. Franco, R.M. Ernits, M. Fernandes, A.F.A. Gouveia, J.R. Piton, M.A. Raulik, F.D.S. Rodrigues
    LNLS, Campinas
  The LNLS Control System was built over a proprietary technology, due to governmental policy of information technology in the mid 80's. This made interfacing to commercial systems difficult, limited the technology transfer to the private sector, required a staff with specific knowledge and reduced the possibility of new implementations on the system. Nowadays, the cost to move all of our hardware to a commercial one is out of our budget. This paper describes a proposal, the viability study and first results to move only the communication interfaces to a commercial environment, keeping most of our hardware unchanged and opening the way to gradually move the system to widely accepted standards, when and if necessary. This solution allows a smooth implementation without long periods of machine shutdown and keeps the possibility to operate the machine concurrently between old and new communication interfaces.  
 
MOPLT048 High Current Switch-mode Power Converter Prototype for LHC Project 6kA, 8V simulation, collider, positron, quadrupole 656
 
  • E. Jauregi, J.M. Del Río, J.M. Dela Fuente, M. Tellería, J.R. Zabaleta
    JEMA GJ, Lasarte-Oria
  • F. Bordry, V. Montabonnet
    CERN, Geneva
  • E.F. Figueres
    E.T.S.I.I., Valencia
  For the Large Hadron Collider (LHC) accelerator being constructed on the CERN site, very precise variable DC currents are required. The company JEMA had during year 2002, designed, manufactured and tested a power converter prototype according to CERN specifications, particularly demanding in terms of dc stability and dynamic response. The power converter is formed by four sub-converters 8V, 2kA in parallel. Isolation between mains input and magnet load is at high frequency done, 40 kHz, which means a volume reduction and better mains perturbations rejection. IGBT inverter soft switch-mode power conversion in ZVS operation reduces dramatically commutation losses, increasing total efficiency of the power converter. The sub-converter, regulated by a wide band width current loop in ACC mode, follows the current reference calculated by the overall voltage loop, providing a good sharing of the output currents and high output stability. The design of the water cooled power converter, results in a very reduce volume and modular structure, providing the system a very flexible exchangeability. The power converter was tested and accepted by CERN into year 2003, some minor points were left to be adjusted during the pre-series stage.  
 
MOPLT050 High-beta and Very High-beta Optics for LHC optics, insertion, quadrupole, scattering 662
 
  • A. Faus-Golfe
    IFIC, Valencia
  • A. Verdier
    CERN, Geneva
  New high-beta and very high-beta optics has been sought in order to find the best possible configuration for measuring total cross section in TOTEM and absolute luminosity in ATLAS. They are based on nominal powering scheme of the low-beta triplet. A list of the various possible solution is given in this report. A particularly interesting solution has been found for a case where the phase advance in both planes at the detector location are close to pi/2.  
 
MOPLT086 Upgrading the Control System at KCSR monitoring, vacuum, radiation, storage-ring 734
 
  • I.V. Krylov, V. Korchuganov, L.A. Moseiko, N.I. Moseiko, V.A. Novikov, A.G. Valentinov, Y.L. Yupinov
    RRC Kurchatov Institute, Moscow
  Till now Kurchatov Centre of Synchrotron Radiation facility control system is based on a CAMAC-oriented computers network. In this paper the project of upgrading and results of prototyping of the new equipment is submitted. Upgrading includes two levels. First, it is possible to create the modern CAMAC crate-controller, connected with standard network. More advanced variant will consist in replacement of CAMAC modules with the embedded controllers of equipment. Second level is a creation of a local managing network of personal computers, as consoles of the control system. The control system is functionally divided into four levels: 1) the controllers managing in a real-time mode by the executive equipment; 2) the workstations which are supporting the link with controllers by CAN-network; 3) the server of applications containing a dynamic database; 4) the PCs network for users applications. Examples of realisation of the software are presented.  
 
MOPLT097 Co-sourcing Development of Accelerator Controls controls, synchrotron, vacuum, booster 758
 
  • K. Zagar, R. Sabjan, I. Verstovsek
    JSI, Ljubljana
  • M. Plesko
    Cosylab, Ljubljana
  Frequently, accelerator facilities make use of products and services offered by the industry. This paper's focus is on such outsourcing of control system hardware and software. Firstly, an attempt is made to explain the facility's motivation for seeking outside help, which is typically due to lack of resources, technology or knowledge. Then, the risks of outsourcing are enumerated. To mitigate them, the industrial partner should have not only the adequate technical expertise, but also a reliable, yet agile management and quality assurance process that meets the facility's expectations, schedule, budget constraints, maintenance and support needs. Finally, Cosylab's business model is presented, designed to provide lasting open-source solutions that help not only a single facility, but the entire community.  
 
MOPLT124 Control System of the Small Isochronous ring injection, dipole, extraction, ion 830
 
  • J.A. Rodriguez, F. Marti
    NSCL, East Lansing, Michigan
  • E. Pozdeyev
    Jefferson Lab, Newport News, Virginia
  The purpose of this paper is to describe the control system of the Small Isochronous Ring (SIR) developed and built at the National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University (MSU). SIR is a small-scale experiment that simulates the dynamics of intense beams in large accelerators. A 20 to 30 keV hydrogen or deuterium ion bunch is injected in the ring, extracted after a variable number of turns and its longitudinal profile is studied. Information about the electronics used and software written to control different injection line, ring and extraction line elements is included. Some of these elements are magnets, electrostatic quadrupoles, electric and magnetic correctors, scanning wires, emittance measurement system, chopper and a fast Faraday cup.  
 
MOPLT165 Luminosity Increases in Gold-gold Operation in RHIC luminosity, vacuum, background, electron 917
 
  • W. Fischer, L. Ahrens, J. Alessi, M. Bai, D. Barton, J. Beebe-Wang, M. Blaskiewicz, J.M. Brennan, D. Bruno, J. Butler, R. Calaga, P. Cameron, R. Connolly, T. D'Ottavio, J. DeLong, K.A. Drees, W. Fu, G. Ganetis, J. Glenn, T. Hayes, P. He, H.-C. Hseuh, H. Huang, P. Ingrassia, U. Iriso, R. Lee, Y. Luo, W.W. MacKay, G. Marr, A. Marusic, R. Michnoff, C. Montag, J. Morris, T. Nicoletti, B. Oerter, C. Pearson, S. Peggs, A. Pendzick, F.C. Pilat, V. Ptitsyn, T. Roser, J. Sandberg, T. Satogata, C. Schultheiss, A. Sidi-Yekhlef, L. Smart, S. Tepikian, R. Tomas, D. Trbojevic, N. Tsoupas, J. Tuozzolo, J. Van Zeijts, K. Vetter, K. Yip, A. Zaltsman, S.Y. Zhang, W. Zhang
    BNL, Upton, Long Island, New York
  After an exploratory phase, during which a number of beam parameters were varied, the RHIC experiments now demand high luminosity to study heavy ion collisions in detail. Presently RHIC operates routinely above its design luminosity. In the first 4 weeks of its current operating period (Run-4) the machine has delivered more integrated luminosity that during the 14 weeks of the last gold-gold operating period (Run-2). We give an overview of the changes that increased the instantaneous luminosity and luminosity lifetime, raised the reliability, and improved the operational efficiency.  
 
TUPKF005 Inductive Output Tube Based 300 kW RF Amplifiers for the Diamond Light Source klystron, factory, synchrotron, target 962
 
  • J. Alex, M. Brudsche, M. Frei, M. Müller, A. Spichiger
    Thales Broadcast & Multimedia AG, Turgi
  • M. Jensen
    Diamond, Oxfordshire
  All currently operating synchrotron light sources use klystron amplifiers to generate the RF power for the accelerator cavities. In TV broadcasting systems on the other hand, Inductive Output Tubes (IOT)are replacing the classical klystron based systems in all new high power UHF transmitters. The Diamond Light Source will be the first synchrotron to be operated using IOTs. For each accelerating cavity a total of four IOTs will be combined with a waveguide combiner to achieve the RF power requirement of 300 kW at 500 MHz. All IOTs will be supplied from a common crowbarless high voltage power supply. Three such systems will be installed starting in October 2004. This paper gives an overview of the design of the amplifiers, including the first test results from the factory commissioning.  
 
TUPKF008 Status of the HoBiCaT Superconducting Cavity Test Facility at BESSY linac, vacuum, superconductivity, radiation 970
 
  • J. Knobloch, W. Anders, J. Borninkhof, S. Jung, M. Martin, A. Neumann, D. Pflückhahn, M. Schuster
    BESSY GmbH, Berlin
  BESSY has recently constructed the HoBiCaT cryogenic test facility for superconducting TESLA cavity units, including all ancillary devices (helium tank, input coupler, tuner, magnetic shielding). It is designed to house two such units in a configuration similar to that envisaged for the superconducting CW linac of the BESSY FEL. These units are presently being fabricated, prepared and assembled by industry. HoBiCaT will be used to address many of the issues that must be considered prior to finalizing the design of the proposed linac. Rapid turn-around-tests permit the investigation of items such as RF regulation, microphonic detuning and cryogenic parameters/achievable pressure stability. These test will also serve as the first step towards qualifying the industrial production of assembled cavity units. The commissioning of HoBiCaT is scheduled for Spring 2004 and the current status is presented here.  
 
TUPKF031 Non-resonant Accelerating System at the KEK-PS Booster booster, impedance, beam-losses, synchrotron 1027
 
  • S. Ninomiya, M. Muto, M. Toda
    KEK, Ibaraki
  The non-resonant accelerating system for the KEK-PS booster accelerator has been constructed. The system has been operating since October 2003 without trouble. The accelerating gap in the system is loaded with magnetic cores of high permeability. The cores produce high resistive impedance at the gap. The power dissipated in the cores amounts to 50kW at 16kV accelerating voltage. It is removed by forced-air cooling system. At the last operation of the accelerator, with the help of new COD-correction system, the average beam intensity of the booster increased to 2.6E+12ppp, which is 30% higher than before.  
 
TUPKF032 COD Correction by Novel Back-leg at the KEK-PS Booster injection, booster, beam-losses, closed-orbit 1030
 
  • S. Ninomiya, K. Satoh, H. Someya, M. Toda
    KEK, Ibaraki
  The COD correction is performed by using new driving system of back-leg windings. Two back-leg coils of the separate magnets are connected to make a closed circuit in which the induced voltages of the two magnets have opposite phases to each other. When the current source is inserted into the closed loop, the current drives the two magnets with opposite polarities. If the pair of magnets is properly selected, the current effectively corrects the orbit distortion. The selection rule of the pair is as follows; one is the magnet at the maximum distortion and the second magnet is that separated with the betatron phase of -90deg. The correction system at the KEK-PS Booster reduced the COD to less than 1/5 of that without correction, and increased the capture efficiency. The average beam intensity of our Booster is increased from 2E+12 to 2.6E+12ppp.  
 
TUPKF051 A 500 kV Power System for a Gridded Sheet-beam Klystron klystron, impedance, cathode, gun 1066
 
  • M.A. Kempkes, F.O. Arntz, J.A. Casey, M.P.J. Gaudreau, N. Reinhardt, R.P. Torti
    Diversified Technologies, Inc., Bedford
  The Next Generation Linear Collider (NLC) will require hundreds of X-band high power klystrons. These klystrons are typically cathode pulsed at 500 kV and 265 A each, with 1.6 microsecond pulses of RF, and a complex microwave delay line to achieve 400 ns RF pulses. Because the pulsed voltage is so high, CV2f losses will lead to many millions of dollars per year of wasted power. The klystron group at SLAC, working with Calabazas Creek Research (CCR), is developing a gridded, sheet beam klystron. This new klystron design avoids the CV2 losses of cathode pulsing because its cathode is not pulsed - it remains at a constant high voltage. Instead, the grid voltage is pulsed over a much smaller (6 kV) voltage range. This paper will describe DTI's progress in development of the electronics required to drive this new klystron, including a 500 kV multiplier power supply and grid modulator, a multi-concentric high voltage cable, which also acts as the pulse forming line, and an advanced, reentrant cable connection to the klystron itself. This design allows the klystron to be located adjacent to the beamline, and separated from the power electronics, improving RF efficiency, maintainability, and overall reliability.  
 
TUPKF058 Test Results for the New 201.25 MHz Tetrode Power Amplifier at LANSCE linac, proton, electron, impedance 1078
 
  • J.T.M. Lyles, S. Archuletta, J. Davis, L. Lopez, G. Roybal
    LANL/LANSCE, Los Alamos, New Mexico
  A new RF amplifier has been constructed for use as the intermediate power amplifier stage for the 201.25 MHz Alvarez DTL at LANSCE. It is part of a larger upgrade to replace the entire RF plant with a new generation of components. The new RF power system under development will enable increased peak power with higher duty factor. The first tank requires up to 400 kW of RF power. This can be satisfied using the TH781 tetrode in a THALES cavity amplifier. The same stage will be also used to drive a TH628 Diacrode? final power amplifier for each of the three remaining DTL tanks. In this application, it will only be required to deliver approximately 150 kW of peak power. Details of the system design, layout for DTL 1, and test results will be presented.  
 
TUPLT012 Adjusting the IP Beta-functions in RHIC. quadrupole, lattice, simulation, optics 1156
 
  • W. Wittmer, F. Zimmermann
    CERN, Geneva
  • F.C. Pilat, V. Ptitsyn, J. Van Zeijts
    BNL, Upton, Long Island, New York
  The beta- functions at the IP can be adjusted without perturbation of other optics functions via several approaches. In this paper we describe a scheme based on a vector knob, which assigns fixed values to the different tuning quadrupoles and scales them by a common multiplier. The values for the knob vector were calculated for a lattice without any errors using MADX. Previous studies for the LHC have shown that this approach can meet the design goals. A specific feature of the RHIC lattice is the nested power supply system. To cope with the resulting problems a detailed response matrix analysis has been carried out and different sets of knobs were calculated and compared. The knobs are tested at RHIC during the 2004 run and preliminary results maybe discussed. Simultaneously a new approach to measure the beam sizes of both colliding beams at the IP, based on the tune ability provided by the knobs, was developed and tested.  
 
TUPLT024 A Comparison of High Current Ion Beam Matching from an Ion Source to a RFQ by Electrostatic and by Magnetic Lenses ion, rfq, emittance, ion-source 1192
 
  • R. Becker, R.A. Jameson, A. Schempp
    IAP, Frankfurt-am-Main
  • T. Hata, N. Hayashizaki, H. Kashiwagi, K. Yamamoto
    RLNR, Tokyo
  • T. Hattori, M. Okamura, A. Sakumi
    RIKEN, Saitama
  In order to improve the ?direct? injection scheme of the Riken Nd-YAK-laser driven ion source into a RFQ rf-accelerator, several basic methods have been investigated and compared, in order to transform the initially divergent ion beam into a convergent one, needed for matching the high current (100 mA C6+) ion beam at an energy of 100 keV to a RFQ. From the point of power supplies and break down characteristics, the simplest solution is a decelerating electrostatic lens, with the decelerating electrode operated on ion source potential. Due to the strong divergence of the ions beam after acceleration, this lens will be filled to an aperture, which causes strong aberrations. Therefore, we also investigated to use an accelerating potential on the lens electrode. This reduces significantly the filling of the lens and the emittance growth is only a factor of 3, as compared to the decelerating lens with a factor of 30! Finally we have been looking also into a magnetic matching system, which can match the ion beam to the RFQ with virtually no emittance growth.  
 
TUPLT026 High Current Ion Beams at Frankfurt University ion, electron, plasma, space-charge 1198
 
  • M. Droba, O. Meusel, U. Ratzinger, K. Volk
    IAP, Frankfurt-am-Main
  A new building for the physics faculty at the Goethe-University in Frankfurt is under construction including an experimental hall. The Institute of Applied Physics IAP has started development of a high current ion beam facility consisting of a high voltage terminal(150 kV,I_beam < 300 mA,H-,p,Bi+), a 10 MV linear rf accelerator and a high current storage ring for 150 keV beams. The 150 kV terminal equipment is already ordered while the subsequent units are in the design stage. The storage ring will use a stellarator-like magnetic configuration to allow for a high degree of space charge compensation by electrons. The facility will allow high current beam investigations as well as experiments in fields of plasma, nuclear and atomic physics.  
 
TUPLT075 Improvements of SPring-8 Linac towards Top-up Operation linac, injection, synchrotron, vacuum 1327
 
  • S. Suzuki, T. Asaka, H. Dewa, H. Hanaki, T. Kobayashi, T. Masuda, A. Mizuno, T. Taniuchi, H. Tomizawa, K. Yanagida
    JASRI/SPring-8, Hyogo
  The top-up operation of the SPring-8 storage ring will start in May, 2004. In order to realize alternative injection into the booster synchrotron in the top-up operation and the NewSUBARU, an AC bending magnet replaced the DC bending magnet in the beam transport line to the booster synchrotron. This magnet operates at 1 Hz with a trapezoid current pattern. The 1-GeV electron beam goes at the bottom of the current pattern to the NewSUBARU or at the top of the pattern to the booster synchrotron. In order to obtain the higher reliability of the linac for the top-up operation, reinforcement of the beam monitor systems, further improvement of RF phase stability and upgrade of the control system were required. BPM?s has been newly installed in energy dispersion sections, and beam transport feedback control is in development. The phase variation in the RF system was reduced by the regulation of the gas pressure in the waveguide of the klystrons drive system. We re-engineered the VME systems to maximize availability of the linac operation considering its reliability, usability, expandability and flexibility.  
 
TUPLT099 A Kicker Pulse Power Supply with Low Jitter kicker, injection, storage-ring, booster 1387
 
  • C.-S. Fann, J.-P. Chiou, S.Y. Hsu, K.-B. Liu
    NSRRC, Hsinchu
  The performance of kicker pulse power supplies is the main parameter to increase injection efficiency of storage ring that is an important issue for laboratory of synchrotron radiation research. The output current waveform of a kicker pulse power supply with low timing jitter is our goal for years that must satisfy the Top-Up mode injection requirement of NSRRC. In the past years kicker pulse power supplies of storage ring of NSRRC are immersed in isolation oil to sustain high voltage operational environment that led difficult to maintain, electronic component degrading and uneasy to tune parameters. Air-cooling and air-isolation is adopted in the new design structure for kicker pulse power supply system and an pre-trigger unit MA2709A is installed to trigger thyratron tube CX1536A, a kicker pulse power supply with low timing jitter 1~2ns(p-p) is obtained and could satisfy for Top-Up mode injection and maintenance is more easier than before.  
 
TUPLT140 Redesign of the ISIS Main Magnet Power Supply Storage Choke coupling, synchrotron, insertion, proton 1455
 
  • A.J. Kimber, J.W. Gray, A. Morris
    CCLRC/RAL/ISIS, Chilton, Didcot, Oxon
  The ISIS facility, based at the Rutherford Appleton Laboratory in the UK, provides intense pulsed neutron and muon beams for condensed matter studies. As part of the facilities upgrade and refurbishment program, the 1MJ storage choke which forms part of the main magnet power supply system, will be replaced with a number of smaller units. The present storage choke, which consists of a split secondary winding transformer, is incorporated into a series-parallel resonant circuit known as the 'white circuit'. This circuit ensures that each magnet receives identical currents, but is not subjected to excessive voltages. Although the storage choke is essentially a transformer, its secondary magnetising inductance is relatively low and a precisely defined value. This paper discusses the design and development of ten smaller units which will eventually replace the present equipment, and the testing of a one fifth scale model, which will be used to prove the technology.  
 
TUPLT144 Upgrade of the ISIS Main Magnet Power Supply synchrotron, feedback, proton, controls 1467
 
  • S. West, J.W. Gray, A. Morris
    CCLRC/RAL/ISIS, Chilton, Didcot, Oxon
  ISIS, situated at the Rutherford Appleton Laboratory (RAL) is the world?s most powerful pulsed neutron source. At the heart of the ISIS accelerator is a proton synchrotron which uses a ring of magnets connected in series and configured as a ?White Circuit?. The magnets are connected in series with capacitor banks so that they form a resonant circuit with a fundamental frequency of 50 Hz. The circuit allows the magnets to be fed with an AC current superimposed on a DC current. The AC is currently provided by a 1MVA Motor-Alternator set and it is now proposed to replace this by a solid state UPS (Uninterruptible Power Supply) system. Tests on a smaller 80kVA unit have shown that it is possible to control the magnet current with a modified UPS system in such a way that both the frequency, phase and output voltage are under the direct influence of the control system. This paper discusses the issues surrounding the upgrading of AC supply to the main magnets with a view to improving the system reliability, improving magnet current stability and reducing the risk of mains failure.  
 
TUPLT180 Results of the NASA Space Radiation Laboratory Beam Studies Program at BNL ion, booster, radiation, quadrupole 1547
 
  • K.A. Brown, L. Ahrens, R.H. Beuttenmuller, I.-H. Chiang, D.C. Elliott, D. Gassner, Z. Li, I. Marneris, J. Mead, J. Morris, D. Phillips, V. Radeka, A. Rusek, N. Tsoupas, B. Yu, K. Zeno
    BNL, Upton, Long Island, New York
  The NASA Space Radiation Laboratory (NSRL) was constructed in collaboration with NASA for the purpose of performing radiation effect studies for the NASA space program. The NSRL makes use of heavy ions in the range of 0.05 to 3 GeV/n slow extracted from BNL's AGS Booster. The purpose of the NSRL beam studies program is to develop a clear understanding of the beams delivered to the facility, to fully characterize those beams, and to develop new capabilities in the interest of understanding the radiation environment in space. In this report we will describe the first results from this program.  
 
TUPLT186 Managing System Parameters for SNS Magnets and Power Supplies target, vacuum, controls, linac 1565
 
  • W.J. McGahern, S. Badea, F.M. Hemmer, H.-C. Hseuh, J.W. Jackson, A.K. Jain, F.X. Karl, R.F. Lambiase, Y.Y. Lee, C.J. Liaw, H. Ludewig, G.J. Mahler, W. Meng, C. Pai, C. Pearson, J. Rank, D. Raparia, J. Sandberg, S. Tepikian, N. Tsoupas, J. Tuozzolo, P. Wanderer, J. Wei, W.-T. Weng
    BNL, Upton, Long Island, New York
  • R. Cutler, J.J. Error, J. Galambos, M.P. Hechler, S. Henderson, P.S. Hokik, T. Hunter, G.R. Murdoch, K. Rust, J.P. Schubert
    ORNL/SNS, Oak Ridge, Tennessee
  The Spallation Neutron Source (SNS), currently under construction at Oak Ridge, Tennessee, is a collaborative effort of six U.S. Department of Energy partner laboratories. With over 312 magnets and 251 power supplies that comprise the beam transport lines and the accumulator ring, it is a challenge to maintain a closed loop on the variable parameters that are integral to these two major systems. This paper addresses the input variables, responsibilities and design parameters used to define the SNS magnet and power supply systems.  
 
TUPLT187 SNS Extraction Kicker Power Supply Control kicker, extraction, proton, controls 1568
 
  • J.-L. Mi, L. Hoff, R.F. Lambiase, Y.Y. Lee, J. Sandberg, Y. Tan, N. Tsoupas, R. Zapasek, W. Zhang
    BNL, Upton, Long Island, New York
  There are fourteen PFN power supplies, which will be installed in the SNS Extraction Kicker System. This paper will introduce these fourteen-power supplies arrangement and control schematic. These control instruments and boards are installed into four standard racks. Some of the control boards functions will be list in this paper. Control racks and some control boards pictures will be shown in this paper.  
 
TUPLT188 SNS Extraction Kicker Power Supply Manufacture Status kicker, extraction, impedance, coupling 1571
 
  • J.-L. Mi, H. Hahn, R.F. Lambiase, Y.Y. Lee, C. Pai, J. Sandberg, Y. Tan, N. Tsoupas, D.S. Warburton, R. Zapasek, W. Zhang
    BNL, Upton, Long Island, New York
  There are fourteen PFN power supplies, which will be installed in the SNS Extraction Kicker System. The Pulse Forming Network (PFN) power supplies for the SNS Extraction kicker were designed by Brookhaven. The basic configuration of the PFN is a lumped element Blumlein pulse forming network (BPFN). The PFN and power supply are fabricated by an industrial company. The first article of. PFN and power supply has been manufactured and tested with a dummy load at the company and onsite with the prototype magnet. The PFN has been tested beyond its specification and has met all requirements including rise time, pulse flatness, amplitude and pulse repetition rate. Additional heat runs are scheduled. The transverse coupling impedance of the kicker system with attached PFN has been measured. This paper will report on the SNS Extraction Kicker Power Supply engineering status, and will include output waveforms, impedance measurements, and production projections.  
 
TUPLT191 Transverse Optics Improvements for RHIC Run 4 optics, dipole, sextupole, injection 1580
 
  • J. Van Zeijts
    BNL, Upton, Long Island, New York
  The magnetic settings in RHIC are driven by an online model, and the quality of the resulting lattice functions depend on the correctness of the settings, including knowledge of the magnet transfer-functions. Here we first present the different inputs into the online model, including dipole sextupole compenents, used to set tunes and chromaticities along the ramp. Next, based on an analysis of measured tunes and chromaticities along the fy03 polarized proton ramp, we present predictions for quadrupole transfer-function changes. The changes are implemented for the fy04 Au ramp, and we show the improved model agreement for tunes, and chromaticities along the ramp, and measured transverse phase-advance at store. We also describe model improvements for derived observables like the quality of transverse bump closure and observed luminosity ratios between individual interaction points.  
 
WEILH03 Industrial Response to RF Power Requirements linear-collider, collider, monitoring, feedback 202
 
  • M. Wilcox
    e2v technologies, Chelmsford, Essex
  Today, high-energy physics machines are broadly speaking of two kinds. Some machines are dedicated to providing a service using particle acceleration as an intermediate step (light sources, neutron spallation sources, cancer therapy equipment etc.)and occasionally, particle colliders are built in which the particles are used directly to probe the nature and origin of matter. The latter machines have developed to a point where the technology needed is often at the extreme edge of what is understood, let alone of what is currently achievable. In addition the scope of supply and the level of equipment integration demanded of industry is increasing as RF skills become scarcer. This reduces the supplier base so placing greater demands on those remaining. To help offset this problem, companies should be brought 'inside' the project team at an early stage of the machine design so that better account can be taken of limitations, preferences and competing obligations that the companies may have. A more collaborative approach should result in projects being completed in a shorter time, to a lower cost, and with a more certain outcome.  
Video of talk
Transparencies
 
WEPKF014 Magnetic Field Tracking Experiments for LHC quadrupole, dipole, feedback, injection 1621
 
  • V. Granata, J. Billan, F. Bordry, L. Bottura, P. Coutinho Ferreira, E. Effinger, G. Fernqvist, P. Galbraith, Q. King, J. Pett, A. Raimondo, A. Rijllart, H. Thiesen
    CERN, Geneva
  At the Large Hadron Collider (LHC) at CERN one of the fundamental requirements during the energy ramp is that the ratio between the field produced by the quadrupoles and the field in the dipoles remains constant in order to minimize the variation of the betatron tune that could induce particle loss. With a series of tracking experiments it has been demonstrated that this ratio can be maintained constant to better than 10-4 throughout the same current ramp as foreseen for the LHC. A technique has been developed to optimise the dipole and quadrupole current ramps to obtain the required ratio of B2/B1. Measurements performed by modulating the current with a harmonic function (so-called k-modulation) demonstrated that it is possible to modulate the strength of an individual quadrupole to determine the magnetic center through beam-based measurements.  
 
WEPKF019 Magnetic Measurement Systems for the LHC Dipole Assembly Firms dipole, site, controls, alignment 1636
 
  • H. Reymond, J. Billan, J. Garcia Perez, D. Giloteaux, A. Raimondo, V. Remondino, A. Rijllart
    CERN, Geneva
  The LHC lattice superconducting dipole magnets are actually under construction in three European industries. Due to the extremely high magnet performance required for the LHC, these magnets have to be built with high accuracy during all the steps of their assembling. In order to detect defects in the earliest production phases and to ensure the quality of the magnetic field as specified by the CERN contracts, dedicated measurement benches have been built and installed in each industry to validate the magnetic field quality at two important production stages. This paper describes the initial requirements and the implementation of the magnetic measurement systems. Details on the technical solutions, the present status and measurement results are presented.  
 
WEPKF020 The Design of the Special Magnets for PIMMS/TERA injection, septum, extraction, vacuum 1639
 
  • L. Sermeus, J. Borburgh, T. Fowler, M. Hourican, K.D. Metzmacher
    CERN, Geneva
  • M. Crescenti
    TERA, Novara
  In the framework of a collaboration agreement with the TERA Foundation CERN provided the design, drawings and engineering specifications for 2 kickers, 1 chopper and 3 bumper magnets as well as 3 magnetic and 2 electrostatic septa, power supplies for the electrostatic septa, kickers and bumpers including control electronics for the PIMMS/TERA proton and carbon ion medical synchrotron. The first application will be in the Italian National Centre for Hadron Therapy, to be constructed in Pavia. The main features of the devices are described along with the strategic design choices, directed by the demand for very high reliability and minimum maintenance.  
 
WEPKF026 Kicker Pulser with High Stability for the BESSY FEL kicker, laser, extraction, electron 1654
 
  • J. Feikes, O. Dressler, J. Kuszynski
    BESSY GmbH, Berlin
  In the BESSY FEL design a kicker system is forseen to extract electron bunches from the main LINAC into two FEL beam lines, beside the straigth main beamline. Sine half wave pulsers with a repetion rate of up to 1 kHz and modest pulse currents of 120A will be used. To receive the maximum FEL gain, it is crucial, that the extracted bunches enter well centered into the undulators. Hence, the extraction demands for very high short-term stability of the magnetic field (shot to shot). A kicker pulse amplitude with a relative amplitude jitter smaller than 5* 10-5 would be tolerable ?more than one order smaller than the jitter of conventional BESSY II kicker systems in use. A new highly stable semiconductor based kicker pulser prototype was designed, built and tested at BESSY. It was shown that the stability of the pulse current fulfills the FEL requirements. The pulser design, its layout and the corresponding pulse current jitter measurements are presented.  
 
WEPKF028 High Charge Transfer Operation of Light Trigged Thrystor Crowbars klystron, impedance 1660
 
  • W. Merz
    DESY, Hamburg
  High power klystrons are protected by the application of crowbar switches. The closing switch approach is most commonly used. It is characterized by establishing a short circuit path to bypass the klystron fault current. During short circuit operation the crowbar switch must be capable to carry both puls current of the filter capacitor and follow through current of the high voltage dc power supply. Depending on the main circuit parameters both the capacitor charge and the follow through charge can achieve significant amounts. The application of line controlled and uncontrolled hvdc power converters requires special attention regarding the follow through current charge transfer. This paper presents first practical results of series connected Light Triggered Thyristors (LTT) operating as closing crowbar switches. Measured data are discussed, which have been obtained from the DESY-II installation operating with thyristor controllers and the PETRA installation operating with uncontrolled rectifiers. Beside the puls operation the follow through current capability of the crowbar is pointed out.  
 
WEPKF042 Installation and Operation of New Klystron Power Supply with Fast Solid-State Switch for Klystron Protection at the Photon Factory Storage Ring klystron, factory, storage-ring, photon 1699
 
  • S. Sakanaka, M. Izawa, T. Takahashi, K. Umemori
    KEK, Ibaraki
  In the 2.5-GeV Photon Factory storage ring at KEK, there are four klystron power supplies which typically operate at an output voltage of -40 kV with 8 A. We replaced one of these power supplies during 2003 and the new power supply is in operation. This power supply is equipped with a solid-state high-voltage (HV) switch for klystron protection. This HV switch is made up of eighty insulated gate bipolar transistors (IGBT), and it can turn the high-voltage off within a few tens of microseconds in cases of any discharges in the klystrons. We report the performance of this new power supply.  
 
WEPKF046 Gradient Field Generation in a Uniform Gapped Magnet synchrotron, proton, vacuum, lattice 1705
 
  • Y. Iwashita
    Kyoto ICR, Uji, Kyoto
  • Y. Arimoto, A. Sato
    Osaka University, Osaka
  Magnets with gradient field (indexed magnets) usually have different gap distances with the different entrance positions. This situation will break a uniformity of the effective length. Trim coils, which are usually used in Cyclotron, are not practical to modify a field distribution when a large gradient is required such as FFAG. In order to generate a gradient field in a constant gapped magnet, a novel method with use of inter-pole is devised. This magnet has not only constant gap but also smaller fringing field compared with a conventional one. This technique should widen the recipe to design a magnet with such a complex magnetic field.  
 
WEPKF048 Characteristics of Ground Motion at KEK and SPring-8 ground-motion, site, linear-collider, collider 1711
 
  • Y. Nakayama, T. Ito
    JPOWER, Kanagawa-ken
  • S. Matsui, C. Zhang
    JASRI/SPring-8, Hyogo
  • R. Sugahara, S. Takeda, H. Yamaoka, M. Yoshioka
    KEK, Ibaraki
  • S. Yamashita
    University of Tokyo, Tokyo
  Authors Y. Nakayama, T. Ito, (JPOWER); R. Sugahara, S. Takeda, H.Yamaoka, M.Yoshioka (KEK); S.Matsui, C.Zhang (SPring-8); S. Yamashita (ICEPP): Abstract Stability of ground is preferable for accelerator beam operation. We have measured ground motion of ground at the KEKB and SPring-8 site, where the ground has quite different characteristics each other. In this paper, some of analysis results are shown, and the characteristics of the ground motion at the KEKB site and those at the Spring-8 site are compared.  
 
WEPKF055 Design and Implementation of a Switching Mode Bipolar Power Stage of the Correction Power Supply feedback, synchrotron, synchrotron-radiation, radiation 1729
 
  • C.-Y. Liu, C.H. Kuo, K.-B. Liu
    NSRRC, Hsinchu
  In order to enhance efficiency of the correction power supply, the switching mode bipolar power stage was to implement and to substitute for the original power stage of the correction power supply. To ensure higher efficiency, the programming dc bus voltage of the power stage of the correction power supply must be working in accordance with the output current state and load. A new power conversion stage was constructed and employs power MOSFET operating at higher switching frequency then old 60 Hz energy conversion mode system. This will not only improve the efficiency but also decrease the weight of the correction power supply. The new switching mode power stage supply a bipolar power dc bus power and automatic turning working voltage by the feedback balance circuit. Results and working performance will be presented in this paper.  
 
WEPKF056 Reducing Output Current Ripple of Power Supply with Component Replacement instrumentation, feedback, background, synchrotron 1732
 
  • K.-B. Liu, C.-S. Fann
    NSRRC, Hsinchu
  Correction magnets of synchrotron storage ring are served with linear power supplies (correction power supply) with 100 ppm output current ripple in National Synchrotron Radiation Research Center. Reducing output current ripple of correction power supply might reduce perturbation of beam position of storage ring. Replace correction power supplies with lower output current ripple ones is straightforward but costs lots of money. Without adding any other circuit and electronic component, some components of correction power supply are replaced by ones with more precious and lower output fluctuation; so that the same circuitry structure of correction power supply is kept without increasing its complexity and could reach 25 ppm output current ripple.  
 
WEPKF061 Study of Electrical Steel Magnetic Properties for Fast Cycling Magnets of SIS100 and SIS300 Rings dipole, superconducting-magnet, induction, pick-up 1741
 
  • I. Bogdanov, S. Kozub, A. Shcherbakov, L. Tkachenko
    IHEP Protvino, Protvino, Moscow Region
  • E. Fischer, F. Klos, G. Moritz, C. Muehle
    GSI, Darmstadt
  The operation conditions of yoke steels in superconducting magnets of the SIS100 and SIS300 are at 4.2 K and unipolar cycles with high magnetic induction. The results of measurements of different classes of electrical steels, both isotropic and anisotropic, in the operating conditions of superconducting dipoles are presented. The measurements are carried out on ring samples in quasistatic mode. Dependence of B(H) as well as values of Hc and hysteresis losses in bipolar and unipolar cycles are determined from hysteresis loops at different temperatures. The anisotropy of steels is measured at room temperature on the strip samples, cut along the rolling direction and across one. The comparison of results on ring and strip samples is carried out. The results of calculations of hysteresis and eddy current losses in iron yoke of fast-cycling dipole for the SIS300 are presented. The recommendations on choice of grade steels for fast cycle superconducting magnets are given.  
 
WEPKF062 Study of the Quench Process in Fast-cycling Dipole for the SIS300 Ring dipole, simulation, superconducting-magnet, dumping 1744
 
  • I. Bogdanov, S. Kozub, A. Shcherbakov, L. Tkachenko, S. Zintchenko, V. Zubko
    IHEP Protvino, Protvino, Moscow Region
  • J. Kaugerts, G. Moritz
    GSI, Darmstadt
  The results of numerical quench process simulation in the coil of superconducting dipole with magnetic field of 6 T and 100-mm aperture for high-energy ion and proton synchrotron facility SIS300 are presented. The peculiarities of quench process developed in dipole are discussed for several variants of quench conditions. The coil quench behavior determines the features, scopes, and limitations in possible quench protection scheme. Main design characteristics of the preferable protection system are considered.  
 
WEPKF068 Developments in Magnet Power Converters at the SRS booster, septum, kicker, storage-ring 1759
 
  • G.D. Charnley, J. Cartledge, P.A.D. Dickenson, S.A. Griffiths, S.H. Hands, R.J. Smith, J.E. Theed, C.J. White
    CCLRC/DL, Daresbury, Warrington, Cheshire
  A project to upgrade the magnet power converters of the SRS has commenced to ensure its efficient operation for its remaining operational lifetime. A recent risk analysis of the facilities equipment identified that the main areas for concern were the Storage Ring magnet power converters, kicker and septum pulse power supplies and the Booster Dipole "White Circuit" and associated power converters. This report detail the development and replacement programs currently active at Daresbury Laboratory, including future work identified to support and improve SRS utilisation.  
 
WEPKF069 52 kV Power Supply for Energy Recovery Linac Prototype RF klystron, cathode, linac, vacuum 1762
 
  • J.E. Theed, M. Dykes, A. Gallagher, S.A. Griffiths, S.H. Hands, A.J. Moss, J.F. Orrett, C.J. White
    CCLRC/DL, Daresbury, Warrington, Cheshire
  Daresbury Laboratory is constructing a Radio-Frequency (RF) Test Facility to be capable of testing RF cavities for accelerator applications. Electrical power for the RF equipment will be provided from an existing -52 kV 6-pulse rectifier and transformer system capable of delivering 16A DC continuous current. A crowbar circuit will be provided to divert the large amount of stored energy in the smoothing capacitor bank in the event that a spark should occur between the cathode and the body or modulating anode. Traditionally, the crowbar has been provided by using an ignitron, but modern solid state devices have sufficient performance to meet the requirements. This paper discusses the numerous design options that were considered for the circuit parameters.  
 
WEPKF071 A New Current Regulator for the APS Storage Ring Correction Magnet Bipolar Switching Mode Power Converters storage-ring, controls, photon 1768
 
  • J. Wang
    ANL, Argonne, Illinois
  The correction magnets in the Advanced Photon Source's storage ring are powered by PWM-controlled bipolar switching-mode converters. These converters are designed to operate at up to ± 150 A. The original current regulator used a polarity detection circuit, with a hysteresis, to determine which IGBT was needed to regulate the current with a given polarity. Only the required IGBT was switched while others were held on or off continuously. The overall IGBT switching losses were minimized by the design. The shortcoming of the design is that the converter's output is unstable near zero current because of the hysteresis. To improve the stability, a new current regulator, using a different PWM method, has been designed to eliminate the requirement of the polarity detection. With the new design, converters can operate smoothly in the full range of ±150 A. The new design also meets tighter specs in terms of the ripple current and dynamic response. This paper describes the design of the new regulator and the test results.  
 
WEPKF083 SPEAR3 INTERMEDIATE DC MAGNET POWER SUPPLIES quadrupole, synchrotron, synchrotron-radiation, radiation 1798
 
  • A.C. de Lira, P. Bellomo
    SLAC, Menlo Park, California
  The Stanford Synchrotron Radiation Laboratory (SSRL) has successfully commissioned SPEAR3, its newly upgraded 3-GeV synchrotron light source. First stored beam occurred December 15, 2003 and 100mA operation was reached on January 20, 2004. This paper describes the specification, design, and performance of the SPEAR3 intermediate DC magnet power supplies (IPS) that consist of tightly-regulated (better than 10 ppm) current sources ranging from 60 A to 500 A and output powers ranging from a few kW to 22.5kW. A total of 69 IPS are in successful operation. The SPEAR 3 upgrade performance and reliability requirements mandated new power supplies for both the SPEAR3 storage ring, and for the booster-to-SPEAR3 transport line. IPS are widely used at SPEAR3 to power single quadrupoles, dipoles, families of quadrupoles and sextupoles, and also on the Titanium sublimation pumps. IPS' topology allows them to be series operated for those magnet strings requiring higher voltages. A compact 19" standard rack-mounted design is common to all the units. These are off-line, switch-mode, operating at 16 kHz to reduce space and provide for fast output response and high efficiency.  
 
WEPKF084 SPEAR3 LARGE DC MAGNET POWER SUPPLIES synchrotron, feedback, quadrupole, sextupole 1801
 
  • A.C. de Lira, P. Bellomo
    SLAC, Menlo Park, California
  The Stanford Synchrotron Radiation Laboratory (SSRL) has successfully commissioned SPEAR3, its newly upgraded 3-GeV synchrotron light source. First stored beam occurred December 15, 2003 and 100mA operation was reached on January 20, 2004. This paper describes the specification, design, and performance of the SPEAR3 DC magnet large power supplies (LGPS) that consist of tightly-regulated (better than 10 ppm) current sources ranging from 100 A to 225 A and output powers ranging from 70kW to 135kW. A total of 6 LGPS are in successful operation and are used to power strings of quadrupoles, and sextupoles. The LGPS are isolated by a delta/delta-wye 60Hz step-down transformer that provide power to 2 series connected chopper stages operating phase-shifted at a 16 kHz switching frequency to provide for fast output response and high efficiency. Also described are outside procurement aspects, installation, in-house testing, and operation of the power supplies.  
 
WEPLT120 Control Environment for the Superconducting Insertion Devices at NSRRC insertion, insertion-device, wiggler, storage-ring 2134
 
  • J. Chen, C.-K. Chang, K.-T. Hsu, K.H. Hu, C.H. Kuo, C.-J. Wang
    NSRRC, Hsinchu
  To enhance hard X-ray capability in the 1.5 GeV storage ring of NSRRC to serve the rapidly growing X-ray user community in Taiwan, the storage ring was installed two superconducting insertion devices. Three more superconducting insertion devices are in planning. A 6 Tesla superconducting wavelength shifter was installed in mid-2002. A 3.2 Tesla superconducting multi-pole wiggler was installed in December of 2003. Control system and operation environment have been set up to support the operation of the superconducting insertion devices. The implementation and operation experiences will be summarized in this report.  
 
THPKF009 Orbit Control for the Canadian Light Source feedback, storage-ring, booster, injection 2275
 
  • R. Berg, L. Dallin, J.M. Vogt
    CLS, Saskatoon, Saskatchewan
  The orbit control system for the Canadian Light Source storage ring is design to provide both static global orbit correction and active correction up to 100 Hz. The system is made up of 48 button monitors (X and Y), 24 fast correcter magnets (X and Y), and 24 slow correction coils in sextupole magnets (X and Y). To date the system has been use to apply static corrections the to CLS storage ring. While some works remains on the horizontal correction, the vertical orbit has been corrected to an RMS value of less tha 0.75 mm. Future corrections may be augmented by some beam-based magnet re-alignment. The orbit correction system is run on a MATLAB(R) operating system. Singular value decompostion (svd) was used extensively to reduce initial gross mis-alignments.  
 
THPKF031 High Power (35 KW and 190 KW) 352 MHZ Solid State Amplifiers for Synchrotron SOLEIL vacuum, booster, insertion, synchrotron 2338
 
  • P. Marchand, R.L. Lopes, J. Polian, F. Ribeiro, T. Ruan
    SOLEIL, Gif-sur-Yvette
  In the SOLEIL Storage Ring (SR), two cryomodules, each containing a pair of superconducting cavities will provide the maximum power of 600 kW, required at the nominal energy of 2.75 GeV with the full beam current of 500 mA and all the insertion devices. Each of the four cavities will be powered with a 190 kW solid state amplifier consisting in a combination of 315 W elementary modules (about 750 modules per amplifier). The amplifier modules, based on a technology developed in house, with MOSFET transistor, integrated circulator and individual power supply, will be fabricated in the industry. In the booster, a 40 kW solid state amplifier (147 modules) will power a 5-cell copper cavity of the LEP type. The status and the test results of the different parts of the equipment are reported in this paper.  
 
THPKF044 The Improvement of NSRRC Linac for Top-up Mode Operation electron, linac, storage-ring, gun 2374
 
  • J.-Y. Hwang, J. Chen, J.-P. Chiou, K.-T. Hsu, S.Y. Hsu, K.H. Hu, T.C. King, C.H. Kuo, K.-K. Lin, C.-J. Wang, Y.-T. Yang
    NSRRC, Hsinchu
  • C.T. Pan
    NTHU, Hsinchu
  The performance of the 50 MeV linac at the National Synchrotron Radiation Research Center (NSRRC) was examined and has been improved recently. The major improved items were 1) adopting a command-charging scheme to replace the resonance charging for the linac modulator; and 2) gun electronics. As a result, the beam quality was improved in terms of its energy spectrum and stability. The correlation between the improvement of beam quality and component upgrading is analyzed. The influence of the beam quality improvement to the recently proposed top-up mode operation in 2005 will also be discussed in this report.  
 
THPKF069 Improvements to, and Current Status of, the CAMD Light Source wiggler, injection, lattice, diagnostics 2424
 
  • V.P. Suller, M.G. Fedurin, P. Jines, D.J. Launey, T.A. Miller, Y. Wang
    LSU/CAMD, Baton Rouge, Louisiana
  Throughout 2003 a sustained program of modifications and improvements has been applied to the CAMD light source. These affected the 7 Tesla wiggler, the RF system, the magnet power supplies, the control system, the diagnostics and the injector linac. These modifications and their impact on the storage ring performance are described, together with an analysis of where future improvements should be directed. The present performance and limitations of CAMD are described.  
 
THPKF070 A Beam Based Alignment System at the CAMD Light Source quadrupole, lattice, alignment, storage-ring 2427
 
  • V.P. Suller, E.J. Anzalone, A.J. Crappell, M.G. Fedurin, T.A. Miller
    LSU/CAMD, Baton Rouge, Louisiana
  Beam based alignment is being applied to the CAMD light source. It is implemented by a flexible and versatile system of electronic shunts which are applied to each of the storage ring lattice quadrupoles. The essential design features of the electronic shunts are described as is the routine operation of the full system. The improvement to the corrected closed orbit from using the system is shown. Preliminary results are presented of the use of the shunts for correcting the lattice functions.  
 
THPKF082 The Completion of SPEAR 3 vacuum, shielding, injection, radiation 2451
 
  • R.O. Hettel, R. Akre, S. Allison, P. Bellomo, R.M. Boyce, L. Cadapan, R. Cassel, B. Choi, W.J. Corbett, D. Dell'Orco, T. Elioff, I. Evans, R. Fuller, S. Hill, D. Keeley, N. Kurita, J. Langton, G. Leyh, C. Limborg-Deprey, D. Macnair, D.J. Martin, P.A. McIntosh, E. Medvedko, C.-K. Ng, I. Nzeadibe, J. Olsen, M. Ortega, G.C. Pappas, S. Park, T. Rabedeau, H. Rarback, A. Ringwall, P. Rodriguez, J.A. Safranek, H.D. Schwarz, B. Scott, J.J. Sebek, S. Smith, T. Straumann, J. Tanabe, A. Terebilo, T.A. Trautwein, C. Wermelskirchen, M. Widmeyer, R. Yotam, K. Zuo
    SLAC/SSRL, Menlo Park, California
  On December 15, 2003, 8 1/2 months after the last electrons circulated in the old SPEAR2 storage ring and 5 days after the beginning of commissioning, the first electrons were accumulated in the completely new SPEAR3 ring. The rapid installation and commissioning is a testimony to the SPEAR3 project staff and collaborators who have built an excellent machine and equipped it with powerful and accessible machine modeling and control programs. The final year of component fabrication, system implementation and testing, the 7-month installation period leading up to the beginning of commissioning, and lessons learned are described.  
 
THPLT020 The DSP-based Betatron Tune Feedback of the Ramped 1.5 GeV Electron Storage Ring BoDo feedback, betatron, optics, injection 2511
 
  • B. Keil
    PSI, Villigen
  • K. Wille
    DELTA, Dortmund
  The ramped storage ring BoDo is the full energy injector of the 1.5 GeV synchrotron light source DELTA. All ramped booster magnet power supplies, RF power and beam diagnostics of BoDo are handled by a distributed VME-based DSP (digital signal processor) multiprocessing system developed at DELTA. The VME DSP boards of this system are interconnected by DeltaNet, a novel reflective memory ring network. DeltaNet transmits the measurement data from each DSP board to all other boards in real-time via fibre optic links. The generic hardware and software architecture of the system allows the implementation of different kinds of global real-time feedbacks with correction rates in the range from some 100 Hz to some 10 kHz. This paper presents architecture and performance of a real-time betatron tune feedback that was implemented with the DSP system. The betatron tune is measured and corrected in both planes at a rate of typically 700 Hz for arbitrary beam optics and energy ramps of BoDo. In combination with the global Bodo orbit feedback, the tune feedback increases the performance of Bodo both as an injector and as a testbed for machine studies and newly developed accelerator components.  
 
THPLT021 A DSP-Based Fast Orbit Feedback System for the Synchrotron Light Source DELTA feedback, storage-ring, booster, quadrupole 2514
 
  • B. Keil
    PSI, Villigen
  • K. Wille
    DELTA, Dortmund
  A DSP-based Fast Orbit Feedback (FOFB) system has been designed for the synchrotron light facility DELTA. DELTA consists of a 60 MeV linac, the ramped storage ring BoDo as full-energy injector and the 1.5 GeV storage ring Delta. BoDo and Delta have the same dipole, quadrupole and corrector magnet design, the same beam pipe design and the same BPM RF frontends, therefore BoDo was used as a testbed for the newly developed FOFB hardware and software. Using the fast corrector magnet power supplies of BoDo, the FOFB could damp orbit perturbations up to 90 Hz. The envisaged future use of the FOFB for the Delta storage ring will require either the partial or full replacement of the present slow (1 Hz bandwidth) Delta corrector power supplies, or additional fast power supplies with dedicated FOFB corrector magnets. A first test of the FOFB in Delta for local orbit stabilization at one beamline is in preparation. This paper presents the results of a successful test of the FOFB at BoDo, where it achieves a correction rate of 4 kHz for a global SVD-based feedback in both planes. The FOFB is based on the "DeltaDSP" VMEbus DSP boards that are also used for the BoDo betatron tune feedback.  
 
THPLT053 Fast Orbit Feedback Developments at ELETTRA feedback, electron, insertion, insertion-device 2604
 
  • D. Bulfone, R. De Monte, M. Ferianis, V. Forchi', M. Lonza
    ELETTRA, Basovizza, Trieste
  A number of fast local orbit feedback stations are being sequentially installed at ELETTRA to improve the stability of the electron beam at the Insertion Device source points. They rely on Beam Position Monitors equipped with digital detector electronics that provides high precision and readout rate. The local feedback stations will be integrated in a fast global orbit feedback system, which is the goal of the ongoing developments. The performance and the operational experience gained with the local feedback systems are presented together with the planned road map towards the global system.  
 
THPLT084 Test Result of Slow Global Orbit Feedback using MATLAB at PLS feedback, photon, insertion, insertion-device 2694
 
  • H.-S. Kang, J. Choi, K.M. Ha, E.-H. Lee, T.-Y. Lee, W.W. Lee
    PAL, Pohang
  A slow global orbit feedback using MATLAB has been tested to control the slow orbit movement for the PLS. The feedback program uses MATLAB tools such as matrix algebra, mathematical functions, and graphic display, and uses the SVD (singular value decomposition) method. The PLS uses 70 corrector magnets with the maximum angle of 2-mrad for each plane among which 11 use the 16-bit DAC power supplies for the insertion device orbit control and others the 12-bit corrector power supplies with the minimum step of 1-micro-rad, and thus the orbit feedback is not acceptable to beamline users. For the best performance of the feedback, the major hardware components have been upgraded: the replacement of 12-bit BPMs with 16-bit was completed, and the upgrade of corrector power supplies from DAC 12-bit to 18-bit or higher will be completed soon. In this paper, the orbit feedback test result using the current corrector power supplies is presented and the upgrade plan of orbit feedback is described.  
 
THPLT095 Nuclotron Extracted Beam Spill Control extraction, feedback, monitoring, quadrupole 2718
 
  • V. Volkov, V. Andreev, E. Frolov, V. Karpinsky, A. Kirichenko, A.D. Kovalenko, V.A. Mikhaylov, S. Romanov, B. Vasilishin, A. Volnov
    JINR, Dubna, Moscow Region
  The first experiments with the Nuclotron Beam Slow Extraction System (BES) were carried out in December 1999. After the BES commissioning, the development of the system was continued together with experiments on relativistic nuclear physics. To realize the constant-current-beam or the constant-time-length spill and to suppress the low frequency spill structure in the range up to several hundred hertz, a spill control subsystem was designed and put into operation. It consists of a feedback loop in parallel with a feed-forward control. In the feedback loop the extracted particle flux is measured with beam current monitor and is compared with the request flux. The resulting error signal is fed into a feedback controller. The controller is an analog unit in which integration, differentiation and gain can be adjusted separately. The output control signal is added to the extraction quadrupoles power supply pattern generated by the corresponding function generator. The beam spill control subsystem has been improved in stages since its commissioning in 2000. The beam spill duration of more than 10s and the beam spill uniformity of about 0.9 were achieved in recent Nuclotron runs.