A   B   C   D   E   F   G   H   I   K   L   M   N   O   P   Q   R   S   T   U   V   W    

insertion

      
Paper Title Other Keywords Page
MOYCH03 Superconducting RF Cavities for Synchrotron Light Sources damping, electron, storage-ring, synchrotron 21
 
  • P. Marchand
    SOLEIL, Gif-sur-Yvette
  Superconducting (sc) RF systems are already operational or planned in several third generation synchrotron light sources. In these machines, which require relatively low RF accelerating voltage and high beam loading, the advantage of using the sc technology essentially resides in the fact that one can achieve an efficient damping of the cavity Higher Order Modes (HOM) while still maintaining a high fundamental shunt impedance. The strong HOM damping practically is realised following two approaches : a) use of absorber material, located inside the cavity tube cut-off, through which the HOM propagate and then are damped (Cornell/KEK designs); b) two-cell cavity with coaxial HOM dampers located on the tube connecting the two cells (SOLEIL design). Third harmonic idle sc cavities (1.5 GHz) of the SOLEIL type are already operational in the Swiss Light Source and ELETTRA. The main RF system (500 MHz) of these machines consist of normal conducting cavities and the purpose of the third harmonic sc system is to lengthen the bunches in order to improve the beam lifetime and stability (additional Landau damping). Recently, several third generation synchrotron light sources have also planned to use sc cavities as main accelerating RF systems. The operational conditions of the existing systems as well as the status of the planned ones are reported here.  
Video of talk
Transparencies
 
MOPKF003 Design of 2 T Wiggler Vacuum Chamber for the LNLS Storage Ring vacuum, wiggler, simulation, insertion-device 300
 
  • M.J. Ferreira, R.O. Ferraz, H.G. Filho, M.B. Silva
    LNLS, Campinas
  A 2 T wiggler with 2.8 m long and a gap of 22 mm will be installed at LNLS storage ring. The main requirements of the chamber design are short conditioning time and low mechanical deformation. Two different designs in stainless steel are proposed for the prototypes, an elliptical tube and a machined sheet. A pressure profile simulation with and without a NEG coating were made for evaluating the life-time influence and the time necessary for conditioning. A simulation with finite element of mechanical deformation for both case show equivalent results. The first prototype was made with the elliptical tube and a NEG coating deposition will be made at ESRF. The second prototype with machined parts is under construction and will be TIG welded. Descriptions of mounting structure for the prototype are show and the evaluation the dimension tolerance of the chambers.  
 
MOPKF021 Properties of Cathodes Used in the Photoinjector RF Gun at the DESY VUV-FEL cathode, gun, laser, vacuum 348
 
  • S. Schreiber
    DESY, Hamburg
  • J.H. Han
    DESY Zeuthen, Zeuthen
  • P. Michelato, L. Monaco, D. Sertore
    INFN/LASA, Segrate (MI)
  The new injector of the DESY VUV-FEL is being commissioned in spring 2004. Several cathodes have been tested in the photoinjector RF Gun. We report on quantum efficiency, dark current, and the overall appearance of the cathodes after their use.  
 
MOPKF031 SOLEIL Insertion Devices: The Progress Report undulator, insertion-device, radiation, polarization 369
 
  • O.V. Chubar, C. Benabderrahmane, A. Dael, M.-P. Level, O. Marcouillé, M. Massal
    SOLEIL, Gif-sur-Yvette
  The French national synchrotron radiation source SOLEIL is planned to start operation in 2006 with several different insertion devices installed in the storage ring either from "day one" or within the first year. The list of high-priority insertion devices includes: 3 planar hybrid in-vacuum undulators with the period of 20 mm; 3 Apple-II type PPM undulators with the period of 80 mm; 3 electromagnet elliptical undulators with the period of 256 mm, and a 640 mm period elliptical electromagnet undulator offering advanced possibilities for fine-tuning of polarization states of the emitted radiation. The emission of all these undulators is covering wide spectral range extending from hard X-rays to UV. Pre-design of the IDs was done by SOLEIL. The construction will be done by industrial companies and institutions with production capabilities. Magnetic assembly of the Apple-II and in-vacuum undulators is planned to be done in collaboration with ELETTRA and ESRF. The final magnetic measurements of all the IDs will be made in the SOLEIL magnetic measurements laboratory. The paper will present peculiarities of the magnetic design, calculated maximum-flux spectra and associated heat load in various modes of operation.  
 
MOPKF032 Status of the ESRF Insertion Devices undulator, insertion-device, photon, radiation 372
 
  • J. Chavanne, C. Penel, B. Plan, F. Revol
    ESRF, Grenoble
  The ESRF insertion devices are the object of a continuous refurbishment in order to follow the changing needs of the beamlines and increase their performances. The successful development of the narrow aperture aluminum chambers pumped by non evaporable getter has resulted in the reduction of the minimum gap from 16 mm to 11 mm . A new set of undulator magnetic assemblies with shorter magnetic periods are being prepared that make use of the lower gap. .A prototype of a new type of revolver undulator support has been completed and successfully tested. Such a structure allows the beamline user to switch between two different undulator periods in less than a minute. Three additional devices will be constructed in 2004. Three new in-vacuum undulators have been installed on the ring. One of them is based on an hybrid magnetic structure and achieves a peak field 20% higher than a pure permanent magnet undulator of identical period. Their main magnetic measurements results and interactions with the stored beam are presented.  
 
MOPKF039 The ELETTRA Superconducting Wiggler electron, dynamic-aperture, wiggler, insertion-device 390
 
  • L. Tosi, C. Knapic, D. Zangrando
    ELETTRA, Basovizza, Trieste
  A 3.5 Tesla 64 mm period superconducting wiggler has been installed in the ELETTRA storage ring as a photon source for a future X-ray diffraction beamline. After several technological upgrades, a series of measurements were carried out to characterize the device and its effects on the electron beam, such as optics distortion and dynamic aperture. A description of the upgrades and measurements are presented.  
 
MOPKF065 Magnet Block Sorting for Variably Polarising Undulators undulator, electron, insertion-device, simulation 461
 
  • D.J. Scott
    CCLRC/DL/ASTeC, Daresbury, Warrington, Cheshire
  Effective sorting of permanent magnet blocks for undulators can reduce the adverse effects of magnetic in-homogeneities and engineering tolerances on the electron beam. For variably polarising undulators the number of different modes of operation make defining the objective function of a particular permutation more difficult than for a planar device. Factors required in defining a good objective function for a new APPLE-II type helical undulator for the SRS are discussed. These factors include calculating the magnetic field integrals, the particle trajectory and rms optical phase error. The effects of different weighting of these functions in the objective function are also discussed. A comparison of different optimisation techniques, including simulated annealing and Monte Carlo methods is also made.  
 
MOPLT005 An Improved Collimation System for the LHC collimation, impedance, proton, beam-losses 536
 
  • R.W. Assmann, O. Aberle, A. Bertarelli, H.-H. Braun, M. Brugger, L. Bruno, O.S. Brüning, S. Calatroni, E. Chiaveri, B. Dehning, A. Ferrari, B. Goddard, E.B. Holzer, J.-B. Jeanneret, J.M. Jimenez, V. Kain, M. Lamont, M. Mayer, E. Métral, R. Perret, S. Redaelli, T. Risselada, G. Robert-Demolaize, S. Roesler, F. Ruggiero, R. Schmidt, D. Schulte, P. Sievers, V. Vlachoudis, L. Vos, G. Vossenberg, J. Wenninger
    CERN, Geneva
  • I.L. Ajguirei, I. Baishev, I.L. Kurochkin
    IHEP Protvino, Protvino, Moscow Region
  • D. Kaltchev
    TRIUMF, Vancouver
  • H. Tsutsui
    SHI, Tokyo
  The LHC design parameters extend the maximum stored beam energy 2-3 orders of magnitude beyond present experience. The handling of the high-intensity LHC beams in a super-conducting environment requires a high-robustness collimation system with unprecedented cleaning efficiency. For gap closures down to 2mm no beam instabilities may be induced from the collimator impedance. A difficult trade-off between collimator robustness, cleaning efficiency and collimator impedance is encountered. The conflicting LHC requirements are resolved with a phased approach, relying on low Z collimators for maximum robustness and hybrid metallic collimators for maximum performance. Efficiency is further enhanced with an additional cleaning close to the insertion triplets. The machine layouts have been adapted to the new requirements. The LHC collimation hardware is presently under design and has entered into the prototyping and early testing phase. Plans for collimator tests with beam are presented.  
 
MOPLT006 The New Layout of the LHC Cleaning Insertions collimation, impedance, vacuum, optics 539
 
  • R.W. Assmann, O. Aberle, O.S. Brüning, S. Chemli, D. Gasser, J.-B. Jeanneret, J.M. Jimenez, V. Kain, E. Métral, G. Peon, S. Ramberger, C. Rathjen, T. Risselada, F. Ruggiero, L. Vos
    CERN, Geneva
  • D. Kaltchev
    TRIUMF, Vancouver
  The improved LHC collimation system required significant changes in the layout and design of the warm insertion IR7. Requirements for collimation, optics, impedance, vacuum, and additional infrastructure are described and the adopted layout is discussed. Various design principles have been explored during the re-design, ranging from a regular 90 degree lattice and special low impedance lattices to an option with additional warm quadrupole units that could have extended the usable space for collimator installations in the insertion. The various constraints for the optics and cleaning design in the LHC cleaning insertions are summarized. Magnet positions and collimators were moved significantly, such that a good cleaning efficiency was maintained while impedance was reduced by a factor of two. Metallic phase 2 collimators allow a better efficiency than originally achievable and additional scrapers were allocated. The required infrastructure was specified, including a powerful cooling system for the collimators.  
 
MOPLT022 The Expected Performance of the LHC Injection Protection System injection, simulation, kicker, proton 584
 
  • V. Kain, O.S. Brüning, L. Ducimetière, B. Goddard, M. Lamont, V. Mertens
    CERN, Geneva
  The passive protection devices TDI, TCDD and TCLI are required to prevent damage to the LHC in case of serious injection failures, in particular of the MKI injection kicker. A detailed particle tracking, taking realistic mechanical, positioning, injection, closed orbit and local optical errors into account, has been used to determine the required settings of the absorber elements to guarantee protection against different MKI failure modes. The expected protection level of the combination of TDI with TCLI, with the new TCLI layout, is presented. Conclusions are drawn concerning the expected damage risk level.  
 
MOPLT027 Cold Beam Vacuum Interconnects for the LHC Insertion Regions vacuum, impedance, undulator, synchrotron 599
 
  • D.R. Ramos, D. Chauville, J. Knaster, R. Veness
    CERN, Geneva
  The LHC machine is composed of arcs and insertion regions where superconducting magnets, working at temperatures of 1.9 K and 4.5 K, have flexibly interconnected beam vacuum chambers. These interconnects must respect strict requirements in terms of impedance, aperture, space optimization and reliability. A complete interconnect design was first developed for the arc regions, and from which a total of 20 variants have been created according to the different functional requirements of each pair of cryostats along the machine. All design features and manufacture processes were validated through extensive testing. Manufacture and assembly cost was minimised by using a modular interconnect design, with common components shared among different design variants. A detailed quality assurance structure was implemented in order to achieve the high level of reliability required. This paper presents the layout of cold beam vacuum interconnects along with details of development and testing performed to validate design and integration.  
 
MOPLT030 Performance Limits and IR Design of a Possible LHC Luminosity Upgrade Based on Nb-Ti SC Magnet Technology quadrupole, luminosity, radiation, superconducting-magnet 608
 
  • F. Ruggiero, O.S. Brüning, R. Ostojic, L. Rossi, W. Scandale, T.M. Taylor
    CERN, Geneva
  • A. Devred
    CEA/DSM/DAPNIA, Gif-sur-Yvette
  We investigate the maximum LHC performance for a possible IR design based on classical Nb-Ti insertion magnets. We then extend our analysis to a ternary Nb-based ductile alloy such as Nb-Ti-Ta, a less developed but relatively cheap super-conducting material which would allow us to gain about 1 T of peak field on the coils, and discuss the corresponding luminosity reach for a possible LHC upgrade compared to that based on Nb3Sn magnet technology.  
 
MOPLT050 High-beta and Very High-beta Optics for LHC optics, quadrupole, scattering, power-supply 662
 
  • A. Faus-Golfe
    IFIC, Valencia
  • A. Verdier
    CERN, Geneva
  New high-beta and very high-beta optics has been sought in order to find the best possible configuration for measuring total cross section in TOTEM and absolute luminosity in ATLAS. They are based on nominal powering scheme of the low-beta triplet. A list of the various possible solution is given in this report. A particularly interesting solution has been found for a case where the phase advance in both planes at the detector location are close to pi/2.  
 
MOPLT096 Machine Induced Background in the High Luminosity Experimental Insertion of the LHC Project background, hadron, simulation, shielding 755
 
  • V. Talanov, I. Azhgirey, I. Baishev
    IHEP Protvino, Protvino, Moscow Region
  • K.M. Potter
    CERN, Geneva
  The methodical approach, developed for the solution of the radiation problems in the LHC project, is used for the estimation of the machine induced background in the high luminosity experimental insertion IR1. The results of the cascade simulations are presented for the cases of the proton losses in the cold and warm parts of the collider. The formation of the machine induced background in the interaction region is discussed.  
 
MOPLT147 SPEAR 3 Commissioning Software optics, simulation, storage-ring, insertion-device 884
 
  • W.J. Corbett, G.J. Portmann, J.A. Safranek, A. Terebilo
    SLAC/SSRL, Menlo Park, California
  In order to meet the tight SPEAR 3 accelerator commissioning schedule, a software package was assembled to streamline experimental measurements and data analysis. At the heart of the software is a MATLAB "middle layer" with an element definition database and channel access link for fast and easy communication with the EPICS control system. Originally adapted from work at the ALS, the middle layer allows direct control from the MATLAB command line, use in the form of short "scripts" for specific experiments and integration into high-level application programs. The revised software is also machine-independent. This paper outlines the software architecture and provide examples with results from the SPEAR 3 accelerator commissioning effort.  
 
TUXLH01 Machine Protection Issues and Strategies for the LHC beam-losses, injection, kicker, proton 88
 
  • R. Schmidt, J. Wenninger
    CERN, Geneva
  For nominal beam parameters at 7 TeV/c, each of the two LHC proton beams has a stored energy of 350 MJ threatening to damage accelerator equipment in case of uncontrolled beam loss. Since the beam dump blocks are the only element of the LHC that can withstand the impact of the full beam, it is essential for the protection of the LHC that the beams are properly extracted onto the dump blocks in case of emergency. The time constants for failures leading to beam loss extend from 100 microseconds to few seconds. Several protection systems are designed to ensure safe operation, such as beam instrumentation, collimators and absorbers, and magnet protection. Failures must be detected at a sufficiently early stage and transmitted to the beam interlock system that triggers the beam dumping system. The strategy for the protection of the LHC will be illustrated starting from some typical failures.  
Video of talk
Transparencies
 
TUPKF041 Quasi-optic RF Power Transmission Line from a FEM Oscillator to the Model of the CLIC Accelerating Structure radiation, vacuum, diagnostics, alignment 1054
 
  • A. Kaminsky, A.V. Elzhov, E.A. Perelstein, N.V. Pilyar, T.V. Rukoyatkina, S. Sedykh, A.P. Sergeev, A. Sidorov
    JINR, Dubna, Moscow Region
  • N.S. Ginzburg, S.V. Kuzikov, N.Yu. Peskov, M.I. Petelin, A. Sergeev, N.I. Zaitsev
    IAP/RAS, Nizhny Novgorod
  Experimental investigation of a copper resonator lifetime under multiple action of 30 GHz power pulses is now carried out by the collaboration of CLIC team (CERN), FEM group of JINR (Dubna) and IAP RAS (Nizhny Novgorod). A quasi-optic two-mirror transmission line is used between the FEM oscillator and test cavity. An oversized FEM output waveguide based on the wavebeam transformation (Talbot effect) provides the optimal transverse distribution of the radiation, eliminates the output window breakdown and decrease the influence of the reflected wave on the FEM oscillator regime.  
 
TUPKF048 Studies of Electron Multipacting in CESR Type Rectangular Waveguide Couplers electron, simulation, vacuum, diagnostics 1057
 
  • P. Goudket, M. Dykes
    CCLRC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • S.A. Belomestnykh, R. Geng
    Cornell University, Laboratory for Elementary-Particle Physics, Ithaca, New York
  • R.G. Carter
    Microwave Research Group, Lancaster University, Lancaster
  • H. Padamsee
    Cornell University, Ithaca, New York
  The latest results from an experimental waveguide section, as well as simulations from a model of electron multipacting using the MAGIC PIC code, are discussed. Tests were carried out on a new waveguide section that included enhanced diagnostics and the possibility of changing surface materials and temperature. Those tests evaluated grooves, ridges and surface coatings, such as TiN and a TiZrV NEG coating, as methods of multipactor suppression. The conclusion remains that the most effective method to achieve complete multipactor suppression remains the application of a static magnetic bias of approximately 10G. The experiments also provided good data sets that can be used to verify the accuracy of simulations. Simulations of the waveguide multipacting have been carried out and have offered better understanding of electronic behaviour.  
 
TUPLT038 Closed Orbit Correction and Orbit Stabilisation Scheme for the 6 GEV Synchrotron Light Source PETRA III emittance, closed-orbit, ground-motion, quadrupole 1231
 
  • G.K. Sahoo, K. Balewski, W. Decking, Y.L. Li
    DESY, Hamburg
  PETRA III is a 6 GeV synchrotron light source being reconstructed out of the existing storage ring PETRA II. It will have a horizontal beam emittance of 1nm.rad and a 1% emittance ratio. Since the vertical beam sizes are ~5?10 micron in the low gap undulators sections the beam position stability requirement in the vertical plane is between 0.5 and 1 micron whereas the stability requirement in the horizontal plane is more relaxed. In this paper determination of golden orbit in the presence of magnetic field errors and magnet misalignments and correction of vertical spurious dispersion is discussed. A scheme of slow and fast orbit correction using the SVD algorithm has been developed. The distribution of monitors and the location of slow and fast correctors are reported. Estimations of the parameters of the fast orbit feedback have been derived from present measurements on PETRA II.  
 
TUPLT050 Lattice for CELLS lattice, emittance, insertion-device, optics 1264
 
  • M. Muñoz, D. Einfeld
    CELLS, Bellaterra (Cerdanyola del Vallès)
  The CELLS is an approved project to build a national synchrotron light source in Spain. The main goals of the project are to provide a medium energy machine (3 GeV) with low emittance and top up operation, a circumference of ~280 m and at least 12 straight sections available for experiments. At present, two lattices are being considered. The first one is based in QBA optics and provides and emittance of 5 nm-rad, using existing technologies. The second one is a TBA one, with an emittance of 2 nm, where physical aperture are reduced by at least a factor 2 and gradients in the bending magnets are up to 10 T/m. We present the selected lattice, and review the main beam dynamics (energy acceptance, errors) issues.  
 
TUPLT063 Laser Temporal Pulse Shaping Experiment For SPARC Photoinjector laser, emittance, electron, feedback 1300
 
  • C. Vicario, A. Ghigo
    INFN/LNF, Frascati (Roma)
  • I. Boscolo, C. Vozzi
    Universita' degli Studi di Milano, MILANO
  • S. Cialdi, A.F. Flacco
    INFN-Milano, Milano
  • M. Nisoli, G. Sansone, S. Stagira
    Politecnico/Milano, Milano
  • M. Petrarca
    INFN-Roma, Roma
  Laser for driving high brightness photoinjector have to produce UV square pulse which is predicted to be the optimum profile for emittance compensation in advanced photoinjectors. The longitudinal laser pulse distribution, according to numerical simulations for the SPARC photoinjector, must be square with rise and fall time shorter than 1 ps and flat top variable up to 10 ps FWHM. In this paper we report the results of pulse shaping obtained using an acousto-optic (AO) programmable dispersive filter (DAZZLER). The DAZZLER was used to perform spectral amplitude and phase modulation of the incoming 100 fs Ti:Sapphire pulses. Because of the finite length of the crystal the maximum duration of the shaped pulse is 6 ps. To overcome this limitation we used a configuration in which the laser pulses passed twice through the AO filter. A dispersive glass section was also used to lengthen the pulse with a single pass in the DAZZLER. In this paper we report the experimental setup, hardware description and time and frequency domain measurements.  
 
TUPLT095 Precision Field Mapping System for Cyclotron Magnet cyclotron, alignment, undulator, insertion-device 1378
 
  • K.-H. Park, Y.G. Jung, D.E. Kim, L.W.W. Lee
    PAL, Pohang
  • J.-S. Chai, Y.S. Kim
    KIRAMS, Seoul
  • B.-K. Kang, S.H. Shin, M. Yoon
    POSTECH, Pohang
  A 13 MeV cyclotron has been developed by KIRAMS for radio-isotopes production such as F-18 and O-15 for positron emission tomography(PET). To characterize the cyclotron magnet precisely, a Hall probe mapping system with very high precise positioning mechanism in the Cartesian coordinate has been developed. Hall probe assembly was translated in two dimensions by two stepping motors at both sides of the Hall-probe-carrier to keep synchronously rotation sharing one step-pulse source for x-axis and one motor for y-axis. The data acquisition time had reduced to 60 minutes in full mapping by 'flying' mode. The accuracy of the measurement system is better than during the entire mapping process. In this paper the magnetic field measurement system for the cyclotron magnet is described, and measurement results are presented.  
 
TUPLT140 Redesign of the ISIS Main Magnet Power Supply Storage Choke power-supply, coupling, synchrotron, proton 1455
 
  • A.J. Kimber, J.W. Gray, A. Morris
    CCLRC/RAL/ISIS, Chilton, Didcot, Oxon
  The ISIS facility, based at the Rutherford Appleton Laboratory in the UK, provides intense pulsed neutron and muon beams for condensed matter studies. As part of the facilities upgrade and refurbishment program, the 1MJ storage choke which forms part of the main magnet power supply system, will be replaced with a number of smaller units. The present storage choke, which consists of a split secondary winding transformer, is incorporated into a series-parallel resonant circuit known as the 'white circuit'. This circuit ensures that each magnet receives identical currents, but is not subjected to excessive voltages. Although the storage choke is essentially a transformer, its secondary magnetising inductance is relatively low and a precisely defined value. This paper discusses the design and development of ten smaller units which will eventually replace the present equipment, and the testing of a one fifth scale model, which will be used to prove the technology.  
 
WEILH04 Industrial Involvement in the Construction of Synchrotron Light Sources storage-ring, synchrotron, booster, vacuum 206
 
  • M.S. de Jong
    CLS, Saskatoon, Saskatchewan
  The design, construction and commissioning of a modern third-generation synchrotron light source facility is a major project, costing hundreds of millions of dollars. The delivery of these new facilities, usually on a fixed budget and schedule, requires an effective working relationship with all suppliers providing equipment and services to the project. This talk will examine some of the key issues in developing and maintaining such a relationship with industry during the construction of a third-generation synchrotron light facility. These issues include project planning, the contract specification, the tendering process, communication techniques over the contract term, and other aspects of contract control. Examples, primarily from our experience constructing the Canadian Light Source but also from other new facilities planned or under construction, will be used to examine the effectiveness of various approaches to working with industry.  
Video of talk
Transparencies
 
WEPKF011 Performance of the Superconducting Matching Quadrupoles for the LHC Insertions quadrupole, multipole, alignment, target 1615
 
  • N. Catalan-Lasheras, G. Kirby, R. Ostojic, J.C. Perez, H. Prin, W.  Venturini Delsolaro
    CERN, Geneva
  The optics flexibility of the LHC insertions is provided by the individually powered quadrupoles in the dispersion suppressors and matching sections. These units comprise special quadrupole magnets of the MQM and MQY type and range in length from 5.4 m to 11.4 m. In total, 82 insertion quadrupoles will be assembled at CERN. In this paper we present the advance in construction and report on the performance of the first series built quadrupoles. In particular, we present the quench performance of the individual magnets and alignment measurements of the cold masses, and discuss the field quality trends and possible implications.  
 
WEPKF015 The Design of Cold to Warm Transitions of the LHC vacuum, electron, collider, impedance 1624
 
  • J. Knaster, B.J. Jenninger, D.R. Ramos, G. Ratcliffe, R. Veness
    CERN, Geneva
  The Large Hadron Collider (LHC) is the next accelerator being constructed on the CERN site to be operational in 2007. It will accelerate and collide 7 TeV protons and heavier ions up to lead. More than 2000 cryomagnets working at 1.9 or 4.5 k will form part of the magnetic lattice of the LHC. The transitions from cryogenic temperatures to room temperature zones will be achieved by 200 cold to warm transitions (CWTs). The CWTs will compensate for longitudinal and transversal displacements between beam screens and cold bores, ensuring vacuum continuity without limiting the aperture for the beam. The transverse impedance contribution is kept below the assigned total budget of 1 MΩ/m by means of a 5 μm thick Cu coating that also minimises the dynamic heat load through image currents. Tests have been performed that confirm that the static heat load per CWT to the cryomagnets remains below 2.5 W, hence validating the design.  
 
WEPKF033 Application of Finite Volume Integral Approach to Computing of 3D Magnetic Fields Created by Distributed Iron-dominated Electromagnet Structures undulator, dipole, insertion-device, permanent-magnet 1675
 
  • O.V. Chubar, C. Benabderrahmane, O. Marcouillé, F. Marteau
    SOLEIL, Gif-sur-Yvette
  • J. Chavanne, P. Elleaume
    ESRF, Grenoble
  Iron-dominated electromagnet structures are traditionally considered as a domain of applications of the Finite-Element Method (FEM). FEM computer codes provide high accuracy for "close circuit" type geometries, however they are much less efficient for distributed geometries consisting of many spatially separated magnets interacting with each other. Examples of such geometries related to particle accelerators are insertion devices, quadrupole and sextupole magnets located close to each other, magnets with combined functions. Application of the finite volume integral approach implemented in the Radia 3D magnetostatics code to solving such geometries is described. In this approach, space around individual magnets does not require any meshing. An adaptive segmentation of iron parts, with the segmenting planes being roughly perpendicular or parallel to the expected directions of magnetic flux lines, minimizes dramatically the necessary CPU and memory resources. If a geometry is, nevertheless, too big for its complete interaction matrix to fit into memory, a special scheme of relaxation "by parts" can be applied. The results of calculations made for the SOLEIL electromagnet undulator HU256 will be presented.  
 
WEPKF039 The Vacuum System of Super SOR vacuum, synchrotron, radiation, synchrotron-radiation 1690
 
  • H. Sakai, M. Fujisawa, A. Kakizaki, T. Kinishita, H. Kudo, N. Nakamura, O. Okuda, S. Shibuya, K. Shinoe, H. Takaki
    ISSP/SRL, Chiba
  • K. Kobayashi
    KEK, Ibaraki
  • T. Koseki
    RIKEN/RARF/BPEL, Saitama
  • H. Ohkuma
    JASRI/SPring-8, Hyogo
  • S. Suzuki
    LNS, Sendai
  The Super-SOR light source is a Japanese VUV and soft X-ray third-generation synchrotron radiation source, which consists of 1.8GeV storage ring and injector. The beam current is circulated up to 400mA. These accelerators are designed so as to fully meet requirements for top-up injection. In order to realize these operation modes, our vacuum system are required on following conditions. One is to obtain the long lifetime. The other is not to melt the vacuum chamber by irradiating the high flux synchrotron radiation. Finally beam instability is not occurred by large wake fields. We describe the design of the vaccum chamber of Super-SOR and present the recent R&D concerning this system.  
 
WEPKF049 Stretched Wire Flip Coil System for Magnetic Field Measurements multipole, quadrupole, insertion-device, target 1714
 
  • D.E. Kim, C.W. Chung, H.S. Han, Y.G. Jung, H.G. Lee, W.W. Lee, K.-H. Park, H.S. Suh
    PAL, Pohang
  A flip-coil system using a stretched wire measuring the magnetic field properties of accelerator magnets is described. This system is similar to the conventional rotating coil system except that the stretched wires are used instead of wires wound on the machined surface. This system has advantage of simple fabrication and flexible operation so that different length and bore magnets can be easily measured using the same system. The system also has two loop coils to buck the dominant fundamental field so as to increase the measurement accuracy. This kind of system has issues related to the reproducibility, accuracy of the measured results. The system is evaluated to verify its performances and its results were discussed. The analyzing methods and various efforts to keep the system in high accuracy are presented. Measurement results with this loop coil system were compared with that of the other system.  
 
WEPKF057 Design and Study of a Superferric Model Dipole and Quadrupole Magnets for the GSI Fast-pulsed Synchrotron SIS100. dipole, quadrupole, synchrotron, ion 1735
 
  • A.D. Kovalenko, N.N. Agapov, V. Bartenev, A. Donyagin, I. Eliseeva, H.G. Khodzhibagiyan, G.L. Kuznetsov, A. Smirnov, M.A. Voevodin
    JINR, Dubna, Moscow Region
  • E. Fischer, G. Moritz
    GSI, Darmstadt
  New experimental results from the investigation of a model superferric Nuclotron-type dipole and quadrupole magnets are presented. The magnets operate at pulse repetition rate f = 1Hz, providing peak magnetic field B = 2 T and the field gradient G = 34 T/m in the dipoles and quadrupoles respectively. The superconducting coil is made from a hollow multi-filamentary NbTi cable cooled with two phase helium flow. Different possibilities were investigated to reduce AC power losses in the case of a cold iron yoke (T=4.5K). The achieved results are discussed. The value of 9W/m has been obtained for dipole magnet with the yoke at T=50K. The first 50 K yoke quadrupole was designed and tested. Other problems, connected with the magnetic field quality, mechanical and cryogenic stability of the magnets under SIS100 operating conditions are also discussed.  
 
WEPLT006 Expected Performance and Beam-based Optimization of the LHC Collimation System proton, collimation, injection, betatron 1825
 
  • R.W. Assmann, E.B. Holzer, J.-B. Jeanneret, V. Kain, S. Redaelli, G. Robert-Demolaize, J. Wenninger
    CERN, Geneva
  The cleaning efficiency requirements in the LHC are 2-3 orders of magnitude beyond the requirements at other super-conducting circular colliders. The achievable ideal cleaning efficiency in the LHC is presented and the deteriorating effects of various physics processes and imperfections are discussed in detail for the improved LHC collimation system. The longitudinal distribution of proton losses downstream of the betatron cleaning system are evaluated with a realistic aperture model of the LHC. The results from simplified tracking studies are compared to simulations with complete physics and error models. Possibilities for beam-based optimization of collimator settings are described.  
 
WEPLT007 Installation of the LHC Experimental Insertions quadrupole, shielding, luminosity, interaction-region 1828
 
  • S. Bartolome-Jimenez, G. Trinquart
    CERN, Geneva
  The installation of the LHC experimental insertions, and particularly the installation of the low-beta quadrupoles, raises many technical challenges due to the stringent alignment specifications and to the difficulty of access in very confined areas. The compact layout with many lattice elements, vacuum components, beam control instrumentations and the presence of shielding does not allow for any improvisation in the installation procedure. This paper reviews all the constraints that need to be taken into account when installing the experimental insertions. It describes the chronological sequence of installation and discusses the technical solutions that have been retained.  
 
WEPLT016 Logistics of LHC Cryodipoles: from Simulation to Storage Management simulation, background, vacuum, quadrupole 1855
 
  • K. Foraz, B. Nicquevert, D. Tommasini
    CERN, Geneva
  The particles traveling in the Large Hadron Collider are guided by superconducting magnets. The main magnets (cryodipoles) are 16 m long, 30 tons objects placed with accuracies of few tenths of mm and therefore imposing challenging requirements for handling and transportation. Numerous contracts are constraining the production and installation of these cryodipoles. These contracts have been rated according to the baseline schedule, based on a "just in time" scheme. However the complexity of the construction and the time required to fully test the cryodipoles before installation in the LHC required to decouple as much as possible each contract from the others' evolutions and imposed temporary storage between different assembly and test steps. Therefore a tool simulating the logistics was created in order to determine the number of cryodipoles to store at the various stages of their production. In this paper the organization of cryodipole flow and the main challenges of logistics are analyzed on the basis of the planning of each main step before installation. Finally the solutions implemented for storage, handling and transportation are presented and discussed.  
 
WEPLT017 Numerical Studies of the Impact of the Separation Dipoles and Insertion Quadrupoles Field Quality on the Dynamic Aperture of the CERN LHC quadrupole, dipole, injection, multipole 1858
 
  • M. Giovannozzi, O.S. Brüning, S.D. Fartoukh, T. Risselada, F. Schmidt
    CERN, Geneva
  A wide range of magnets, both warm and superconducting, will be used in the LHC. In addition to main dipoles, quadrupoles are used to focus the beam in regular arcs. Special dipoles separate or merge the two beams in insertion regions. A few very strong superconducting quadrupoles squeeze the beam to achieve the required luminosity, while warm quadrupoles are used in the collimation insertions. At injection the main dipoles largely dominate beam dynamics, but contributions from smaller classes of magnets should not be neglected. Peculiar optical configurations may dramatically enhance beam dynamics effects of few magnetic elements. This paper will focus on the effect of insertion quadrupoles, e.g. wide-aperture, and warm quadrupoles, as well as separation dipoles presenting on the dynamic aperture of the LHC machine.  
 
WEPLT043 Detecting Failures in Electrical Circuits Leading to Very Fast Beam Losses in the LHC extraction, beam-losses, simulation, septum 1930
 
  • M. Zerlauth, B. Goddard, V. Kain, R. Schmidt
    CERN, Geneva
  Depending on the beam optics, failures in the magnet powering at locations with large beta functions could lead to very fast beam losses at the collimators, possibly within less than 10 turns. Beam loss monitors would normally detect such losses and trigger a beam dump. However, the available time for detection with beam loss monitors before reaching the damage level of a collimator might not be sufficient, in particular for beams with few particles in the tails. This has always been of concern and becomes even more relevant since very fast losses have been observed recently at HERA. In this paper, we present particle tracking studies for the LHC to identify failures on critical magnets. We propose a fast detection of such failures in the electrical circuit, either with highly precise hall probes for current measurement or measurements of the induced inductive voltage during the current decay. In combination with a small and simple interlock electronics such detection system can provide reliable and fast interlock signals for critical magnets in the LHC main ring but could also be used to monitor injection and extraction magnets. Depending on the properties of the electrical circuit an increase of the natural time constant of the current decay using a serial superconducting magnet is also considered.  
 
WEPLT077 DESIGN OF A FULL-CUSTOM ACCURATE I-Q MODULATOR simulation, impedance, radio-frequency, coupling 2029
 
  • M. Luong, M. Desmons
    CEA/DSM/DAPNIA, Gif-sur-Yvette
  The I-Q modulator is a key component in a digital Low Level RF (LLRF) system for amplitude and phase feedbacks. Its residual errors in offset or gain have a strong impact on the dynamic and accuracy of the feedback loops. For some frequencies, commercial I-Q modulators are available on the market. But even in that case, these components are usually designed for broadband communication purposes, and their performances in term of residual errors may not fit the strict requirements on the final amplitude and phase loop stability. Since LLRF systems for accelerators are typically narrow-banded, i.e. limited to few MHz, it is possible to achieve a high directivity and a very accurate coupling for hybrids, and an excellent matching for all subcomponents in a fully custom design. This approach guarantees the lowest residual errors for an I-Q modulator. The principle for the design and the process for the optimization are presented in this paper.  
 
WEPLT079 Non Linear Beam Dynamics and Lifetime on the SOLEIL Storage Ring resonance, undulator, insertion-device, focusing 2035
 
  • P. Brunelle, A. Loulergue, A. Nadji, L.S. Nadolski
    SOLEIL, Gif-sur-Yvette
  The incidence of several non-linear effects on the energy acceptance and beam lifetime has been investigated, using the BETA and TRACY II tracking codes. The effect of all magnets multipolar components has been checked on the working point (18.20; 10.30), especially the decapolar component induced by the H-corrector. The dipolar field, which is created by additional coils in the sextupoles, generates a significant decapolar component which, associated to the distributed dispersion, can reduce significantly the dynamic acceptance at large energy deviations. This effect depends on the natural closed orbit to be corrected: corrector strengths and cross talk between the different decapolar components. Moreover, the sensitivity to the number of correctors, used for correction, has been evaluated. The effect of insertions devices has also been studied, integrating field maps generated by the RADIA code into the tracking codes. With undulators, such as an in-vacuum U20 and an Apple II type HU80 (with different polarization modes), it was shown that the transverse field in-homogeneity and the focusing effects generating beta-beat can affect severely the energy acceptance and the beam lifetime because of resonance excitation.  
 
WEPLT085 Vertcal Effective Impedance Mapping of the ESRF Storage Ring impedance, closed-orbit, insertion-device, vacuum 2053
 
  • T. Perron, L. Farvacque, E. Plouviez
    ESRF, Grenoble
  Transverse impedance increase due to installation of low gap vacuum chambers is a general effect observed in synchrotron light sources. ESRF has been sensitive to this increase of impedance, as its single bunch threshold has dramatically decreased. This paper presents a method based on closed orbit distortion measurements, witch allows to measure locally the vertical effective impedance. Results of measurements performed on low gap vacuum chambers and in-vacuum ondulators are presented. As an extension to this experiment, a new global method is discussed. This method, also based on closed orbit measurement allows measuring simultaneously all areas of high impedance in the machine  
 
WEPLT091 Frequency Map Analysis with the Insertion Devices at ELETTRA resonance, insertion-device, simulation, lattice 2062
 
  • S. Di Mitri, L. Tosi
    ELETTRA, Basovizza, Trieste
  • L.G. Liu
    SSRF, Shanghai
  Frequency map analysis is a very efficient technique for the understanding of the resonances which may affect the stability of the electrons. Measurements correlated to simulations can provide a method to improve beam lifetime and injection efficiency that is particulary important in the case of top up operation. In this paper, the results of frequency map measurements and simulations for the ELETTRA storage ring are presented both for the bare lattice as well as for the case in which insertion devices are operational.  
 
WEPLT120 Control Environment for the Superconducting Insertion Devices at NSRRC power-supply, insertion-device, wiggler, storage-ring 2134
 
  • J. Chen, C.-K. Chang, K.-T. Hsu, K.H. Hu, C.H. Kuo, C.-J. Wang
    NSRRC, Hsinchu
  To enhance hard X-ray capability in the 1.5 GeV storage ring of NSRRC to serve the rapidly growing X-ray user community in Taiwan, the storage ring was installed two superconducting insertion devices. Three more superconducting insertion devices are in planning. A 6 Tesla superconducting wavelength shifter was installed in mid-2002. A 3.2 Tesla superconducting multi-pole wiggler was installed in December of 2003. Control system and operation environment have been set up to support the operation of the superconducting insertion devices. The implementation and operation experiences will be summarized in this report.  
 
THPKF004 The Australian Synchrotron Project - Update synchrotron, storage-ring, injection, site 2260
 
  • A. Jackson
    ASP, Melbourne
  The Australian Synchrotron - a 3rd generation synchrotron light facility based on a 3-GeV electron storage ring - is under construction at a site adjacent to Monash University in the Metropolitan District of Melbourne. Site preparation started in September 2003 and project completion is scheduled for March 2007. In this paper we present an overview of the facility and discuss progress to date in meeting this very agressive schedule.  
 
THPKF019 PETRA III: A New High Brilliance Synchrotron Radiation Source at DESY wiggler, undulator, damping, emittance 2302
 
  • K. Balewski, W. Brefeld, W. Decking, Y.L. Li, G.K. Sahoo, R. Wanzenberg
    DESY, Hamburg
  DESY has decided to rebuild its 2304 m long accelerator PETRA II into a dedicated light source called PETRA III. The reconstruction is planned to start mid of 2007.The new light source will operate at an energy of 6 GeV, a current of 100 mA, a horizontal emittance of 1 nmrad and an emittance coupling of 1%. In the first phase thirteen insertion devices are foreseen. In this paper the principle layout of the machine will be presented. The structure of the new machine combines properties of conventional storage rings and light sources and is therefore quite unconventional. One of the major challenges of the project is to achieve the small emittances. The basic idea is to use so called damping wigglers with a total length of 80 m to reduce the horizontal emittance to the desired level. To obtain and maintain the small emittances imposes tight tolerances on spurious dispersion and orbit quality and stability. These limits will be given and discussed.  
 
THPKF027 A Concept for the Spanish Light Source CELLS lattice, undulator, booster, insertion-device 2326
 
  • D. Einfeld, J. Bordas, J. Campmany, S. Ferrer, M. Muñoz, M. Pont, F. Pérez
    CELLS, Bellaterra (Cerdanyola del Vallès)
  In May of 2003 the Spanish and Catalan Governments established a public Consortium for the construction, equipment and exploitation of a third generation Synchrotron Light Source. The foundation was based upon a proposal from 1997 to build a 2.5 GeV, 12-fold symmetry machine with a circumference of around 260 m. At present a re-design is being considered, based upon the following decisions: 1.) Electron energy of 3 GeV, 2.) Circumference around 280 m, 3.) Emittance smaller than 5 nm.rad, 4.) 16-fold symmetry lattice 5.) Full energy injector, 6.) Topping-up injection mode foreseen and 7.) Booster synchrotron and Storage ring housed in the same tunnel. Lattice considerations are given in an accompanying paper. In the present one we will give a project overview and explain key design decisions and overall schedule. Five beamlines will be design and construct in a first phase to cover the needs of the Spanish community. The definition of these beamlines will take place during 2004 involving the users community. Planned beam commissioning will be in 2009.  
 
THPKF031 High Power (35 KW and 190 KW) 352 MHZ Solid State Amplifiers for Synchrotron SOLEIL vacuum, power-supply, booster, synchrotron 2338
 
  • P. Marchand, R.L. Lopes, J. Polian, F. Ribeiro, T. Ruan
    SOLEIL, Gif-sur-Yvette
  In the SOLEIL Storage Ring (SR), two cryomodules, each containing a pair of superconducting cavities will provide the maximum power of 600 kW, required at the nominal energy of 2.75 GeV with the full beam current of 500 mA and all the insertion devices. Each of the four cavities will be powered with a 190 kW solid state amplifier consisting in a combination of 315 W elementary modules (about 750 modules per amplifier). The amplifier modules, based on a technology developed in house, with MOSFET transistor, integrated circulator and individual power supply, will be fabricated in the industry. In the booster, a 40 kW solid state amplifier (147 modules) will power a 5-cell copper cavity of the LEP type. The status and the test results of the different parts of the equipment are reported in this paper.  
 
THPKF045 Accelerator Physics Issues at NSRRC insertion-device, coupling, injection, synchrotron 2377
 
  • C.-C. Kuo, H.-P. Chang, P.J. Chou, K.-T. Hsu, G.-H. Luo, H.-J. Tsai, M.-H. Wang
    NSRRC, Hsinchu
  Over the past decade, NSRRC has served the synchrotron light users with its 1.5 GeV third-generation storage ring. To provide stable hard x-ray for the x-ray community, two strong-field superconduting wigglers have been installed and three more will be put in such a low energy ring. A superconduting rf cavity is to replace the conventional ones and the beam current will be double too. Top-up injection study is underway. This paper presents the accelerator physics issues at NSRRC such as single particle dynamics and collective effects.  
 
THPKF046 Feasibility Study of Constant Current Operation at TLS Storage Ring injection, storage-ring, photon, insertion-device 2380
 
  • G.-H. Luo, H.-P. Chang, J. Chen, C.-C. Kuo, K.-B. Liu, R.J. Sheu, H.-J. Tsai, M.-H. Wang
    NSRRC, Hsinchu
  Several top-up experiments were carried out at various upgrade path of Taiwan Light Source. However, there were too many obstacles laid ahead of various stages to prevent the realization of top-up injection routinely. The small gap undulators, the requirement of small emittance operation and high current operation by SC cavity have promoted the top-up injection project to hightest priority. During last one and half years, a series of beam parameters measurement, subsystem checkout, installing various sensors, control program modification and hardware upgrade made the top-up injection more likely in routine operation. Discussions on the results of some measurements of booster and storage ring, the requirement of hardware upgrade and the future executable plan will be presented in this paper.  
 
THPKF088 NSLS II: A Future Source for the NSLS impedance, synchrotron, brightness, storage-ring 2457
 
  • J.B. Murphy, J. Bengtsson, L. Berman, R. Biscardi, A. Blednykh, G.L. Carr, W.R. Casey, S.B. Dierker, E. Haas, R. Heese, S. Hulbert, E. Johnson, C.C. Kao, S.L. Kramer, S. Krinsky, I.P. Pinayev, R. Pindak, S. Pjerov, B. Podobedov, G. Rakowsky, J. Rose, T.V. Shaftan, B. Sheehy, D.P. Siddons, J. Skaritka, N. Towne, J.-M. Wang, X.J. Wang, L.-H. Yu
    BNL/NSLS, Upton, Long Island, New York
  The National Synchrotron Light Source at BNL was the first dedicated light source facility and has now operated for more than 20 years. During this time, the user community has grown to more than 2400 users annually. To insure that this vibrant user community has access to the highest quality photon beams, the NSLS is pursuing the design of a new ultrahigh brightness (~ 1E21) electron storage ring, tailored to the 0.3-20 keV photon energy range. We present our preliminary design and review the critical accelerator physics design issues.  
 
THPLT010 Limiting High Frequency Longitudinal Impedance of an Inductive Pick-up by a Thin Metallic Layer impedance, simulation, pick-up, vacuum 2481
 
  • M. Gasior
    CERN, Geneva
  An Inductive Pick-Up (IPU) was developed to measure the position and current of an electron beam of the CTF3 Drive Beam Linac. The pick-up construction is similar to a wall current monitor, but the pick-up inner wall is divided into 8 electrodes, each of which forms the primary winding of a toroidal transformer. The beam image current component flowing along each electrode is transformed to a secondary winding, connected to an output. The continuity of the vacuum chamber is taken care of by a ceramic insertion surrounded by the electrodes. The insertion is titanium coated on the inside and the end-to-end resistance of the layer is chosen in such a way that within the IPU bandwidth the image current flows over the electrodes. For higher frequencies the current is conducted by the coating to limit the longitudinal impedance of the device in the GHz range. This paper describes a simple electric network model, which was used to simulate the influence of the coating and to optimize its resistance. The model is built from sections of ideal transmission lines and resistors and is suitable for SPICE simulations. Results of measurements and simulations are compared.  
 
THPLT023 The Use of Photon Monitors at the Swiss Light Source photon, feedback, insertion-device, undulator 2520
 
  • J. Krempasky, M. Böge, T. Schilcher, V. Schlott, T. Schmidt
    PSI, Villigen
  The photon beam position monitors (PBPM) in a synchrotron radiation facility are important tools for beam-line and machine diagnostics since they deliver position and angle information directly from the radiation source point. In the last two years a number of PBPMs have been installed and commissioned at the Swiss Light Source (SLS). Their readouts have been systematically studied and the results have been correlated with data from the digital beam position monitor (DBPM) system. It turns out that the PBPMs help understanding the influence of insertion device gap changes on photon beam position and thus on photon flux and/or energy resolution near the beam-line experimental stations. In addition to the global fast orbit feedback (FOFB), a local slow feedback based on PBPM data has been implemented to remove the remaining systematic effects of the DBPM system and to stabilize the photon beam to a micron level at the experimental station.  
 
THPLT053 Fast Orbit Feedback Developments at ELETTRA feedback, electron, power-supply, insertion-device 2604
 
  • D. Bulfone, R. De Monte, M. Ferianis, V. Forchi', M. Lonza
    ELETTRA, Basovizza, Trieste
  A number of fast local orbit feedback stations are being sequentially installed at ELETTRA to improve the stability of the electron beam at the Insertion Device source points. They rely on Beam Position Monitors equipped with digital detector electronics that provides high precision and readout rate. The local feedback stations will be integrated in a fast global orbit feedback system, which is the goal of the ongoing developments. The performance and the operational experience gained with the local feedback systems are presented together with the planned road map towards the global system.  
 
THPLT084 Test Result of Slow Global Orbit Feedback using MATLAB at PLS feedback, power-supply, photon, insertion-device 2694
 
  • H.-S. Kang, J. Choi, K.M. Ha, E.-H. Lee, T.-Y. Lee, W.W. Lee
    PAL, Pohang
  A slow global orbit feedback using MATLAB has been tested to control the slow orbit movement for the PLS. The feedback program uses MATLAB tools such as matrix algebra, mathematical functions, and graphic display, and uses the SVD (singular value decomposition) method. The PLS uses 70 corrector magnets with the maximum angle of 2-mrad for each plane among which 11 use the 16-bit DAC power supplies for the insertion device orbit control and others the 12-bit corrector power supplies with the minimum step of 1-micro-rad, and thus the orbit feedback is not acceptable to beamline users. For the best performance of the feedback, the major hardware components have been upgraded: the replacement of 12-bit BPMs with 16-bit was completed, and the upgrade of corrector power supplies from DAC 12-bit to 18-bit or higher will be completed soon. In this paper, the orbit feedback test result using the current corrector power supplies is presented and the upgrade plan of orbit feedback is described.  
 
THPLT089 MATLAB Based TPSA Toolbox for the Particle Mapping Through Three-dimensional Magnetic Fields insertion-device, focusing, storage-ring, quadrupole 2703
 
  • H.-P. Chang, H.-J. Tsai
    NSRRC, Hsinchu
  Based on the object-oriented programming of MATLAB, a truncated power series algebra (TPSA) toolbox has been developed. The TPSA toolbox as a differential algebra has been applied to realize the algorithm of particle mapping through three-dimensional magnetic field configurations. The capability of symbolic calculation by using this MATLAB-based TPSA toolbox can be used for the theoretical simulation and modeling in accelerator physics. Associated with the use of MATLAB in the control of machines, one can derive the real machine with a virtual machine model built in MATLAB. In this paper, the method of symplectic mapping of three-dimensional magnetic fields is introduced and the structure of TPSA toolbox is presented. Applications of TPSA toolbox in the symplectic mapping of three-dimensional magnetic fields are demonstrated as well.  
 
THPLT141 Operational Experience Integrating Slow and Fast Orbit Feedbacks at the ALS feedback, insertion-device, storage-ring, pick-up 2786
 
  • C. Steier, E.E. Domning, T. Scarvie, E. Williams
    LBNL, Berkeley, California
  A fast global orbit feedback system has been implemented at the ALS and is being used during user operation since this year. The system has two main purposes. The first is to meet the demands of some users for even improved (submicron) short term orbit stability. The second is to enable the use of more sophisticated insertion device compensation schemes (e.g. tune, beta-beating, coupling) for fast moving insertion devices like elliptically polarizing undulators, without deteriorating the orbit stability. The experience of routine user operation with the fast orbit feedback will be presented, as well as the overall feedback performance and how the integration issues with the already existing slow orbit feedback were solved.