A   B   C   D   E   F   G   H   I   K   L   M   N   O   P   Q   R   S   T   U   V   W    

controls

Paper Title Other Keywords Page
MOPKF006 Enhancements of Top-up Operation at the Swiss Light Source injection, storage-ring, linac, booster 309
 
  • B. Kalantari, T. Korhonen, A. Lüdeke, C. Quitmann
    PSI, Villigen
  Since the first experience on 2001, Top-Up is the standard mode of operation at the Swiss Light Source (SLS) for users. In order to fulfill the ongoing demands of machine experts and experiments we have had to add more functionality to the Top-Up mode thus make it more flexible. Some time-resolved experiments require a constant charge in a single isolated bucket in the gap of the normal filling of a bunch train of 80% of the circumference of the storage ring. Therefore the Hybrid application was developed that keeps the beam current distribution constant in this mode. We developed a maintenance mode too, to allow to work continuously on the Linac and booster - for example to optimize injection/extraction - without disturbing the Top-up for user operation. Even beam destructive experiments at the Linac during Top-Up or Hybrid operation are supported, where the Linac can be used synchronously at the times between successive refilling of the storage ring. The flexible control and timing systems at the SLS made these applications feasible. We describe the controls, operation and applications of each of the above functionalities in this paper.  
 
MOPLT004 Control of the LHC 400 MHz RF System (ACS) klystron, monitoring, diagnostics, interaction-region 533
 
  • L. Arnaudon, M.D. Disdier, P.M. Maesen, M.P. Prax
    CERN, Geneva
  The LHC ACS RF system is composed of 16 superconducting cavities, eight per ring. Each ring has two cryomodules, each containing four cavities. Each cavity is powered by a 300 kW klystron. The klystrons are grouped in fours, the klystrons in each group sharing a common 58 kV power converter and HV equipment bunker. The ACS RF control system is based on modern industrial programmable controllers (PLCs). A new fast interlock and alarm system with inbuilt diagnostics has been developed. Extensive use of the FIPIO Fieldbus drastically decreases the cabling complexity and brings improved signal quality, increased reliability and easier maintenance. Features of the implementation, such as system layout, communication and the high level software interface are described. Operational facilities such as the automatic switch on procedure are described, as well as the necessary specialist tools and interfaces. A complete RF chain,including high voltage, cryomodule and klystron is presently being assembled in order to check, as far as possible, all aspects of RF system operation before LHC installation. The experience gained so far in this test chain with the new control system is presented  
 
MOPLT017 Beam Commissioning of the SPS LSS4 Extraction and the TT40 Transfer Line extraction, kicker, septum, instrumentation 569
 
  • B. Goddard, P. Collier, M. Lamont, V. Mertens, K. Sigerud, J.A. Uythoven, J. Wenninger
    CERN, Geneva
  The new fast extraction system in LSS4 of the SPS and the transfer line TT40 were installed between 2000 and 2003, and commissioned with beam in late 2003. The extraction system and transfer line will serve both the anti-clockwise ring of the Large Hadron Collider (LHC), and the long baseline neutrino (CNGS) facility. The layout and functionality of the main elements are briefly explained, including the various hardware subsystems and the controls system. The safety procedures, test objectives and results of the system commissioning with beam are described, together with the test methodology. Conclusions are drawn concerning the performance of the system elements, agreement between predicted and expected activation levels and test efficiency and procedures. The test results are also briefly discussed in the context of future LHC beam commissioning activities.  
 
MOPLT029 All Digital IQ Servo-system for CERN Linacs linac, heavy-ion, diagnostics, ion 605
 
  • A. Rohlev, J. Broere, R. Garoby, I. Kozsar, J. Serrano
    CERN, Geneva
  A VME based control system has been developed and built at CERN for the servo loops regulating the field in linac accelerating structures. It is an all-digital system built on a single VME card, providing digital detection, processing, and modulation. It is foreseen to be used, in different versions, for the needs of both present and future CERN hadron linacs. The first application will be in the energy ramping RF chain of the CERN Heavy Ion Linac (linac 3). In addition to regulating the cavity field, the system incorporates the measurement and control of the cavity resonance as well as an imbedded loop stabilizing the gain and the phase of the final amplifier operating near saturation. The design principle and the experimental results are described.  
 
MOPLT060 New RF Measuring System for Cavity Characterization pick-up, coupling, superconductivity, monitoring 692
 
  • S. Stark, G. Bisoffi, l. Boscagli, V. Palmieri, A.M. Porcellato
    INFN/LNL, Legnaro, Padova
  New computer based mobile measuring system for laboratory and online characterization of superconducting cavities has been put into operation at LNL. The system covers the frequency range from 80 to 350 MHz and represents a reliable, fast and precise instrument for cavity testing. The list of automatic and semiautomatic procedures includes line calibrations, frequency sweep, decay time measurement, Q(Eacc) curve acquisition and pulse conditioning.  
 
MOPLT063 Reconfigurable Hardware Resources in Accelerator Control Systems 701
 
  • D. Giove, C. De Martinis, M. Mauri
    INFN/LASA, Segrate (MI)
  The development of modern accelerator control systems has taken advantage of the possibility to use standard architecture designs based on the experience gained in industrial applications. Communication buses, board formats, operating systems, network protocols and operator interface software are the main elements of this new approach. In this paper we will discuss the way to apply this method also to the design of electronic boards which call for custom design of particular circuits and capabilities. The use of FPGA based standard modules along with the possibility to customize them using a standard LabVIEW environment to obtain reconfigurable hardware resources will be presented.  
 
MOPLT097 Co-sourcing Development of Accelerator Controls synchrotron, vacuum, booster, power-supply 758
 
  • K. Zagar, R. Sabjan, I. Verstovsek
    JSI, Ljubljana
  • M. Plesko
    Cosylab, Ljubljana
  Frequently, accelerator facilities make use of products and services offered by the industry. This paper's focus is on such outsourcing of control system hardware and software. Firstly, an attempt is made to explain the facility's motivation for seeking outside help, which is typically due to lack of resources, technology or knowledge. Then, the risks of outsourcing are enumerated. To mitigate them, the industrial partner should have not only the adequate technical expertise, but also a reliable, yet agile management and quality assurance process that meets the facility's expectations, schedule, budget constraints, maintenance and support needs. Finally, Cosylab's business model is presented, designed to provide lasting open-source solutions that help not only a single facility, but the entire community.  
 
TUPKF002 TRIUMF ISAC II RF Control System Design and Testing coupling, feedback, linac, target 953
 
  • M.P. Laverty, S.F. Fang, K. Fong
    TRIUMF, Vancouver
  The rf control system for the ISAC II superconducting cavities is a hybrid analogue/digital design which has undergone several iterations in the course of its development. In the current design, the cavity operates in a self-excited feedback loop, while phase locked loops are used to achieve frequency and phase stability. Digital signal processors are used to provide amplitude and phase regulation, as well as mechanical cavity tuning control. The most recent version also allows for the rapid implementation of operating firmware and software changes, which can be done remotely, if the need arises. This paper describes the RF control system and the experience gained in operating this system with a four-cavity test facility.  
 
TUPKF003 Industrial Production of the Eight Normal-conducting 200 MHz ACN Cavities for the LHC vacuum, simulation, beam-losses, electron 956
 
  • R. Losito, E. Chiaveri, R. Hanni, T.P.R. Linnecar, S. Marque, J. Tuckmantel
    CERN, Geneva
  The LHC-ACN RF system consists of 8 normal-conducting cavities and is designed to reduce beam losses in the LHC when injecting beams with longitudinal emittance > 0.7 eVs from the CERN SPS. The cavity design took into account the possibility of recuperating all the "ancillary" equipment (tuners, fundamental mode damper, High Order Mode (HOM) couplers) from the old CERN SPS 200MHz system. The cavities are made from OFE copper. The original ingots, procured in Austria, have been forged and pre-formed by pressing them with a 20 tons press, following a procedure defined and adapted for the unusual dimensions of these pieces. The raw components thus obtained were machined and then welded together with an electron beam. In order to get a good repeatability of the fundamental mode frequency across the eight cavities, a procedure has been established with the contractor for the final machining and welding leading to a spread in frequencies below ±20 kHz (< 0.01%). The cavities will be installed in the LHC when losses at high intensities become significant. In the meantime they are undergoing a surface treatment to clean the RF surface and will be stored.  
 
TUPKF072 Production and Performance of the CEBAF Upgrade Cryomodule Intermediate Prototypes linac, damping, vacuum, synchrotron 1105
 
  • A-M. Valente, E. Daly, J.R. Delayen, M. Drury, R. Hicks, C. Hovater, J. Mammosser, H.L. Phillips, T. Powers, J.P. Preble, C. Reece, R.A. Rimmer, H. Wang
    Jefferson Lab, Newport News, Virginia
  • C. Thomas-Madec
    SOLEIL, Gif-sur-Yvette
  We have installed two new cryomodules, one in the nuclear physics accelerator (CEBAF) and the other in the Free Electron Laser (FEL) of Jefferson Lab. The new cryomodules consist of 7-cell cavities with the original CEBAF cell shape and were designed to deliver gradients of 70 MV/module. Several significant design innovations were demonstrated in these cryomodules. This paper describes the production procedures, the performance characteristics of these cavities in vertical tests, results of tests in the new cryomodule test facility (CMTF) as well as the commissioning in the CEBAF tunnel and FEL. Performances and limitations after installation in the accelerators are discussed in this paper along with improvements proposed for future cryomodules.  
 
TUPKF079 A Low Noise RF Source for RHIC beam-losses, instrumentation, acceleration, luminosity 1123
 
  • T. Hayes
    BNL, Upton, Long Island, New York
  The Relativistic Heavy Ion Collider requires a low noise rf source to ensure that beam lifetime during a store is not limited by the rf system. The beam is particularly sensitive to noise from power line harmonics. Additionally, the rf source must be flexible enough to handle the frequency jump required for rebucketing (transferring bunches from the acceleration to the storage rf systems). This paper will describe the design of a Direct Digital Synthesizer (DDS) based system that provides both the noise performance and the flexibility required.

Work performed under the auspices of the US Department of Energy

 
 
TUPLT144 Upgrade of the ISIS Main Magnet Power Supply power-supply, synchrotron, feedback, proton 1467
 
  • S. West, J.W. Gray, A. Morris
    CCLRC/RAL/ISIS, Chilton, Didcot, Oxon
  ISIS, situated at the Rutherford Appleton Laboratory (RAL) is the world?s most powerful pulsed neutron source. At the heart of the ISIS accelerator is a proton synchrotron which uses a ring of magnets connected in series and configured as a ?White Circuit?. The magnets are connected in series with capacitor banks so that they form a resonant circuit with a fundamental frequency of 50 Hz. The circuit allows the magnets to be fed with an AC current superimposed on a DC current. The AC is currently provided by a 1MVA Motor-Alternator set and it is now proposed to replace this by a solid state UPS (Uninterruptible Power Supply) system. Tests on a smaller 80kVA unit have shown that it is possible to control the magnet current with a modified UPS system in such a way that both the frequency, phase and output voltage are under the direct influence of the control system. This paper discusses the issues surrounding the upgrading of AC supply to the main magnets with a view to improving the system reliability, improving magnet current stability and reducing the risk of mains failure.  
 
TUPLT150 Vector Sum Control of an 8 GeV Superconducting Proton Linac linac, simulation, klystron, proton 1482
 
  • M. Huening, G.W. Foster
    Fermilab, Batavia, Illinois
  Fermilab is investigating the feasibility of an economical 8 GeV superconducting linac for H-. In order to reduce the construction costs it is considered to fan out the rf power to a string of accelerating structures per klystron. Below 1 GeV the individual fluctuations of the cavities will be compensated by high power phase shifters, above 1 GeV the longitudinal dynamics are sufficiently damped to consider omitting the phaseshifters. The impact of this setup on the field stability of individual cavities and ultimately the beam energy has been studied.  
 
TUPLT186 Managing System Parameters for SNS Magnets and Power Supplies power-supply, target, vacuum, linac 1565
 
  • W.J. McGahern, S. Badea, F.M. Hemmer, H.-C. Hseuh, J.W. Jackson, A.K. Jain, F.X. Karl, R.F. Lambiase, Y.Y. Lee, C.J. Liaw, H. Ludewig, G.J. Mahler, W. Meng, C. Pai, C. Pearson, J. Rank, D. Raparia, J. Sandberg, S. Tepikian, N. Tsoupas, J. Tuozzolo, P. Wanderer, J. Wei, W.-T. Weng
    BNL, Upton, Long Island, New York
  • R. Cutler, J.J. Error, J. Galambos, M.P. Hechler, S. Henderson, P.S. Hokik, T. Hunter, G.R. Murdoch, K. Rust, J.P. Schubert
    ORNL/SNS, Oak Ridge, Tennessee
  The Spallation Neutron Source (SNS), currently under construction at Oak Ridge, Tennessee, is a collaborative effort of six U.S. Department of Energy partner laboratories. With over 312 magnets and 251 power supplies that comprise the beam transport lines and the accumulator ring, it is a challenge to maintain a closed loop on the variable parameters that are integral to these two major systems. This paper addresses the input variables, responsibilities and design parameters used to define the SNS magnet and power supply systems.  
 
TUPLT187 SNS Extraction Kicker Power Supply Control power-supply, kicker, extraction, proton 1568
 
  • J.-L. Mi, L. Hoff, R.F. Lambiase, Y.Y. Lee, J. Sandberg, Y. Tan, N. Tsoupas, R. Zapasek, W. Zhang
    BNL, Upton, Long Island, New York
  There are fourteen PFN power supplies, which will be installed in the SNS Extraction Kicker System. This paper will introduce these fourteen-power supplies arrangement and control schematic. These control instruments and boards are installed into four standard racks. Some of the control boards functions will be list in this paper. Control racks and some control boards pictures will be shown in this paper.  
 
WEPKF019 Magnetic Measurement Systems for the LHC Dipole Assembly Firms dipole, site, power-supply, alignment 1636
 
  • H. Reymond, J. Billan, J. Garcia Perez, D. Giloteaux, A. Raimondo, V. Remondino, A. Rijllart
    CERN, Geneva
  The LHC lattice superconducting dipole magnets are actually under construction in three European industries. Due to the extremely high magnet performance required for the LHC, these magnets have to be built with high accuracy during all the steps of their assembling. In order to detect defects in the earliest production phases and to ensure the quality of the magnetic field as specified by the CERN contracts, dedicated measurement benches have been built and installed in each industry to validate the magnetic field quality at two important production stages. This paper describes the initial requirements and the implementation of the magnetic measurement systems. Details on the technical solutions, the present status and measurement results are presented.  
 
WEPKF071 A New Current Regulator for the APS Storage Ring Correction Magnet Bipolar Switching Mode Power Converters storage-ring, power-supply, photon 1768
 
  • J. Wang
    ANL, Argonne, Illinois
  The correction magnets in the Advanced Photon Source's storage ring are powered by PWM-controlled bipolar switching-mode converters. These converters are designed to operate at up to ± 150 A. The original current regulator used a polarity detection circuit, with a hysteresis, to determine which IGBT was needed to regulate the current with a given polarity. Only the required IGBT was switched while others were held on or off continuously. The overall IGBT switching losses were minimized by the design. The shortcoming of the design is that the converter's output is unstable near zero current because of the hysteresis. To improve the stability, a new current regulator, using a different PWM method, has been designed to eliminate the requirement of the polarity detection. With the new design, converters can operate smoothly in the full range of ±150 A. The new design also meets tighter specs in terms of the ripple current and dynamic response. This paper describes the design of the new regulator and the test results.  
 
WEPLT037 A J2EE Solution for Technical Infrastructure Monitoring at CERN monitoring, laser, vacuum, collider 1912
 
  • J. Stowisek, R.M. Martini, P. Sollander
    CERN, Geneva
  The Technical Infrastructure Monitoring project (TIM) will design and implement the future control system for CERN's technical infrastructure. The control system will be built using standard components including industrial PLCs, Java Enterprise Edition (J2EE) including Enterprise Java Beans and the Java Message Service and relational databases. This paper describes how these standard technologies are used to build a flexible, scalable, robust and reliable control system.  
 
WEPLT049 Timekeeping Mechanism at SLS/APS Control System fibre-optics, monitoring 1948
 
  • B. Kalantari, T. Korhonen
    PSI, Villigen
  Time is one of the most important and critical parameters in a distributed control and measurement system. It is especially crucial when we need to interpret correlation of different archived process variables (PV) during the time. Advanced Light Source (APS) and Swiss Light Source (SLS) are using a very similar control system toolkit (EPICS) and the same mechanism for timekeeping. Many input/output controllers (IOC) around the accelerator complex (including beamlines), run under a real-time operating system, and carry out the controls and data acquisition. Each IOC is responsible of keeping its own local time and time-stamps the local PV?s but tightly synchronized with a central timing IOC. Dedicated timing hardware and network makes it possible to maintain synchronous timestamps with real-time clock. In this paper we describe the principle of this mechanism, its advantages, our experiences and further improvements.  
 
WEPLT133 On Beam Dynamics Optimization rfq, acceleration, proton, electron 2152
 
  • D.A. Ovsyannikov, S.V. Merkuryev
    St. Petersburg State University, St. Petersburg
  Mathematical optimization methods are widely used in designing and construction of charged particle accelerators. In this paper new approach to beam dynamics optimization is considered. Suggested approach to the problem is based on the analytical representation for variation of examined functionals via solutions of special partial differentional equations. The problem of optimization is considered as a problem of mutual optimization chosen synchronous particle motion and charged particles beam at whole. This approach was applied to the beam dynamics optimization for RFQ structures.  
 
THPKF077 A Fiber Optic Synchronization System for LUX laser, feedback, linac, undulator 2445
 
  • R.B. Wilcox, L.R. Doolittle, J.W.  Staples
    LBNL, Berkeley, California
  The proposed LUX femtotsecond light source will support pump-probe experiments that will need to synchronize laser light pulses with electron-beam-generated X-ray pulses to less than 50fs at the experimenter endstations. To synchronize multiple endstation lasers with the X-ray pulse, we are developing a fiber-distributed optical timing network. A high stability clock signal from a modelocked laser is distributed via fiber to RF cavities (controlling X-ray probe pulse timing) and modelocked lasers at endstations (controlling pump pulse timing). The superconducting cavities are actively locked to the optical clock phase. Most of the RF timing error is contained within a 10kHz bandwidth, so these errors and any others affecting X-ray pulse timing (such as RF gun phase) can be detected and transmitted digitally to correct laser timing at the endstations. The lasers? timing jitter is limited to low frequency, and thus they will follow the controls (clock plus error correction) without adding much wideband error. Time delay through the fibers will be stabilized by comparing a retroreflected pulse from the experimenter endstation end with a reference pulse from the sending end, and actively controlling the fiber length. Numerical simulations and initial synchronization experimental results will be presented.  
 
THPLT043 Development of a New Orbit Measurement System storage-ring, damping, synchrotron, vacuum 2577
 
  • O. Kaul, F. Brinker, R. Neumann, R. Stadtmüller
    DESY, Hamburg
  Since DORIS III became a dedicated source for synchrotron radiation in 1993, the demands of the synchrotron-light-users concerning the beam position stability have permanently increased.In order to improve this stability, different measures have been adopted, all with success. The vacuum chambers have been renewed, since they were the source of quadrupole movement, which caused strong horizontal orbit distortion. In 2003 a new orbit position control was implemented, based on the ?Singular Value Decomposition? method. The position information comes from synchrotron light monitors, installed in the beam-lines, and from the orbit measurement system, which operates with a maximal measurement rate of 5Hz and a spatial resolution not less than 20μm. To satisfy the requirements for beam-position stability, the orbit measurement system has been further developed. The test stage is nearly finished and the new system will be installed soon. The orbit measurement rate will exceed 250Hz und the spatial resolution will be less than 2μm. In addition beam oscillations of up to 20Hz can be damped.  
 
THPLT186 Bunch Pattern Control in Top-up Mode at the SLS feedback, storage-ring, injection, diagnostics 2885
 
  • B. Kalantari, T. Korhonen, V. Schlott
    PSI, Villigen
  One of the crucial issues in the advanced third generation light sources is the bunch pattern control in the storage ring, where various filling patterns are of interests for different experiments. The most important step is to keep a uniform charge distribution over all (electron) bunches during the top-up operation. Such a bunch pattern control has been implemented at the Swiss Light Source (SLS). It provides a filling pattern with bunch-to-bunch fluctuation of a few percent. Since a dependency of the medium term orbit stability on the actual filling pattern was observed in the past, the stability could significantly be improved. Three major ingredients have made the implementation possible: precise timing system, flexible control system and sophisticated diagnostics. The method is being used in the user operation recently and proved to be reliable. This paper describes the hardware and software involved in the mentioned technique.