A   B   C   D   E   F   G   H   I   K   L   M   N   O   P   Q   R   S   T   U   V   W    

ion

                      
Paper Title Other Keywords Page
MOPKF084 Beam Instabilities in Lepton Ring of eRHIC electron, lepton, impedance, positron 515
 
  • D. Wang, M. Farkhondeh, C. Tschalaer, J. Van der Laan, F. Wang, A. Zolfaghari, T. Zwart
    MIT/BLAC, Middleton, Massachusetts
  • M. Blaskiewicz, Y. Luo, L. Wang
    BNL, Upton, Long Island, New York
  The eRHIC is a high luminosity lepton-hadron collider planned to be built in Brookhaven National Lab, Upton, New York, USA. The lepton machine of eRHIC is a completely newly designed machine complex to provide highly polarized lepton beams at up to 10 GeV energy for the high luminosity lepton-hadron collisions. This paper decribes major issues of collective effects in this lepton storage ring. Besides conventional impedance-driven instabilities, the electron cloud effects in positron operation and fast beam-ion effects in electron operation are of major conserns. The analytical and numerical estimats for major collective effects are made with different machine operation conditions.  
 
MOPLT007 Base Line Design for a Beta-beam Neutrino Facility acceleration, linac, injection, target 542
 
  • M. Benedikt, S. Hancock, M. Lindroos
    CERN, Geneva
  The term beta-beam has been coined for the production of pure beams of electron neutrinos or their antiparticles through the decay of radioactive ions circulating in a storage ring. The neutrino source itself consists of a high energy storage ring (gamma ~150), with long straight sections in line with the experiment(s). The radioactive ions (6He and 18Ne) will be produced in an ISOL type target system. Due to the short life times of around 1s at rest, the beam needs to be accelerated as quickly as possible. For this a staged system of accelerators is proposed. The chain starts with a linac followed by a rapid cycling synchrotron for acceleration up to ~300 MeV/u. For further acceleration the existing PS and SPS machines are used. Finally, after acceleration to SPS top energy, the ions are transferred to the decay ring where they are merged with the already circulating bunch through a longitudinal stacking procedure. The base line design of the beta beam facility will be presented and the major design problems encountered as well possible solutions will be discussed.  
 
MOPLT010 Collimation of Heavy Ion Beams in LHC collimation, proton, heavy-ion, scattering 551
 
  • H.-H. Braun, R.W. Assmann, A. Ferrari, J.-B. Jeanneret, J.M. Jowett
    CERN, Geneva
  • I.A. Pshenichnov
    RAS/INR, Moscow
  The LHC collimation system is designed to cope with requirements of proton beams having 100 times higher beam power than the nominal LHC heavy ion beam. In spite of this, specific problems occur for ion collimation, due to different particle-collimator interaction mechanism for ions and protons. Ions are subject to hadronic fragmentation and electromagnetic dissociation, resulting in a non-negligible flux of secondary particles of small angle divergence and Z/A ratios slightly different from the primary beam. These particles are difficult to intercept by the collimation system and can produce significant heat-load in the superconducting magnets when they hit the magnet vacuum chamber. A computer program has been developed to obtain quantitative estimates of the magnitude and location of the particle losses. Hadronic fragmentation and electromagnetic dissociation of ions in the collimators were considered within the frameworks of abrasion-ablation and RELDIS models, respectively. Trajectories of the secondary particles in the ring magnet lattice and the distribution of intercept points of these trajectories with the vacuum chamber are computed. Results are given for the present collimation system design and potential improvements are discussed.  
 
MOPLT020 Limits to the Performance of the LHC with Ion Beams luminosity, emittance, damping, radiation 578
 
  • J.M. Jowett, H.-H. Braun, M.I. Gresham, E. Mahner, A.N. Nicholson, E.N. Shaposhnikova
    CERN, Geneva
  • I.A. Pshenichnov
    RAS/INR, Moscow
  The performance of the LHC as a heavy-ion collider will be limited by a diverse range of phenomena that are often qualitatively different from those limiting the performance with protons. We summarise the latest understanding and results concerning the consequences of nuclear electromagnetic processes in lead ion collisions, the interactions of ions with the residual gas and the effects of lost ions on the beam environment and vacuum. Besides these limitations on beam intensity, lifetime and luminosity, performance will be governed by the evolution of the beam emittances under the influences of synchrotron radiation damping, intra-beam scattering, RF noise and multiple scattering on residual gas. These effects constrain beam parameters in the LHC ring throughout the operational cycle with lead ions.  
 
MOPLT029 All Digital IQ Servo-system for CERN Linacs linac, heavy-ion, diagnostics, controls 605
 
  • A. Rohlev, J. Broere, R. Garoby, I. Kozsar, J. Serrano
    CERN, Geneva
  A VME based control system has been developed and built at CERN for the servo loops regulating the field in linac accelerating structures. It is an all-digital system built on a single VME card, providing digital detection, processing, and modulation. It is foreseen to be used, in different versions, for the needs of both present and future CERN hadron linacs. The first application will be in the energy ramping RF chain of the CERN Heavy Ion Linac (linac 3). In addition to regulating the cavity field, the system incorporates the measurement and control of the cavity resonance as well as an imbedded loop stabilizing the gain and the phase of the final amplifier operating near saturation. The design principle and the experimental results are described.  
 
MOPLT072 Effects of Positrons on Relativistic Solitons in Laser-Plasma Interactions positron, electron, plasma, laser 719
 
  • J.B.  Kim, I.S. Ko
    POSTECH, Pohang, Kyungbuk
  • H. Suk
    KERI, Changwon
  An extended 1D kinetic model of relativistic solitons by high power lasers in three species plasmas is suggested and it is applied to analysis on the effects of electron-positron pairs on the solitons. Stability condition of the solitons is derived. The range of parameters for the stable solitons are specified in the frequency-temperature plane. With the creation of electron-positron pairs, relativistic solitons appear stable in wider range of frequencies and temperatures. The regions are expanded toward higher values in overall ranges in the frequency-temperature plane. The stability conditions are affected by the density of positrons. The variation of shapes, peak E-field, and width of the solitons by varying the positron density are analyzed. We discuss the implications of the variation in the soliton on the ion accelerations by it.  
 
MOPLT081 Low Energy Ion Beam Dynamics in Axisymmetric RF Undulator Linac focusing, linac, undulator, acceleration 731
 
  • E.S. Masunov, S.M. Polozov
    MEPhI, Moscow
  The ion beam focusing and acceleration in an axisymmetric periodic RF undulator structure is considered. There is suggested that RF field has no a synchronous wave and accelerating force is to be driven by a combination of two non-synchronous waves. The influence of non-synchronous harmonics on ion beam dynamics is studied by means of a smooth approximation. Choice and optimization of RF field harmonics are made to obtain maximal transmission coefficient. The result is verified by a numerical simulation. The comparison with a conventional RF linac, where a synchronous harmonic accelerates a beam and non-synchronous one is focusing a beam, is described. This comparison is suitable for demonstration of the capabilities of an undulator linac.  
 
MOPLT111 On using NEA Cathodes in an RF Gun gun, electron, cathode, vacuum 797
 
  • M. Huening
    Fermilab, Batavia, Illinois
  RF guns have been proven to deliver high brightness beams and therefore appear attractive as electron source for a linear collider. Only so far no polarized beams have been produced. To create a polarized electron beam GaAs NEA cathodes are used. Operating rf guns with a NEA cathode poses concerns in three areas, oxidation by residual gas, ion bombardment, and electron bombardment. In this paper we report about an attempt to reduce the vacuum pressure inside the gun by cooling it to cryogenic temperatures. Furthermore the energy deposition by ions and electrons will be quantified.  
 
MOPLT124 Control System of the Small Isochronous ring power-supply, injection, dipole, extraction 830
 
  • J.A. Rodriguez, F. Marti
    NSCL, East Lansing, Michigan
  • E. Pozdeyev
    Jefferson Lab, Newport News, Virginia
  The purpose of this paper is to describe the control system of the Small Isochronous Ring (SIR) developed and built at the National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University (MSU). SIR is a small-scale experiment that simulates the dynamics of intense beams in large accelerators. A 20 to 30 keV hydrogen or deuterium ion bunch is injected in the ring, extracted after a variable number of turns and its longitudinal profile is studied. Information about the electronics used and software written to control different injection line, ring and extraction line elements is included. Some of these elements are magnets, electrostatic quadrupoles, electric and magnetic correctors, scanning wires, emittance measurement system, chopper and a fast Faraday cup.  
 
MOPLT151 Study of Arc-related RF Faults in the CEBAF Cryomodules vacuum, linac, laser, electron 890
 
  • E. Daly, D. Curry, J. Musson, G. Myneni, T. Powers, H. Wang, T.E. Whitlatch
    Jefferson Lab, Newport News, Virginia
  • I.E. Campisi
    ORNL/SNS, Oak Ridge, Tennessee
  A series of measurements has been conducted on two superconducting radio-frequency cavity pairs, installed in cryomodules and routinely operated in the Continuous Electron Beam Accelerator Facility, in order to study the RF-vacuum interaction during an RF fault. These arc-related fault rates increase with increasing machine energy, contribute to system downtime and directly affect the accelerator?s availability. For this study, the fundamental power coupler waveguides have been instrumented with vacuum gauges, additional arc detectors, additional infrared sensors and temperature sensors in order to measure the system response during both steady-state operations and RF fault conditions. Residual gas analyzers have been installed on the waveguide vacuum manifolds to monitor the gas species present during cooldown, RF processing and operation. Simultaneous measurements of the signals are presented, a comparison with analysis is shown and results are discussed. The goal of this study is to characterize the RF-vacuum interaction during normal operations. With a better understanding of the installed system response, methods for reducing the fault rate may be devised, ultimately leading to improvements in availability.  
 
MOPLT153 Electron-Ion Collider at CEBAF: New Insights and Conceptual Progress electron, luminosity, collider, proton 893
 
  • Y.S. Derbenev, A. Afanasev, K. Beard, S.A. Bogacz, P. Degtiarenko, J.R. Delayen, A. Hutton, G.A. Krafft, R. Li, L. Merminga, M. Poelker, B.C. Yunn, Y. Zhang
    Jefferson Lab, Newport News, Virginia
  • P.N. Ostroumov
    ANL/Phys, Argonne, Illinois
  We report on progress in conceptual development of the proposed high luminosity (up to 1035/cm2s) and efficient spin manipulation (using figure 8 boosters and collider rings) Electron-Ion Collider at CEBAF based on use of polarized 5-7 GeV electrons in superconduction energy recovering linac (ERL with circulator ring, kicker-operated) and 30-150 GeV ion storage ring (polarized p, d. He3, Li and unpolarized nuclei up to Ar, all totally stripped). Ultra-high luminosity is envisioned to be achievable with short ion bunches and crab-crossing at 1.5 GHz bunch collision rate interaction points. Our recent studies concentrated on simulation of beam-beam interaction, preventing the electron cloud instability, calculating luminosity lifetime due to Touschek effect in ion beam and background scattering of ions, experiments on energy recovery at CEBAF, and other. These studies have been incorporated in the development of the luminosity calculator and in formulating minimum requirements to the polarized electron and ion sources  
 
MOPLT162 Continuous Abort Gap Cleaning at RHIC background, accumulation, beam-losses, heavy-ion 908
 
  • K.A. Drees, R.P. Fliller III, W. Fu, R. Michnoff
    BNL, Upton, Long Island, New York
  Since the RHIC Au-Au run in the year 2001 the 200 MHz cavity system was used at storage and a 28 MHz system during injection and acceleration.The rebucketing procedure potentially causes a higher debunching rate of heavy ion beams in addition to amplifying debunching due to other mechanisms. At the end of a four hour store, debunched beam can easily account for more than 30% of the total beam intensity. This effect is even stronger with the achieved high intensities of the RHIC run 2004. A beam abort at the presence of a lot of debunched beam bears the risk of magnet quenching and experimental detector damage due to uncontrolled beam losses. Thus it is desirable to avoid any accumulation of debunched beam from the beginning of each store, in particular to anticipate cases of unscheduled beam aborts due to a system failure. A combination of a fast transverse kicker and the new 2-stage copper collimator system is used to clean the abort gap continuously throughout the store with a repetition rate of 1 Hz. This report gives an overview of the new gap cleaning procedure and the achieved performance.  
 
MOPLT170 eRHIC, Future Electron-ion Collider at BNL electron, luminosity, linac, proton 923
 
  • V. Ptitsyn, L. Ahrens, M. Bai, J. Beebe-Wang, I. Ben-Zvi, M. Blaskiewicz, J.M. Brennan, R. Calaga, X. Chang, E.D. Courant, A. Deshpande, A.V. Fedotov, W. Fischer, H. Hahn, J. Kewisch, V. Litvinenko, W.W. MacKay, C. Montag, S. Ozaki, B. Parker, S. Peggs, T. Roser, A. Ruggiero, B. Surrow, S. Tepikian, D. Trbojevic, V. Yakimenko, S.Y. Zhang
    BNL, Upton, Long Island, New York
  • D.P. Barber
    DESY, Hamburg
  • M. Farkhondeh, W. Franklin, W. Graves, R. Milner, C. Tschalaer, J. Van der Laan, D. Wang, F. Wang, A. Zolfaghari, T. Zwart
    MIT/BLAC, Middleton, Massachusetts
  • A.V. Otboev, Y.M. Shatunov
    BINP SB RAS, Novosibirsk
  The paper reviews the progress made lately in the design of eRHIC, proposed future electron-ion collider on the basis of the existing RHIC machine. The eRHIC aims to provide collisions of electrons and positrons on ions and protons in center mass energy range of 25-70 GeV. The goal luminosities are in 1032-1033 1/(s*cm2) values for e-p and in 1030-1031 1/(s*cm2) values for e-Au collisions. An essential design requirement is to provide longitudinally polarized beams of electrons and protons (and, possibly lighter ions) at the collision point. The eRHIC ZDR has been recently developed which considers various aspects of the accelerator design. An electron accelerator, which delivers about 0.5A polarized electron beam current in the electron energy range of 5 to 10 GeV, should be constructed at the BNL near existing ion rings of the RHIC collider and should intersect an ion ring at least in one of the available ion ring interaction regions. In order to reach the luminosity goals some upgrades in ion rings also would be required. Ways to reach lower beam emmittances (electron cooling) and higher beam intensities have to be realized.  
 
MOPLT172 Quest for a New Working Point in RHIC proton, injection, resonance, simulation 929
 
  • R. Tomas, M. Bai, W. Fischer, V. Ptitsyn, T. Roser, T. Satogata
    BNL, Upton, Long Island, New York
  The beam-beam interaction is a limiting factor in RHIC's performance, particularly in proton operation. Changing the working point is a strategy to minimize the beam-beam effect and improve the performance of the machine. Experiments at injection energy and simulations have been performed for a set of working points in order to determine what are the best candidates.  
 
MOPLT175 A Method to Measure the Focusing Properties (R_Matrix) of a Magnet focusing, heavy-ion, dipole, multipole 935
 
  • N. Tsoupas, L. Ahrens, K.A. Brown, D. Gassner, J. Glenn, Y.Y. Lee, T. Roser, P. Thieberger, J. Wei
    BNL, Upton, Long Island, New York
  We discuss a method that may be used to measure the focusing properties of a magnet. This method may prove valuable when applied to non-conventional magnets that deviate from the usual dipole magnets or other multipole magnets which are commonly used in a synchrotron. In this category of non-conventional magnets, fall special magnets, which come under the name Snakes. Such magnets are being used in synchrotron accelerators[*,**] to introduce artificial spin resonances to help overcome the intrinsic and/or imperfection spin resonances. This method of measuring the focusing properties of a magnet requires the use of low energy and high rigidity heavy-ions which may be obtained from the BNL Tandem accelerator.In brief the method consists on, injecting low emittance beamlets of lightly stripped heavy ions into a magnet and measuring the coordinates, of these narrowbeamlets, at the entrance and exit of the magnet.From the measurement of these coordinates of the narrowbeamlets we can deduce information on the R matrix and higher order matrix elements that define the focusing properties of the magnet.

* T. Roser, AIP Conf. Proc. 187 (1988) 1221** H.Huang, et. al. Phys. Rev. Lett. 73 (1994) 2982

 
 
MOPLT178 RHIC Pressure Rise electron, background, beam-losses, luminosity 944
 
  • S.Y. Zhang, J. Alessi, M. Bai, M. Blaskiewicz, P. Cameron, K.A. Drees, W. Fischer, R.P. Fliller III, D. Gassner, J. Gullotta, P. He, H.-C. Hseuh, H. Huang, U. Iriso, R. Lee, Y. Luo, W.W. MacKay, C. Montag, B. Oerter, S. Peggs, F.C. Pilat, V. Ptitsyn, T. Roser, T. Satogata, L. Smart, P. Thieberger, D. Trbojevic, J. Van Zeijts, L. Wang, J. Wei, K. Zeno
    BNL, Upton, Long Island, New York
  Beam induced pressure rise remains an intensity limit at the RHIC for both heavy ion and polarized proton operations. The beam injection pressure rise at warm sections has been diagnosed due to electron cloud effect. In addition, pressure rise of heavy ion operation at the beam transition has caused experiment background problem in deuteron-gold run, and it is expected to take place in gold-gold run at high intensities. This type of pressure rise is related to beam momentum spread, and the electron cloud seems not dominant. Extensive approaches for both diagnosis and looking-for-remedies are undergoing in the current gold operation, RUN 4. Results of beam scrubbing, NEG pipe in RHIC ring, beam scraping test of ion desorption, beam momentum effect at the transition, beam gap effect, solenoid effect, and NEG pipe ion desorption test stand will be presented.  
 
TUXCH01 Review of ISOL-type Radioactive Beam Facilities target, linac, heavy-ion, ion-source 45
 
  • M. Lindroos
    CERN, Geneva
  The ISOL technique was invented in Copenhagen over 50 years ago and eventually migrated to CERN where a suitable proton drive beam was available at the Syncho-Cyclotron. The quick spread of the technique from CERN to many other laboratories has resulted in a large user community, which has assured the continued development of the method, physics in the front-line of fundamental research and the application of the method to many applied sciences. The technique is today established as one of the main techniques for on-line isotope production of high intensity and high quality beams. The thick targets used allows the production of unmatched high intensity radioactive beams. The fact that the ions are produced at rest makes it ideally suitable for low energy experiments and for post acceleration using well established accelerator techniques. The many different versions of the technique will be discussed and the many facilities spread all over the world will be reviewed. The major developments at the existing facilities and the challenges encountered will be presented. Finally, the possibility of using the resulting high intensity beams for the production of intense neutrino beams will be briefly discussed.  
Video of talk
Transparencies
 
TUXCH02 FAIR - An International Accelerator Facility for Research with Ions and Antiprotons antiproton, heavy-ion, synchrotron, plasma 50
 
  • W.F. Henning
    GSI, Darmstadt
  This presentation describes the conceptual design for the accelerator facility and the physics research program, and discusses the status and the new challenges in accelerator physics and technology.  
Video of talk
Transparencies
 
TUYACH01 Laser-acceleration and Laser-cooling for Ion Beams proton, laser, target, acceleration 54
 
  • M. Roth, A. Blazevic, E. Brambrink, M. Geissel
    TU Darmstadt, Darmstadt
  • P. Audebert
    LULI, Palaiseaux
  • M. Bussmann, D. Habs, U. Schramm, J. Schreiber
    LMU, München
  • R. Clarke, S. Karsch, D. Neely
    CCLRC/RAL, Chilton, Didcot, Oxon
  • J.A. Cobble, J. Fernandez, M. Hegelich, S. Letzring
    LANL, Los Alamos, New Mexico
  • T.E. Cowan, J. Fuchs, A. Kemp, H. Ruhl
    University of Nevada, Reno, Reno, Nevada
  • K. Ledingham, P. McKenna
    Strathclyde University, Glasgow
  The acceleration or cooling of particles with lasers has been the subject of growing interest over the last years. Because of the huge difference in mass, the acceleration of ions was so far limited to thermal expansion from laser plasmas, driven by the hot electron temperature. In recent years, due to the development of short-pulse ultra-intense lasers, the manipulation of ions has now become possible. Especially the generation of high quality, intense ion beams from laser solid interaction has attracted large attention and is investigated at many laboratories world-wide. For the first time, intense, directed, low emittance beams of ions have been observed, having several MeV of particle energy right from the source. A wealth of applications including next generation ion sources can be envisioned. The talk will give an overview of the status of laser cooling and ion acceleration including the last experimental results. In addition, an overview of the current and future research activities will be presented.  
Video of talk
Transparencies
 
TUXLH03 RHIC Performance and Plans Towards Higher Luminosity and Higher Polarization electron, luminosity, proton, polarization 98
 
  • T. Satogata
    BNL, Upton, Long Island, New York
  RHIC is the first hadron collider consisting of two independent rings. It is designed to operate over a wide range of beam energies and species, including polarized protons, heavy ions, and asymmetric beam collisions. RHIC has produced physics data at four experiments since 1999 in runs that include gold-on-gold collisions at design beam energy (100 GeV/u), high-energy polarized proton-proton collisions (100 GeV on 100 GeV), and deuteron-gold collisions (100 GeV/u). Recent machine performance will be reviewed for high-luminosity gold-gold operations and polarized proton operations, including causes and solutions for known operational limits. Plans and progress for luminosity and polarization improvements, electron cooling, and the electron-ion collider eRHIC will be discussed.  
Video of talk
Transparencies
 
TUYLH01 Proton and Ion Sources for High Intensity Accelerators cathode, plasma, extraction, emittance 103
 
  • R. Scrivens
    CERN, Geneva
  Future high intensity ion accelerators, including SNS, European Spallation Source, SPL etc, will require high current and high duty factor sources for protons, negative hydrogen and heavier ions. In order to achieve these goals, a comparison of the Electron Cyclotron Resonance, radio-frequency and Penning ion sources, among others, will be made. For each of these source types, the present operational sources will be compared to the state-of-the-art research devices with special attention given to reliability and availability. Finally, the future research and development aims will be discussed.  
Video of talk
Transparencies
 
TUPKF006 Custom Design of Medium Energy Linear Accelerator Systems linac, electron, bunching, proton 965
 
  • K. Dunkel, M. Pekeler, C. Piel, H.P. Vogel, P. vom Stein
    ACCEL, Bergisch Gladbach
  Based on customer requirements ACCEL Instruments is designing and building medium energy turn-key Linear Accelerator Systems for scientific applications. Within this paper design and performance of third generation synchrotron light source electron injector linacs will be presented. Further the design of a medium energy light ion linear accelerator will be discussed. This light ion accelerator is designed with independently phased superconducting rf cavities for cw operation and acceleration of different particle species and a variable Energy output.  
 
TUPKF013 Studies on Maximum RF Voltages in Ferrite-tuned Accelerating Cavities synchrotron, proton, antiproton, acceleration 985
 
  • K. Kaspar, H.G. Koenig, T. Winnefeld
    GSI, Darmstadt
  The GSI SIS100 project requires very high accelerating voltages. With ferrite-tuned synchrotron cavities the gap voltage is often strongly limited by the Q-loss effect appearing at medium dc bias fields. At low bias fields, considerably higher voltages can be reached, however. The maximum usable amplitudes over the bias region have been studied. At zero bias, the ferrites could be driven to more than a factor 3 above the Q-loss limit. Except overheating, no other problems appeared. With increasing bias, the maximum amplitudes decrease continuously to the Q-loss level. In this fall-off region there is still a tuning factor up to 2.5 available, with rf flux densities by at least a factor 2 above the Q-loss level. Measurements on small samples of the ferrite material used in the GSI cavities could be verified very well in a full-size cavity, for the most part. The tests were mainly limited by the available anode voltage and the fear of damaging the cavity. It seems possible, to generalize the main results for other ferrite materials, also. Based on the results, a possible scenario for the SIS100 rf system is given. Additionally, the results lead to an alternative cavity design for higher voltages, which is described as well.  
 
TUPKF015 Status of the Superconducting CH-Structure proton, acceleration, linac, simulation 991
 
  • H. Podlech, H. Deitinghoff, H. Klein, H. Liebermann, U. Ratzinger, A.C. Sauer, R. Tiede
    IAP, Frankfurt-am-Main
  H-mode cavities (IH-DTL, IH-RFQ, 4-Vane-RFQ) have been developed and operated successfully during the last decades for ion acceleration. At the IAP Frankfurt a new type of H-mode cavity, the CH-structure is under development. This multi cell drift tube cavity is operated in the TE21- mode. Due to its mechanical rigidity, room temperature as well as superconducting versions can be realized. Superconducting CH-structures might be used especially for cw operated linacs in nuclear research facilites and applied research projects like XADS or IFMIF. A superconducting 352 MHz CH-structure (beta=0.1) with 19 gaps will be available for first tests in 2004. We present the status of the cavity and of the new cryo laboratory in Frankfurt.  
 
TUPKF023 Construction of a 161 MHz, beta=0.16 Superconducting QWR with Steering Correction for RIA linac, vacuum, superconductivity, light-ion 1015
 
  • A. Facco, W. Lu, F. Scarpa
    INFN/LNL, Legnaro, Padova
  • E. Chiaveri, R. Losito
    CERN, Geneva
  • T.L. Grimm, W. Hartung, F. Marti, R.C. York
    NSCL, East Lansing, Michigan
  • V. Zviagintsev
    TRIUMF, Vancouver
  We have built a 161 MHz, b=0.16 superconducting Quarter Wave Resonator with steering correction for the low beta section of RIA. This bulk niobium, double wall cavity, compatible with both separate vacuum between beam line and cryostats or unified one, was designed in collaboration between MSU-NSCL and LNL. The design is suitable for extension to other frequencies, e.g. to obtain the 80 MHz, beta=0.085 cavity required in RIA. The shaped drift tube allows correction of the residual QWR steering that can cause emittance growth especially in light ions; this could make this resonator a good alternative to Half-Wave resonators in high intensity proton-deuteron linacs, like the SPES injector project at LNL. First test results will be presented.  
 
TUPKF024 Operation Experience with ALPI Nb/Cu Resonators acceleration, superconductivity, cathode 1018
 
  • A.M. Porcellato, L. Bertazzo, M. De Lazzari, D. Giora, V. Palmieri, S. Stark, F. Stivanello
    INFN/LNL, Legnaro, Padova
  The refurbishing, by replacing the Pb superconducting film by Nb, of ALPI QW accelerating resonators was completed in 2003. All the 52 cavities are now in operation showing a large increase in the average accelerating field, which exceeds 4.5 MV/m (21 MV/m pick electrical surface field). The performance of renewed resonators has been increasing with time reaching 6MV/m in the last produced units. The increase in ALPI performance and the advantage in conditioning and setting time obtained by the upgrading process will be reported.  
 
TUPKF074 Niobium Thin Film Cavity Deposition by ECR Plasma plasma, vacuum, electron, superconductivity 1108
 
  • A-M. Valente, H.L. Phillips, H. Wang, A. Wu, G. Wu
    Jefferson Lab, Newport News, Virginia
  Nb/Cu technology for superconducting cavities has proven to be over the years a viable alternative to bulk niobium. Energetic vacuum deposition is a very unique alternative method to grow niobium thin film on copper. Single crystal growth of niobium on sapphire substrate has been achieved as well as good surface morphology of niobium on small copper samples. The design of a cavity deposition system is in development. This paper presents the exploratory studies of the influence of the deposition energy on the Nb thin film properties. Several possible venues to achieve Nb/Cu cavity deposition with this technique are also discussed along with the design of the cavity deposition setup under development.  
 
TUPLT011 The LHC Lead Ion Injector Chain electron, injection, linac, vacuum 1153
 
  • K. Schindl, A. Beuret, A. Blas, J. Borburgh, H. Burkhardt, C. Carli, M. Chanel, T. Fowler, M. Gourber-Pace, S. Hancock, C.E. Hill, M. Hourican, J.M. Jowett, K. Kahle, D. Kuchler, A.M. Lombardi, E. Mahner, D. Manglunki, M. Martini, S. Maury, F. Pedersen, U. Raich, C. Rossi, J.-P. Royer, R. Scrivens, L. Sermeus, E.N. Shaposhnikova, G. Tranquille, M. Vretenar, T. Zickler
    CERN, Geneva
  A sizeable part of the LHC physics programme foresees heavy ion (lead-lead) collisions with a design luminosity of 1027 cm-2 s-1. This will be achieved after an upgrade of the ion injector chain comprising Linac3, LEIR, PS and SPS machines. Each LHC ring will be filled in ~10 minutes with ~600 bunches, each of 7 107 Pb ions. Central to the scheme is the Low Energy Ion Ring (LEIR), which transforms long pulses from Linac3 to high-brilliance bunches by means of 6D multi-turn injection and accumulation via electron cooling. Major limitations along the chain, including space charge, intra-beam scattering, vacuum issues, and emittance preservation are highlighted. The conversion from LEAR (Low Energy Antiproton Ring) to LEIR includes new magnets and power converters, high-current electron cooling, broad-band RF cavities, upgraded beam diagnostics, and UHV vacuum equipment relying on beam scrubbing to achieve a few 10-12 mbar. Major hardware changes in Linac3 (Electron Cyclotron Resonance source, repetition rate, energy ramping cavity), PS (new injection hardware, elaborate RF gymnastics, stripping insertion), and SPS (100 MHz system) are described. An early beam scenario, using fewer bunches but the same bunch intensity to deliver a lower luminosity, reduces the work required for LHC ion operation in spring 2008.  
 
TUPLT015 The Bunch Compressor System for SIS18 at GSI synchrotron, heavy-ion, vacuum, impedance 1165
 
  • P. Hülsmann, G. Hutter, W. Vinzenz
    GSI, Darmstadt
  For bunch compression down to pulse durations of 50 ns, a dedicated rf system is under development for the SIS12/18 heavy ion synchrotron upgrade and will be described in this paper. Due to space restrictions in SIS12/18 the rf system consists of very short cavities which provide a very large voltage gradient (50 kV/m) at a very low frequency of approximately 800 kHz and rf final stages which provide a short rise time. The only possibilty to meet the requirements is the application of a cavity heavily inductively loaded by metallic alloy (MA) ring cores. This new rf system will be a prototype for the advanced acceleration and compression system needed in SIS100, which is the most important part for the proposed International Acceleration Facility at GSI. In order to gain experience with different MA ring core materials two of the four compressor cavities are loaded differently, which gives us an opportunity to learn the operational advantages of both materials. It is expected that the experimental results will support the final judgement for the future rf system in SIS100.  
 
TUPLT016 Improved Performance of the Heavy Ion Storage Ring ESR electron, injection, heavy-ion, storage-ring 1168
 
  • M. Steck, K. Beckert, P. Beller, B. Franczak, B.  Franzke, F. Nolden
    GSI, Darmstadt
  The heavy ion storage ring ESR at GSI allows experiments with stable and radioactive heavy ions over a large range of energies. The energy range available for operation with completely stripped ions has recently been extended to energies as low as 3 MeV/u. Even for bare uranium such low energies can be provided by deceleration of the ions which are stripped to high charge states in a foil at energies of 300-400 MeV/u. After injection the beam is cooled and decelerated in an inverse synchrotron mode interspersed with electron cooling at an intermediate energy. At the lowest energy of 3 MeV/u some hundreds of thousands ions could be electron cooled after deceleration. At energies of 10-20 MeV/u physics experiments with stored and slowly extracted beam have been performed with some million decelerated cooled ions. The cooling of radioactive ions by a combination of stochastic pre-cooling and final electron cooling has been demonstrated. The hot fragment beam, which was injected at an energy of 400 MeV/u, was cooled in about 6 s to a quality useful for precision experiments.  
 
TUPLT017 Achievements of the High Current Beam Performance of the GSI Unilac emittance, rfq, heavy-ion, injection 1171
 
  • W. Barth, L. Dahl, J. Glatz, L. Groening, S.G. Richter, S. Yaramishev
    GSI, Darmstadt
  The present GSI-accelerator complex is foreseen to serve for the future synchrotron SIS100 as an injector for up to 1012 U28+ particles/sec. The High Current Injector of the Unilac was successfully commissioned five years ago. An increase of more than two orders of magnitude in particle number for the heaviest elements in the SIS had to be gained. Since that time many different ion species were accelerated in routine operation. In 2001 a physics experiment used 2×109 Uranium ions per spill. In order to meet this request the MEVVA ion source provided for the first time in routine operation a high intense Uranium beam. The main purpose for the machine development program during the last two years was the enhancement of the intensity for Uranium beams. Different hardware measures and a huge investigation program in all Unilac-sections resulted in an increase of the uranium intensity by a factor of 7. The paper will focus on the measurements of beam quality, as beam emittance and bunch structure for Megawatt-Uranium beams. Additionally the proposed medium- and long-term hardware measures will be described, which should gain in the required uranium intensity to fill the SIS up to the space charge limit.  
 
TUPLT018 Layout of the Storage Ring Complex of the International Accelerator Facility for Research with Ions and Antiprotons at GSI antiproton, storage-ring, electron, target 1174
 
  • P. Beller, K. Beckert, A. Dolinskii, B.  Franzke, F. Nolden, C. Peschke, M. Steck
    GSI, Darmstadt
  The storage ring complex of the new international accelerator facility consists of three different rings: the Collector Ring CR, the accumulator/decelerator ring RESR and the New Experimental Storage Ring NESR. The CR will serve for fast stochastic precooling of antiproton and rare isotope (RI) beams. Cooling time constants of about 100 ms for RI beams are envisaged. For experiments with RI beams the RESR serves as a decelerator ring. Precooled RI beams will be injected at 740 MeV/u and then decelerated to variable energies down to 100 MeV/u within about 1 s. The NESR will be the main instrument for nuclear and atomic physics. Besides experiments using an internal gas target, the NESR offers the possibility to collide circulating bunches of ions with electron bunches counter-propagating in a small 500 MeV electron storage ring. The physics program with antiprotons requires the accumulation of high intensity antiproton beams. The accumulation of 7×1010 antiprotons at 3 GeV per hour is foreseen. This will be accomplished by operating the RESR as an accumulator ring equipped with a stochastic cooling system. The NESR could then be used to decelerate antiprotons to 30 MeV.  
 
TUPLT020 High Intensity Uranium Operation in SIS18 injection, septum, beam-losses, acceleration 1180
 
  • P.J. Spiller, K. Blasche, P. Hülsmann, A. Kraemer, H. Ramakers, H.R. Sprenger
    GSI, Darmstadt
  For the present experiment program and the planned international accelerator facility at GSI, the space charge limit of SIS18 for highly(4x1010) and intermediate (2.7x1011) charged uranium ions shall be reached within the next four years. Furthermore, measures to increase the repetition- and ramp rate up to 4 Hz with 10 T/s have been progressed. The present state of intensities per cycle and the limitations will be described. In connection with the planned enhancement of heavy ion intensities, protection, interlock and diagnostic systems, especially for the injection- and extraction devices have been prepared. Special attention is drawn on the insights which were achieved with respect to the operation at dynamic vacuum conditions. Results of R&D work with the goal to increase the intensity threshold and to improve the beam life time will be summarized. Furthermore, the specific upgrade program and schedule for the SIS18 booster mode will be presented.  
 
TUPLT021 Heavy Ion Beam Transport in Plasma Channels plasma, laser, heavy-ion, beam-transport 1183
 
  • S. Neff, D.H. Hoffmann, R. Knobloch
    TU Darmstadt, Darmstadt
  • C. Niemann, D. Penache, A. Tauschwitz
    GSI, Darmstadt
  • S. Yu
    LBNL, Berkeley, California
  The transport of heavy ion beams in high current discharge channels is a promising option for the final beam transport in a heavy ion fusion reactor. The channel provides space-charge neutralization and an azimuthal magnetic field of several tesla, thereby allowing for transporting high current ion beams. The possibility to heat the hohlraum target with only two ion beams simplifies the reactor design significantly. Therefore channel transport is studied as part of the US fusion reactor study as an alternative to neutralized ballistic focusing. We have created 1 m long discharge channels and studied the channel development and stability. In addition, we have carried out proof-of-principle transport experiments using the UNILAC facility at the Gesellschaft für Schwerionenforschung. The experiments demonstrate the feasibility of plasma channel transport. Our transport experiments with low current beams are supplemented by simulations for high current beams. These simulations show the possibility of transporting particle currents of up to 60 kA.  
 
TUPLT023 A New Ion Beam Beam Facility for Slow Highly Charged Ions ion-source, target, extraction, electron 1189
 
  • G. Zschornack, S. Landgraf
    TU Dresden, Dresden
  • S. Facsko, D. Kost, W. Möller, H. Tyrroff
    FZR, Dresden
  • F. Grossmann, U. Kentsch, V.P. Ovsyannikov, M. Schmidt, F. Ullmann
    Leybold Vacuum Dresden, Dresden
  A new ion beam facility for slow highly charged ions is presented. It will provide slow highly charged ions from an Electron Cyclotron Resonance (ECR) ion source as well as very highly charged ions at lower ion currents from an Electron Beam Ion Trap (EBIT). As ECR ion source a SUPERNANOGAN source* is applied. The Dresden EBIT**, a room-temperature EBIT, is used to produce comparatively low currents of very highly charged ions. This very compact and long-term stable device is producing highly charged ions at ultimate low costs. The Dresden EBIT working with electron energies up to 15 keV at electron currents up to 50 mA is able to produce bare nuclei up to nickel as Fe26+ or Ni28+, helium-like ions for medium Z such as Ge30+ or Kr34+ and neon-like ions for elements of the high-Z region such as Xe44+ or Ir67+. The ion currents extracted from the Dresden EBIT are typically in the range of some nA per pulse. With the new ion beam facility outstanding possibilities for a wide range of investigations are opened up in areas such as surface analysis, materials science and nanotechnology as well as for basic research in different fields as for instance in atomic and solid state physics.

*The Pantechnik Catalogue, August 2001 Edition, Caen 2001, France **V.P.Ovsyannikov, G.Zschornack; Review of Scientific Instruments, 70 (1999) 2646

 
 
TUPLT024 A Comparison of High Current Ion Beam Matching from an Ion Source to a RFQ by Electrostatic and by Magnetic Lenses rfq, emittance, ion-source, power-supply 1192
 
  • R. Becker, R.A. Jameson, A. Schempp
    IAP, Frankfurt-am-Main
  • T. Hata, N. Hayashizaki, H. Kashiwagi, K. Yamamoto
    RLNR, Tokyo
  • T. Hattori, M. Okamura, A. Sakumi
    RIKEN, Saitama
  In order to improve the ?direct? injection scheme of the Riken Nd-YAK-laser driven ion source into a RFQ rf-accelerator, several basic methods have been investigated and compared, in order to transform the initially divergent ion beam into a convergent one, needed for matching the high current (100 mA C6+) ion beam at an energy of 100 keV to a RFQ. From the point of power supplies and break down characteristics, the simplest solution is a decelerating electrostatic lens, with the decelerating electrode operated on ion source potential. Due to the strong divergence of the ions beam after acceleration, this lens will be filled to an aperture, which causes strong aberrations. Therefore, we also investigated to use an accelerating potential on the lens electrode. This reduces significantly the filling of the lens and the emittance growth is only a factor of 3, as compared to the decelerating lens with a factor of 30! Finally we have been looking also into a magnetic matching system, which can match the ion beam to the RFQ with virtually no emittance growth.  
 
TUPLT025 Matching of a C6+ Ion Beam from a Laser Ion Source to a RFQ rfq, laser, injection, ion-source 1195
 
  • R. Becker, R.A. Jameson, A. Schempp
    IAP, Frankfurt-am-Main
  • T. Hattori
    RIKEN, Saitama
  • N. Hayashizaki, H. Kashiwagi
    RLNR, Tokyo
  • M. Okamura
    RIKEN/RARF/CC, Saitama
  • K. Yamamoto
    RIKEN/RARF/BPEL, Saitama
  A laser ion source, driven by a Nd-YAG laser can provide more than 100 mA of C6+ ions for a duration of about 1 μs, which is well matching the task of single-turn injection into synchrotrons for hadron tumor therapy with light ions. The ?direct? injection scheme has been improved by providing a design, which reduces the surface field strength to less than 30 kV/cm on all critical parts on relative negative potential. The new design keeps the advantage of divergent ion emission and acceleration, which seems to be the only way to keep the surface fields in limits, but includes a decelerating electrostatic lens on birth potential of the ions to refocus the emerging ion beam to the RFQ entrance. The whole design is very compact and allows for electrostatic steering between the ion source and the RFQ.  
 
TUPLT026 High Current Ion Beams at Frankfurt University electron, power-supply, plasma, space-charge 1198
 
  • M. Droba, O. Meusel, U. Ratzinger, K. Volk
    IAP, Frankfurt-am-Main
  A new building for the physics faculty at the Goethe-University in Frankfurt is under construction including an experimental hall. The Institute of Applied Physics IAP has started development of a high current ion beam facility consisting of a high voltage terminal(150 kV,I_beam < 300 mA,H-,p,Bi+), a 10 MV linear rf accelerator and a high current storage ring for 150 keV beams. The 150 kV terminal equipment is already ordered while the subsequent units are in the design stage. The storage ring will use a stellarator-like magnetic configuration to allow for a high degree of space charge compensation by electrons. The facility will allow high current beam investigations as well as experiments in fields of plasma, nuclear and atomic physics.  
 
TUPLT027 Status of the HITRAP Decelerator Linac at GSI rfq, linac, injection, heavy-ion 1201
 
  • C.A. Kitegi, A. Bechtold, U. Ratzinger, A. Schempp
    IAP, Frankfurt-am-Main
  • T. Beier, L. Dahl, C. Kozhuharov, W. Quint, M. Steck
    GSI, Darmstadt
  • S. Minaev
    ITEP, Moscow
  Within the European Network HITRAP (heavy Ion trap) trapped and cooled higly charged ions up to U92+ will become avilable for a variety of attractive experiments in atomic physics. Heavy ions are produced, accelerated and stripped in the GSI accelerator complex and are stored in the ESR down to 4 MeV/u. To be captured in HITRAP, ions have to be decelerated to energies below 6 keV/u. The decelerator proposed to achieve these energies is a combination of an IH Drift tube cavity operating in the H11(0) mode and a RFQ. The operating frequency is 108.408MHz . The A/q range of the linac is up to 3. A very efficient deceleration by up to 11 MV along the 2.7 m long IH cavity with a rf power of 200kw is achieved by applying the KONUS beam dynamics. The deceleration from 500 A.keV down 6A.keV is provided by a 1.8 m long 4-rod RFQ.The beam dynamics as well as the cavity design of that linac will be described.The decelerator linac will be installed in the reinjection beam line and is being developed in collaboration between GSI and the Frankfurt University .  
 
TUPLT030 Numerical Simulations for the Frankfurt Funneling Experiment rfq, simulation, emittance, beam-losses 1210
 
  • J. Thibus, A. Schempp
    IAP, Frankfurt-am-Main
  High beam currents are necessary for heavy ion driven fusion (HIF) or XADS. To achieve these high beam currents several ion beams are combined at low energies to one beam using the funneling technique. In each stage a r.f. funneling deflector bunches two accelerated beam lines to a common beam axis. The Frankfurt Funneling Experiment is a scaled model of the first stage of a HIF driver consisting of a Two-Beam RFQ accelerator and a funneling deflector. Our two different deflectors have to be enhanced to reduce particle losses during the funneling process. This is done with our new developed 3D simulation software DEFGEN and DEFTRA. DEFGEN generates the structure matrix and the potential distribution matrix with a Laplace 3D-solver. DEFTRA simulates ion beam bunches through the r.f. deflector. The results of the simulations of the two existing deflectors and proposals of new deflector structures will be presented.  
 
TUPLT032 The Frankfurt Funneling Experiment rfq, linac, ion-source, emittance 1213
 
  • H. Zimmermann, U. Bartz, N. Mueller, A. Schempp, J. Thibus
    IAP, Frankfurt-am-Main
  The Frankfurt Funneling Experiment is a scaled model of the first funneling stage of a HIF driver to gather experiences in the funneling technique. It is a procedure to multiply beam currents at low energies in several stages. In each stage two beam lines are combined to a common beam line. The funneling technique is required for new proposed high current accelerator facilities like HIDIF. The main goal is to prevent emittance growth during the funneling process. Our experiment consists of two ion sources, a Two-Beam RFQ accelerator, two different funneling deflectors and a beam diagnostic equipment system. We have demonstrated the principle of funneling with both deflector types. But the measurements have shown a bad matching of the RFQ to the funneling deflector. Now with our new RFQ electrode design we achieve a special three dimensional matching to the deflector. The new results of our measurements and simulations will be presented.  
 
TUPLT033 RF Design of the MAFF IH-RFQ Power Resonator vacuum, rfq, impedance, alignment 1216
 
  • M. Pasini, D. Habs, O. Kester
    LMU, München
  • T. Sieber
    CERN, Geneva
  The low energy part of the LINAC of the MAFF facility will be an IH-RFQ cavity with 101.28 MHz resonance frequency. The RF design of the cavity has been completed, including design calculations and model measurements. The RFQ is designed to deliver ions of A/q = 6.5 up to 300 keV/u to be injected into the following LINAC. The structure chosen was an IH type of resonator since it was demontrated to have a better shunt impedance. The required voltage between the electrodes is 70kV and the operation mode is pulsed with a duty cycle of 10%. The structure will be made out from bulk copper in order to improve the shunt impedance and hence to allow not direct cooling on the electrodes. The optimizazion of the several parameters of the structure, and the technique for tuning the voltage distribution are presented in this paper. Measurements with a short model will be shown as well.  
 
TUPLT034 Beam Dynamics Studies for the Low Energy Section at MAFF rfq, emittance, quadrupole, focusing 1219
 
  • M. Pasini, D. Habs, O. Kester
    LMU, München
  • A. Bechtold, A. Schempp
    IAP, Frankfurt-am-Main
  For the LINAC of the Munich accelerator for fission fragments (MAFF) a new scheme for the low energy section has been proposed in order to fulfill new experimental requirements, such as time spacing between bunches and low longitudinal emittance. The proposed solution consists in a combination of an external multi-harmonic buncher with a "traditional" RFQ with a shaper and an adiabatic bunching section included where the employment of the external buncher is upon request from the experiment. The matching section downstream the RFQ has been re-designed in order to allow room for the installation of a beam cleaning section and to a proper injection into the following DTL. Details about the optics and beam dynamics studies of the low energy section are presented in this paper.  
 
TUPLT039 An Electrostatic Quadrupole Doublet with an Integrated Steerer quadrupole, storage-ring, focusing, coupling 1234
 
  • C.P. Welsch, M. Grieser, J. Ullrich
    MPI-K, Heidelberg
  • C. Glaessner
    IAP, Frankfurt-am-Main
  Electrostatic storage rings have proven to be a valuable tool for atomic and molecular physics Due to the mass independence of the fields in the bending and focusing elements, different kinds of ions with the same charge/energy ratio from light protons to very heavy biomolecules, can be stored with the same field setup. The transverse dimensions of the circulating beam are controlled by electrostatic quadrupole doublets or triplets. It is essential that the fields in these lenses can be adjusted independently one from another to allow an exact control of the stored ions. In this paper, first an overview of the principle of electrostatic lenses is given. After a short discussion of fringe field effects, the results of field calculations are presented and the final layout of an electrostatic quadrupole doublet with an integrated steerer as it will be used in future electrostatic storage rings in Frankfurt and Heidelberg is discussed.  
 
TUPLT040 CSR - a Cryogenic Storage Ring at MPI-K electron, vacuum, quadrupole, storage-ring 1237
 
  • C.P. Welsch, J. Crespo López-Urrutia, M. Grieser, D. Orlov, C.D. Schroeter, D. Schwalm, J. Ullrich, A. Wolf, R. von Hahn
    MPI-K, Heidelberg
  • X. Urbain
    UCL CRC, Louvain-la-Neuve
  • D. Zajfman
    Weizmann Institute of Science, Physics, Rehovot
  A small cryogenic storage ring is planned to be developed at MPI-K, Heidelberg. The energy in the machine will be variable from 300 keV > down to 20 keV. Electron cooling will be applied to produce a high quality ion beam. The ring shall accommodate slow, vibrationally and rotationally cooled molecular ions and highly charged ions from the EBIT ion source. Moreover, it will serve as a test facility for the low-energy antiproton ring planned within the FLAIR collaboration to be installed at the future GSI facility. A number of technological challenges have to be handled: Especially highly charged ions require a vacuum in the order below 10-13 mbar to achieve reasonable lifetimes. Therefore - and for enabling experiments with rotationally cold molecules - the complete machine will be cooled down to below 10 K. Moreover, experiments with reaction microscopes to determine the full kinematics of ion- (antiproton-) atom or molecule collisions require a bunched operation with a bunch length below 2 ns. The optical elements of the machine and the lattice functions are given and first ideas about the vacuum chamber design are described in this paper.  
 
TUPLT041 Ultra-low Energy Antiprotons at FLAIR antiproton, storage-ring, electron, injection 1240
 
  • C.P. Welsch, M. Grieser, D. Orlov, J. Ullrich, A. Wolf, R. von Hahn
    MPI-K, Heidelberg
  The Future Accelerator Facility for Beams of Ions and Antiprotons at Darmstadt will produce the highest flux of antiprotons in the world. So far it is foreseen to accelerate the antiprotons to high energies (3-15 GeV) for meson spectroscopy and other nuclear and particle physics experiments in the HESR (High Energy Storage Ring). Within the planned complex of storage rings, it is possible to decelerate the antiprotons to about 30 MeV kinetic energy, opening up the possibility to create low energy antiprotons. In the proposed FLAIR facility the antiprotons shall be slowed down in a last step from 300 keV to 20 keV in an electrostatic storage ring (USR) for various in-ring experiments as well as for their efficient injection into traps. In this energy range - especially if one thinks about realizing a real multi-purpose facility with not only antiprotons, but also various highly-charged radioactive ions to be stored and investigated - electrostatic storage rings have clear advantages compared to their magnetic counterparts. In case one envisions to even approach the eV range, electrostatic machines are the only possible choice. This contribution presents the layout and design parameters of the USR.  
 
TUPLT042 Ring of FIRE storage-ring, quadrupole, injection, lattice 1243
 
  • C.P. Welsch, J. Ullrich
    MPI-K, Heidelberg
  • R. Doerner, H. Schmidt-Boecking
    IKF, Frankfurt-am-Main
  • C. Glaessner, K.-U. Kuehnel, A. Schempp
    IAP, Frankfurt-am-Main
  A small electrostatic storage ring is the central machine of the Frankfurt Ion stoRage Experiments which will be build up at the new Stern-Gerlach-Center of Frankfurt university. With ion energies up to 50 keV it will allow new methods to analyze complex many-particle systems from atoms to very large bio molecules. The high luminosity of the beam allows measurements with many orders of magnitude better resolution compared to traditional measurements. It will be combined with existing experiments, like the reaction microscope COLTRIMS and the ECR ion source. In comparison to earlier designs, the ring lattice was modified in many details: Problems in earlier designs were related with e.g. the detection of light particles and highly charged ions with different charge states. Therefore, the deflectors were redesigned completely, allowing a more flexible positioning of the diagnostics. In this contribution the final design of the storage ring is presented and the layout of all elements given. First results from vacuum measurements in the recently assembled quarter ring section are summarized.  
 
TUPLT051 Beam Optical Design of a Multi Charge Ion Recirculator for Charge Breeders optics, quadrupole, dipole, space-charge 1267
 
  • R. Cee, W. Mittig, A.C.C. Villari
    GANIL, Caen
  Ions of high charge states as required for both stable and radioactive beams in order to optimally profit from the existing accelerating voltage can be produced by means of a charge breeder. However, the energy increase obtained is accompanied by an intensity decrease due to the low efficiency of the charge breeding process. With respect to the production of radioactive beams an enhancement of the breeding efficiency would be most desirable to avoid a high power primary beam as yet inevitable to counteract the loss in intensity. For this purpose the beam optics of an ion recirculation capable to separate the desired charge state and to reinject the remaining charge spectrum has been designed. The ions extracted from both sides of the charge breeder are focused by electrostatic quadrupole doublets and bent by two 180° dipole magnets. After one revolution the optics realises horizontally a (1:1) and vertically a (1:-1) point-to-point image independent from the charge state of the ions. The second order geometric aberrations as well as most of the chromatic aberrations vanish.  
 
TUPLT052 GANIL Status Report cyclotron, target, secondary-beams, acceleration 1270
 
  • F. Chautard, J.L. Baelde, C. Barue, C. Berthe, A. Colombe, L. David, P. Dolegieviez, B. Jacquot, C. Jamet, P. Leherissier, R. Leroy, M.H. Moscatello, E. Petit, A. Savalle, G. Sénécal, F. Varenne
    GANIL, Caen
  The GANIL facility (Caen, France) is dedicated to the acceleration of heavy ion beams for nuclear physics, atomic physics, radiobiology and material irradiation. The production of radioactive ion beams for nuclear physics studies represents the main part of the activity. The in-flight fragmentation method was already used, since 1994, with the SISSI device. Since September 2001, SPIRAL, the Radioactive Ion Beam Facility at GANIL, delivers radioactive species produced by the ISOL method. The heavy ion beams of GANIL are sent onto a target and source assembly, and the radioactive beams are accelerated up to a maximum energy of 25 MeV/u by the cyclotron CIME. The operation and the running statistics of GANIL-SPIRAL are presented, with particular attention to the first SPIRAL beams. Few results about the cyclotron CIME, as the mass selection and tuning principle are summarized. The recent developments for increasing stable beams intensities, up to a factor 13 for argon, for use with SPIRAL, SISSI, or the LISE spectrometer, are presented. Considering the future of GANIL, SPIRAL II projects aims to produce high intensity secondary beams, by fission induced with a 5 mA deuteron beam in an uranium target.  
 
TUPLT056 ECRIS Development for the SPIRAL II Project emittance, extraction, booster, light-ion 1279
 
  • P. Sortais, J.-C. Curdy, A. Lachaize, T. Lamy, A. Ponton, P. Sole, T. Thuillier, J.-L. Vieux-Rochaz, D. Voulot
    LPSC, Grenoble
  The SSI/LPSC laboratory is involved in the development of high intensity sources for the driver accelerator and on the improvements of a charge breeding system for its operation inside an highly radioactive environment. We will present the results obtained for the qualification of a 5 mAe/40 KV beam of Deuteron ions dedicated to the feeding of the driver. Concerning the heavy ions, the source PHOENIX 18/28 GHz has been chosen as injector of the driver. The optimization of the source is done in order to produce reliable beams of 1mAe / O6+ and 0.3 mAe of Ar12+ at 60 KV. Theses developments are presently done with the room temperature version of PHOENIX (including a new version of the hexapole of the source). In parallel, an upgrade version of PHOENIX, using HTS coils, is under construction and is dedicated to production of very high intensity of the Argon ions (up to 1 mAe of Ar12+). A charge breeding system is also under qualification. The PHOENIX Booster source confirms that efficiency for mass around hundred can reach up to 6%. Now the efforts consist in precisely defining the 1+ beam matching for charge breeding tuning of the source (emittance measurements).  
 
TUPLT058 High Intensity Linac Driver for the SPIRAL-2 Project : Design of Superconducting 88 MHz Quarter Wave Resonators (beta 0.12), Power Couplers and Cryomodules linac, heavy-ion, quadrupole, resonance 1285
 
  • T. Junquera, J.-L. Biarrotte, S. Blivet, S. Bousson, C. Commeaux, G. Olry, H. Saugnac
    IPN, Orsay
  • P. Balleyguier
    CEA/DAM, Bruyères-le-Châtel
  • M. Fruneau, Y. Gomez-Martinez, E. Vernay, F. Vezzu
    LPSC, Grenoble
  A Superconducting Linac Driver, delivering deuterons with energy up to 40 MeV (5 mA) and heavy ions with energy of 14.5 MeV/u (1 mA ), is proposed for the Spiral-2 radioactive beams facility. For the high energy section of the linac, a superconducting 88 MHz Quarter Wave Resonator (beta 0.12) has been designed and the optimisation of RF and mechanical performances will be presented. Based on the present state-of-art of the Superconducting RF technology, maximum electric surface field of 40 MV/m and magnetic surface field of 80 mT, have been adopted which should allow to reach an accelerating field of 7 MV/m (energy gain 3 MeV per resonator). A first complete prototype is under construction. The high intensity deuteron beam specifications have imposed the design of an original power coupler (maximum power 20 KW). The RF, mechanical, and thermal characteristics will be presented. The design of the cryomodule for this high energy section, integrating two QWR with its associated equipments (couplers, tuners, helium tanks), will be presented.  
 
TUPLT060 Production of Radioactive Ion Beams for the EXCYT Facility target, ion-source, cyclotron, cathode 1291
 
  • M. Menna, G. Cuttone, M. Re
    INFN/LNS, Catania
  The EXCYT facility (EXotics with CYclotron and Tandem) at the INFN-LNS is based on a K-800 Superconducting Cyclotron injecting stable heavy-ion beams (up to 80 MeV/amu, 1 emA) into a target-ion source assembly to produce the required nuclear species, and on a 15 MV Tandem for post-accelerating the radioactive beams. After thermal ANSYS simulations, during May 2003 the Target-Ion Source assembly (TIS) was successfully tested at GANIL under the same operational conditions that will be initially used at EXCYT. Yields and production efficiencies for 8,9Li were compatible with the ones obtained at SPIRAL. Following suggestions by the Referees and the LNS Research Division, we decided to deliver 8Li as the first EXCYT radioactive beam (primary beam 13C). This choice also takes in account the availability of MAGNEX in 2004 as well as the requests and the first results obtained by the Big Bang collaboration. The commissioning of the EXCYT facility is foreseen by the end of 2004 together with the start of nuclear experiments program. In this poster we also report prospective ion beams currently in development.  
 
TUPLT061 Production and Transport of Radioactive Francium for Magneto-optical Trapping target, extraction, quadrupole, laser 1294
 
  • G. Stancari, R. Calabrese, B. Mai, G. Stancari, L. Tomassetti
    INFN-Ferrara, Ferrara
  • S.N. Atutov, V. Guidi
    UNIFE, Ferrara
  • V. Biancalana, A. Burchianti, A. Khanbekyan, C. Marinelli, E. Mariotti, L. Moi, S. Veronesi
    UNISI, Siena
  • L. Corradi, A. Dainelli
    INFN/LNL, Legnaro, Padova
  • P. Minguzzi, S. Sanguinetti
    UNIPI, Pisa
  An innovative facility for the production and trapping of francium isotopes is operating at the INFN laboratories in Legnaro, Italy. The goal is to obtain a dense cloud of cold and possibly polarized radioactive atoms for a wide range of fundamental studies. Among them are high-resolution laser spectroscopy, alpha-decay asymmetries from deformed nuclei, and tests of the standard model at low transferred momenta. The production of francium is achieved by sending a 100-MeV oxygen-18 beam from the Tandem-XTU accelerator on a thick gold target. The extraction of Fr+ is enhanced by heating the target to 1200 K and by biasing it at +3 kV. The ions are transported to the magneto-optical trap (MOT) through a 7-m electrostatic beam line. The diagnostic systems for monitoring the beam intensity (105 ions/s) are based on silicon detectors sensitive to the alpha particles from Fr decays. Beams of stable Rb+ can also be used for optimizing the transport and trapping processes. Prior to injection into the MOT the beam is neutralized and released in atomic form by a heated yttrium or zirconium foil. Details on the production, transport and neutralization processes are presented.  
 
TUPLT065 Beams from RF Ovens and ECR Ion Sources plasma, ion-source, injection, electron 1303
 
  • M. Cavenago
    INFN/LNL, Legnaro, Padova
  • T. Kulevoy, S. Petrenko
    ITEP, Moscow
  Beam of silver, copper and recently platinum were produced with the radiofrequency oven technique. The ECRIS (Electron Cyclotron Resonance Ion Source) can be conveniently considered as a charge breeder for any injection device; this approach allows to compare the injection of metals from ovens with other techniques discussed in the literature, like the injection from mevva (Metal Vapor Vacuum Arc) sources or the injection of single charged RIB (radioactive ion beams) or the simple injection of heavy gas. Extensive experiments extracting beams of copper (charge up 13+) or silver (charge up to 19+) or xenon (charge up 20+) with the same ECRIS condition are described, and advantage of rf oven over gas injection are discussed; in particular the oven crucible can be easily voltage biased up to -400 V, to modify ECRIS plasma shape. Heating the tantalum crucibles over 2300 K (average temperature) requires careful axial alignment to avoid the formation of hot spots; preliminary evidence of this effect and its numerical modeling are also described.  
 
TUPLT073 Observation of Coupling Resonance in HIMAC Synchrotron coupling, resonance, electron, synchrotron 1321
 
  • T. Uesugi, T. Fujisawa, K. Noda, S. Shibuya, D. Tann, H. Uchiyama
    NIRS, Chiba-shi
  • Y. Hashimoto
    KEK, Ibaraki
  • I.N. Meshkov, E. Syresin
    JINR, Dubna, Moscow Region
  Coupling resonance was observed at operating points near to Qx-Qy=1. Two-dimensional profile of a beam at its equilibrium was measured, and it was found that the beam was inclined in transverse when the operating point is near to the resonance condition. We will present the detail of the measurement and the results.  
 
TUPLT077 R&D Status of the Fast Extraction Kicker Magnets for the KEK/JAERI 50 GeV Synchrotron kicker, septum 1333
 
  • Y. Shirakabe, Y. Arakaki, T. Kawakubo, Y. Mori, S. Murasugi, E. Nakamura, I. Sakai, M. Tomizawa
    KEK, Ibaraki
  The 50 GeV proton synchrotron composes the final stage of the high intensity proton accelerator complex now on construction at JAERI/Tokai site as a joint project by KEK and JAERI. In this ring, the proton beam is accelerated from 3 GeV to 50 GeV, and delivered to the experimental facilities through the fast and slow extraction lines. The distinctive feature of the fast extraction line is that the bipolar extraction function will be provided. In normal operations, the beam is extracted toward the inner side of the ring and transported to the facility for the long baseline neutrino oscillation experiment using the Super-Kamiokande detector. In case of emergency, for example, quenches of the superconducting magnets of the neutrino line or malfunctioning of the ring RF systems, the beam is extracted toward the outer side of the ring and sent directly to the abort line with a beam dump at the end. In the current kicker design, the bipolar function will be achieved by the Symmetric Blumlein PFN (SBPFN) system with two switches on both ends. The designed parameters of the fast extraction kicker magnets and the recent hardware R&D status will be described in this paper.  
 
TUPLT087 Deflection Element for S-LSR storage-ring, quadrupole, lattice, dipole 1357
 
  • M. Ikegami, H. Fadil, A. Noda, T. Shirai, M. Tanabe, H. Tongu
    Kyoto ICR, Uji, Kyoto
  • T. Fujimoto, K. Noda, H. Ogawa, S. Shibuya, T. Takeuchi
    NIRS, Chiba-shi
  • M. Grieser
    MPI-K, Heidelberg
  • H. Okamoto
    HU/AdSM, Higashi-Hiroshima
  Main lattice of the ion storage and cooler ring, S-LSR is composed of 6 dipole and 12 quadrupole magnets. The maximum magnetic field, the radius of curvature and gap height are 0.95 T, 1050 mm and 70 mm, respectively. The field measurement of the dipole magnets has been completed with use of Hall-probe position controlled by driving mechanism composed of stepping motors and ball-screws. In order to cancel out the momentum dispersion, the radial electric field is superposed with the magnetic field. The radial electric field is applied by the electrodes installed into the vacuum vessel set inside the rather limited gap of the dipole magnet. Good field quality is to be realized with use of intermediate electrodes. In the present paper, the results of the magnetic field measurements are presented together with the design of the superposed electric field.  
 
TUPLT088 Beam Cooling at S-LSR laser, electron, resonance, coupling 1360
 
  • A. Noda, H. Fadil, S. Fujimoto, M. Ikegami, T. Shirai, M. Tanabe, H. Tongu
    Kyoto ICR, Uji, Kyoto
  • M. Grieser
    MPI-K, Heidelberg
  • I.N. Meshkov, E. Syresin
    JINR, Dubna, Moscow Region
  • K. Noda, T. Takeuchi
    NIRS, Chiba-shi
  • H. Okamoto, Y. Yuri
    HU/AdSM, Higashi-Hiroshima
  S-LSR is an ion accumulation and cooler ring with the circumference and maximum magnetic rigidity of 22.589 m and 1.0T.m, respectively. Electron beam cooling will be applied for laser-produced hot ion beam after phase rotation. Electron cooler for S-LSR is now under construction and the beam simulation is also going on. Laser cooling of Mg ion with low energy (35 keV) is also planned in 3-dimensional way with use of Synchro-Betatron coupling.so as to realize ultra cold beam. Cancellation of shear force due to orbit-length difference in the dipole section is to be studied with use of overlapping of the radial electric field inversely proportional to the curvature radius with the uniform vertical magnetic field. Possible experiments to approach to ultra-cold beam is also to be studied by computer simulation  
 
TUPLT102 Field Study of the 4T Superconducting Magnet for Rapid Cycling Heavy Ion Synchrotrons dipole, synchrotron, heavy-ion, simulation 1390
 
  • V.A. Mikhaylov, P.G. Akishin, A.V. Butenko, A.D. Kovalenko
    JINR, Dubna, Moscow Region
  The problem of the magnetic field optimization of a 4T dipole magnet with circular aperture of 100-110 mm for rapid cycling synchrotron is considered. A single layer low inductance coil made of hollow superconducting high current cable operating at 30 kA is used. The magnetic field ramp rate up to 4 T/s should be achievable. Mathematical method to minimize sextupole and higher order non-linearities to the tolerable values by variation of angular coil turn position is developed. The results of numerical simulation for 2D part magnetic field are presented. The further possibilities to improve the field quality for similar lattice magnets and their application for heavy ion synchrotrons and boosters are discussed.  
 
TUPLT103 Possibilities for Experiments with Rare Radioactive Ions in a Storage Ring Using Individual Injection injection, kicker, electron, target 1393
 
  • A.O. Sidorin, I.N. Meshkov, A.O. Sidorin, A. Smirnov, E. Syresin, G.V. Troubnikov
    JINR, Dubna, Moscow Region
  • T. Katayama
    CNS, Saitama
  • W. Mittig, P. Roussel-Chomaz
    GANIL, Caen
  A radioactive ion beam produced at a target bombarded with a primary beam has after a fragment separator a relatively large emittance and small production rate. For instance, typical flux of 132Sn isotope at the exit of fragment-separator is about 5×105 ions/s. Conventionally used scheme of the ion storage in a ring based on multitutrn injection and (or) RF stacking and stochastic cooling application can not provide a high storage rate at so pure intensity especially for short lived isotopes. In this report we discuss an alternative storage scheme which is oriented to the continuous ion beam from fragment separator at production rate of 104 ions/s or even less. It is based on the fact, that at low production rate the parameters of each particle can be measured individually with rather high accuracy. The particle trajectory can be individually corrected in a transfer channel from fragment separator to the storage ring using system of fast kickers. A fast kicker in the ring synchronized with a circulating bunch provides continuous injection of the ions. The scheme permits to store the ion number required for precise mass measurements and internal target experiment. A hope to obtain large luminosity of ion-electron collisions is related with a possibility of the ion beam crystallization at small particle number.  
 
TUPLT105 Measurement of Activation Induced by an Argon Beam in a Copper Target at the SIS18 target, radioactivity, heavy-ion, radiation 1399
 
  • A. Fertman, A. Golubev, M. Prokuronov, B.Y. Sharkov
    ITEP, Moscow
  • G. Fehrenbacher, R.W. Hasse, I. Hofmann, E. Mustafin, D. Schardt, K. Weyrich
    GSI, Darmstadt
  Results of the measurement of activation induced by Argon beam with energies of E=100,200,800 MeV/u in the copper target are presented. The densities of various radioactive isotopes are derived from the measurements. Long-time prediction of radioactivity and accumulated doses in the accelerator equipment is calculated.  
 
TUPLT106 New Developments of a Laser Ion Source for Ion Synchrotrons laser, ion-source, extraction, target 1402
 
  • S. Kondrashev, A. Balabaev, K. Konukov, B.Y. Sharkov, A. Shumshurov
    ITEP, Moscow
  • O. Camut, J. Chamings, H. Kugler, R. Scrivens
    CERN, Geneva
  • A. Charushin, K. Makarov, Y. Satov, Y. Smakovskii
    SRC RF TRINITI, Moscow region
  Laser Ion Sources (LIS) are well suited to filling synchrotron rings with highly charged ions of almost any element in a single turn injection mode. We report the first measurements of the LIS output parameters for Pb27+ ions generated by the new 100 J/1 Hz Master Oscillator - Power Amplifier CO2-laser system. A new LIS has been designed, built and tested at CERN, as an ion source for ITEP-TWAC accelerator/accumulator facility, and as a possible future source for an upgrade of the Large Hadron Collider (LHC) injector chain. The use of the LIS based on 100 J/1 Hz CO2-laser together with the new ion LINAC, as injector for ITEP-TWAC project is discussed.  
 
TUPLT111 RF Focusing of Low-Charge-to-Mass-Ratio Heavy-Ions in a Superconducting Linac focusing, linac, emittance, superconducting-RF 1405
 
  • E.S. Masunov, D.A. Efimov
    MEPhI, Moscow
  • P.N. Ostroumov
    ANL/Phys, Argonne, Illinois
  A post-accelerator of radioactive ions (RIB linac) must produce high-quality beams over the full mass range, including uranium, with high transmission and efficiency (P.N. Ostroumov and et al., Proc. of the PAC2001, p. 4080.). The initial section of the RIB linac is a low-charge-to-mass-ratio superconducting RF linac which will accelerate any ion with q/A>=1/66 to ~900 keV/u or higher. This section of the linac consists of many interdigital cavities operating at –20 degree synchronous phase and focusing can be provided by SC solenoids following each cavity. For the charge-to-mass ratio q/A=1/66 a proper focusing can be reached with the help of strong SC solenoid lenses with magnetic fields up to 15 T. These state-of-the-art solenoids are expensive. A possible lower cost alternative focusing method based on the combination of low-field SC solenoids and RF focusing is proposed and discussed in this paper.  
 
TUPLT112 Radiation Damage to the Elements of the Nuclotron-type Dipole of SIS100 dipole, vacuum, beam-losses, proton 1408
 
  • E. Mustafin, G. Moritz, G. Walter
    GSI, Darmstadt
  • L. Latysheva, N. Sobolevskiy
    RAS/INR, Moscow
  Radiation damage to various elements of the Nuclotron-type dipole of SIS100 sensitive to irradiation was calculated. Among the elements of consideration were the superconducting cables, insulating materials, ceramic insertions and high-current by-pass diodes. The Monte-Carlo particle transport code SHIELD was used to simulate propagation of the lost ions and protons together with the products of nuclear interactions in the material of the elements. The results for the proton projectiles were cross-checked using the particle transport code MARS, and a good agreement between the codes were found. It was found that the lifetime of the organic materials under irradiation are much more restrictive limit for the tolerable level of beam particle losses than the danger of the quench events.  
 
TUPLT113 Technicalities for a Novel Medium Energy Ion Accelerator positron, vacuum, proton, heavy-ion 1411
 
  • V. Gorev
    RRC Kurchatov Institute, Moscow
  Transmutation of radioactive waste,high-intensity pulsed sources of fast neutrons,problem of inertially-confined fusion and a lot of different problems of science and technology put increased demands on the linear high power medium energy proton and heavy ion accelerators.But these accelerators are presently massive,huge and very expansive,which restrict now and in a near future their wide use and motivates the study of altenetive methods to achieve the design current,power and economic characteristics.This report decribes the present reseach on attaining high power medium energy ion beams,using novel idea for accelerator design.Theoretical proposal and preliminary conceptual design for the accelerator,based on a principle of free flying ion emitter("ballistic anode"),were discussed first a few years ago.The principle involves a high potencial difference generated only for a short time in the special vacuum chamber,but not steady-state conditions.Now,we would like to discuss next problems:1.technicalities of the ballistic anode design,both for proton and heavy ion beams generation.2 pulse power multiplication.3.high current sources for charge pumping of the ballistic anode.4 experimental modelling.  
 
TUPLT120 Commissioning of Electron Cooler EC-300 electron, gun, cathode, vacuum 1419
 
  • V.B. Reva, E.A. Bekhtenev, V.N. Bocharov, A.V. Bubley, Y. Evtushenko, A.D. Goncharov, A.V. Ivanov, V.I. Kokoulin, V.V. Kolmogorov, M.N. Kondaurov, S.G. Konstantinov, V.R. Kozak, G.S. Krainov, Ya.G. Kruchkov, E.A. Kuper, A.S. Medvedko, L.A. Mironenko, V.M. Panasyuk, V.V. Parkhomchuk, K.K. Schreiner, B.A. Skarbo, A.N. Skrinsky, B.M. Smirnov, M.A. Vedenev, R. Voskoboinikov, M.N. Zakhvatkin, N.P. Zapiatkin
    BINP SB RAS, Novosibirsk
  • J. Li, W. Lu, L.J. Mao, Z.X. Wang, X.B. Yan, X.D. Yang, J.H. Zhang, W. Zhang, H.W. Zhao
    IMP, Lanzhou
  The article deals with the commissioning of electron cooler EC-300. It was designed and manufactured for CSR experiment (IMP, Lanzhou, China) by BINP, Russia. The energy of electron beam is up to 300 keV, the electron current is up to 3 A, the magnetic field in the cooling section is up to 1.5 kG. The major innovation of the cooler is the variable profile of electron beam, the electrostatic bends of the electron beam and the system of the magnetic field correction. During commissioning the linearity of the magnetic field 10-6 was obtained, the recuperation efficiency was observed up 10-6 , the pressure of residual gas in the vacuum chamber was 5? 10-11 torr during operation with the electron beam. The CSRe cooler for IMP is a new step at cooling technique and the first results achieved during commissioning are very interesting for accelerator physics.  
 
TUPLT121 Compact Tandem Accelerator Based Neutron Source for the Medicine vacuum, tandem-accelerator, target, ion-source 1422
 
  • V.V. Shirokov, A.A. Babkin, P.V. Bykov, G.S. Kraynov, G. Silvestrov, Y. Tokarev
    BINP SB RAS, Novosibirsk
  • M.V. Bokhovko, O.E. Kononov, V.N. Kononov
    IPPE, Kaluga Region
  Status of original heavy hydrogen ion electrostatic accelerator-tandem is described. Potential electrodes with vacuum insulation organize tract for accelerating ion beam before and after gas stripper, located inside the high voltage electrode. There are no accelerating tubes in the tandem proposed. 20 kHz, 10 kW, 500 kV compact sectioned rectifier is a high voltage source. Both the geometry of neutron source and results of the rectifier testing are presented. Estimation of yield and space-energy distribution of neutron, as a result of nuclear reactions produced by heavy hydrogen ion in beryllium or carbon targets are given. Result of Monte-Carlo simulation of neutron and photon transferring for these sources of neutron is the distribution of the absorbed dose incide phantom. Result of the simulation are compared with result of the experiment. The possibility of use of this neutron source for the neutron or neutron capture therapy is discussed too.  
 
TUPLT124 DESIREE - A Double Electrostatic Storage Ring vacuum, quadrupole, ion-source, storage-ring 1425
 
  • K.-G. Rensfelt, G. Andler, L. Bagge, M. Blom, H. Danared, A. Källberg, S. Leontein, L. Liljeby, P. Löfgren, A. Paal, A. Simonsson, Ö. Skeppstedt
    MSL, Stockholm
  • H. Cederquist, M. Larsson, H. Schmidt, K. Schmidt
    Stockholm University, Department of Physics, Stockholm
  The advantages of storage rings with only electrostatic elements were first demonstrated by ELISA in Aarhus and later in other places. At MSL and Fysikum at Stockholm University the ideas have been developed further in the Double Electrostatic Storage Ion Ring ExpEriment, DESIREE. Beams of negative and positive ions will be merged in a common straight section of the rings so that low energy collisions can be studied. Furthermore the rings will be cooled to 10 - 20 K in order to relax internal excitations in circulating molecules. A design report can be found at www.msl.se. The project is now (January 2004) almost fully financed and the final design work has recently been started. The paper will shortly review the physics programme and describe the status of the design work.  
 
TUPLT138 A Fast Beam Chopper for Next Generation High Power Proton Drivers emittance, proton, linac, beam-transport 1449
 
  • M.A. Clarke-Gayther
    CCLRC/RAL/ASTeC, Chilton, Didcot, Oxon
  The identification and development of a successful beam chopper design is regarded as key for the European Spallation Source (ESS), and for all next generation high intensity proton driver schemes that adopt the linac-accumulator ring configuration. A description is given of refinements to the beam line design of a 'Tandem' chopper system, developed to address the requirements of the ESS. Particle tracking using the 'General Particle Tracer' (GPT) code has enabled efficient optimisation of beam apertures, and the analysis of beam power density distributions on chopper beam dumps. Preliminary results of 'proof of principle' testing on prototype fast, and slower transition high voltage pulse generators, are presented.  
 
TUPLT139 Extending the Duty Cycle of the ISIS H Minus Ion Source, Thermal Considerations cathode, ion-source, plasma, simulation 1452
 
  • D.C. Faircloth, J.W.G. Thomason
    CCLRC/RAL/ISIS, Chilton, Didcot, Oxon
  The ISIS H minus ion source is currently being developed on the Ion Source Development Rig (ISDR) at Rutherford Appleton Laboratory (RAL) in order to meet the requirements for the next generation of high power proton drivers. One key development goal is to increase the pulse width and duty cycle, but this has a significant effect on ion source temperatures if no other changes are made. A Finite Element Analysis (FEA) model has been produced to understand the steady state and dynamic thermal behavior of the source, and to investigate the design changes necessary to offset the extra heating.  
 
TUPLT141 The Effect of Extraction Geometry on the Measured ISIS H Minus Ion Source Beam emittance, extraction, ion-source, rfq 1458
 
  • J.W.G. Thomason, D.C. Faircloth, R. Sidlow, C.M. Thomas, M. Whitehead
    CCLRC/RAL/ISIS, Chilton, Didcot, Oxon
  Recent Finite Element Analysis (FEA) electromagnetic modelling of the extraction region of the ISIS H minus source has suggested that the present set up of extraction electrode and 90 degree sector magnet is sub-optimal, with the result that the beam profile is asymmetric, the beam is strongly divergent in the horizontal plane and there is severe aberration in the focusing in the vertical plane. The FEA model of the beam optics has demonstrated that relatively simple changes to the system should produce a dramatic improvement in performance. These changes have been incorporated on the Ion Source Development Rig (ISDR) at Rutherford Appleton Laboratory (RAL), and their effects on the H minus beam are presented here.  
 
TUPLT160 Development of a 25-mA, 12% Duty Factor (df) H- Source for LANSCE emittance, plasma, simulation, electron 1500
 
  • G. Rouleau, A. Arvin, E. Chacon-Golcher, E. Geros, G. Jacobson, J. Meyer, P. Naffziger, S. Schaller, J.D. Sherman, J. Stelzer, J. Zaugg
    LANL/LANSCE, Los Alamos, New Mexico
  Present operations at the Los Alamos Neutron Science Center (LANSCE) accelerator use a surface conversion source to provide 80-keV, 16 to 18-mA H- beams with typical rms normalized emittance of 0.13 (pmm-mrad). Operational flexibility of the 800-MeV linac and proton storage ring will be increased by a higher current H- source. The present goal is to achieve a 25-mA H- surface converter source with modest (10-20%) emittance increase without sacrificing the present LANSCE production source 12% df and 28 day lifetime. The LANSCE 80-kV ion source test stand (ISTS) has been brought into reliable 24-hour per day operation with computer control and modern electronics. A fourth production source has been fabricated, and is now operating on the ISTS. H- currents up to 25mA have been observed with 0.15 to 0.18(pmm-mrad) rms normalized emittances. An experimental study of surface converter geometries and electron filters at the emitter electrode are planned to optimize source current and emittance.  
 
TUPLT175 Operation of the SNS Ion Source at High Duty-Factor ion-source, plasma, diagnostics, emittance 1538
 
  • R.F. Welton, T.A. Justice, S.N. Murray, M.P. Stockli
    ORNL/SNS, Oak Ridge, Tennessee
  • R. Keller
    LBNL/AFR, Berkeley, California
  The ion source for the Spallation Neutron Source* (SNS) is a radio frequency, multi-cusp, source designed to deliver ~ 45 mA of H- with a normalized rms emittance of less than 0.2 pi mm mrad to the SNS accelerator. Once the SNS is fully operational a beam current duty factor of 6% (1 ms pulse length, repetition rate of 60 Hz) will be required from the ion source. To date, the source has been utilized in the early commissioning of the SNS accelerator and has already demonstrated stable, satisfactory operation at beam currents of ~30 mA with duty factors of ~0.1% for operational periods of several weeks. This work summarizes the results of a series of lifetime tests performed at a dedicated ion source test facility where the source was pushed closer to the operational goal of 6% duty factor.  
 
TUPLT180 Results of the NASA Space Radiation Laboratory Beam Studies Program at BNL booster, radiation, quadrupole, power-supply 1547
 
  • K.A. Brown, L. Ahrens, R.H. Beuttenmuller, I.-H. Chiang, D.C. Elliott, D. Gassner, Z. Li, I. Marneris, J. Mead, J. Morris, D. Phillips, V. Radeka, A. Rusek, N. Tsoupas, B. Yu, K. Zeno
    BNL, Upton, Long Island, New York
  The NASA Space Radiation Laboratory (NSRL) was constructed in collaboration with NASA for the purpose of performing radiation effect studies for the NASA space program. The NSRL makes use of heavy ions in the range of 0.05 to 3 GeV/n slow extracted from BNL's AGS Booster. The purpose of the NSRL beam studies program is to develop a clear understanding of the beams delivered to the facility, to fully characterize those beams, and to develop new capabilities in the interest of understanding the radiation environment in space. In this report we will describe the first results from this program.  
 
TUPLT181 Results of the First Run of the NASA Space Radiation Laboratory at BNL booster, extraction, heavy-ion, radiation 1550
 
  • K.A. Brown, L. Ahrens, J.M. Brennan, J. DeLong, C. Gardner, D. Gassner, J. Glenn, Y. Kotlyar, I. Marneris, A. Rusek, N. Tsoupas, K. Zeno
    BNL, Upton, Long Island, New York
  The NASA Space Radiation Laboratory (NSRL) was constructed in collaboration with NASA for the purpose of performing radiation effect studies for the NASA space program. The results of commissioning of this new facility were reported in [*]. In this report we will describe the results of the first run. The NSRL makes use of heavy ions in the range of 0.05 to 3 GeV/n slow extracted from BNL's AGS Booster. Many modes of operation were explored during the first run, demonstrating all the capabilities designed into the system. Heavy ion intensities from 100 particles per pulse up to $2×109$ particles per pulse were delivered to a large variety of experiments, providing a dose range up to 70 G/min over a 5x5 $cm2$ area. Results presented will include those related to the production of beams that are highly uniform in both the transverse and longitudinal planes of motion [**].

* K.A.Brown, et al, ‘‘Commissioning Results of Slow Extraction of Heavy Ions from the AGS Booster‘‘, Proceedings of the 2003 Particle Accelerator Conference, Portland, OR, 2003** N.Tsoupas, et al, ‘‘Commissioning of the Beam Transfer Line of the Booster Application Facility (BAF) at BNL'', These Proceedings

 
 
TUPLT183 Magnetized Beam Transport in Electron Coolers with Opposing Solenoid Fields electron, quadrupole, optics, coupling 1556
 
  • J. Kewisch, C. Montag
    BNL, Upton, Long Island, New York
  To improve cooling capability of electron coolers magnetized beams in strong solenoid fields are used. Too avoid betatron coupling in the ion coupling compensation is required. For the RHIC electron cooler we propose a scheme consisting of two identical solenoids with opposing fields, connected by a quadrupole matching section that preserves the electron beam magnetization. Since the fringe fields of the individual magnets overlap, the matching section can not be designed with standard optics codes. We developed an optimization code based on particle tracking instead. Input for the program are the simulated/measured field maps of the magnets. We demonstrate that the transverse temperature of the electron beam does not increase.  
 
WEYCH01 Fast Pulsed SC Magnets dipole, synchrotron, antiproton, storage-ring 132
 
  • G. Moritz
    GSI, Darmstadt
  The demand for high beam intensities leads to the requirement of fast pulsed magnets for synchrotrons. An example is the proposed 'International Facility for Beams of Ions and Antiprotons' at GSI, which will consist of two synchrotrons in one tunnel and several storage rings. The high field ramp rate and repetition frequency introduce many magnet design problems and constraints in the operation of the accelerator. Persistent currents in the superconductor and eddy currents in wire, cable, iron and vacuum chamber reduce the field quality and generate cryogenic losses. Due to the large number of magnet cycles during the lifetime of such a magnet, special attention has to be paid to magnet material fatigue problems. The large charging voltages put some constraints on the use of cold diodes for quench protection. R&D has started at GSI, in collaboration with many institutions, to comply with the constraints mentioned above. Model dipoles were built and tested. The results of the R&D are reported. The advantages of the use of low field, fast pulsed superconducting, compared to resistive, magnets will be discussed  
Video of talk
Transparencies
 
WEYCH03 Low and Medium Beta Superconducting Cavities linac, proton, heavy-ion, beam-loading 142
 
  • A. Facco
    INFN/LNL, Legnaro, Padova
  The use of low- and intermediate-beta superconducting cavities, once confined to low current heavy ion linacs, is steadily increasing in accelerators. The progress in this technology allowed a significant increase in cavity performance during the last 10 years; a large number of resonators, with different geometries, frequencies and gap numbers have been built for a large variety of applications and the development is still going on. The main boost is given by new projects of radioactive beam facilities and high power proton accelerators worldwide. While the advantages of SC resonators, compared with normal conducting structures, are rather well established in high-beta linacs, this is not always the case at low-beta. The choice of the optimum transition beam energy in a linac, where superconducting cavities should replace the room temperature ones, requires a careful evaluation that depends on the linac specifications.  
Video of talk
Transparencies
 
WEODCH02 Interaction of Stored Ions with Electron Target in Low Energy Electrostatic Ring electron, target, cathode, proton 162
 
  • E. Syresin
    JINR, Dubna, Moscow Region
  • K. Noda
    NIRS, Chiba-shi
  • T. Tanabe
    KEK, Ibaraki
  The KEK electrostatic ring is used for investigations of molecular, bimolecular and DNA ions. The electron target installed in this ring has same construction as usual electron cooler. The interaction of stored ions with the electrons increases the ion lifetime at electron cooling caused by a suppression of the ion scattering on the residual gas atoms. The proton lifetime of 2 s was increased in the experiments by factor 2 at the electron cooling with the electron beam current of 0.2 mA, the proton energy of 20 keV and the residual gas pressure of 0.04 nTorr. However the electron-ion interaction can decrease the ion lifetime caused by an excitation of the transverse instability produced by an intensive electron beam. So in the KEK electrostatic ring the proton lifetime is reduced to 1.7 s at detuning of electron acceleration voltage from nominal cooler value on 0.4 V. The simulation of electron cooling and transverse instability of the light and DNA ions are discussed in this report.  
Video of talk
Transparencies
 
WEPKF018 Beam-loss Induced Pressure Rise of LHC Collimator Materials Irradiated with 158 GeV/u In49+ Ions at the CERN SPS vacuum, heavy-ion, linac, beam-losses 1633
 
  • E. Mahner, I. Efthymiopoulos, J. Hansen, E. Page, H. Vincke
    CERN, Geneva
  During heavy ion operation, large pressure rises, up to a few orders of magnitude, were observed at CERN, GSI, and BNL. The dynamic pressure rises were triggered by lost beam ions that impacted onto the vacuum chamber walls and desorbed about 104 to 107 molecules per ion. The deterioration of the dynamic vacuum conditions can enhance charge-exchange beam losses and can lead to beam instabilities or even to beam abortion triggered by vacuum interlocks. Consequently, a dedicated measurement of heavy-ion induced molecular desorption in the GeV/u energy range is important for LHC ion operation. In 2003, a desorption experiment was installed at the SPS to measure the beam-loss induced pressure rise of potential LHC collimator materials. Samples of bare graphite, sputter coated (Cu, TiZrV) graphite, and 316 LN stainless steel, were irradiated under grazing angle with 158 GeV/u indium ions. After a description of the new experimental set-up, the results of the pressure rise measurements are presented, and the derived desorption yields are compared with data from other experiments.  
 
WEPKF027 R&D Vacuum Issues of the Future GSI Accelerator Facilities vacuum, target, dipole, synchrotron 1657
 
  • H.R. Sprenger, M.C. Bellachioma, M. Bender, H. Kollmus, A. Kraemer, J. Kurdal, P.J. Spiller
    GSI, Darmstadt
  The new GSI accelerator facilities are planned to deliver heavy ion beams of increased energy and highest intensity. Whereas the energy is planned to be increased roughly by a factor of 10, the ion beam intensities are planned to be enlarged by three orders of magnitude. To achieve highest beam intensities, medium charged heavy ions (e.g. U28+) are accelerated. Since the ionization cross sections for these ions are comparably high, a UHV-accelerator system with a base pressure in the low 10-12mbar regime is required, even under the influence of ion beam loss induced desorption processes. An intensive program was started to upgrade the UHV system of the existing synchrotron SIS18 (bakeable) and to design and lay out the UHV systems of the future synchrotron SIS100 and SIS300 (mainly cryogenic). The strategy of this program includes basic research on the physics of the ion induced desorption effects as well as technical developments, design and prototyping on bakeable UHV components (vacuum chambers, diagnostics, bakeout-control, pumping speed), collimator for controlled ion beam loss, NEG coating and cryogenic vacuum components.  
 
WEPKF040 Magnetic Field Measurement of Quadrupole Magnets for S-LSR quadrupole, superconductivity, octupole, lattice 1693
 
  • T. Takeuchi, K. Noda, S. Shibuya
    NIRS, Chiba-shi
  • H. Fadil, M. Ikegami, A. Noda, T. Shirai, H. Tongu
    Kyoto ICR, Uji, Kyoto
  S-LSR is a low energy ion storage/cooler ring. It has 12-quadrupole magnets (QM) with a bore radius of 70 mm and a maximum field gradient of 5 T/m. To suppress and control a magnetic flux in a fringing field of a bending magnet (BM), a field clamp with a thickness of 25 mm was installed in between BM and QM. The distance between the field clamp and QM is 80 mm. 3D calculation represented that the QM field is strongly influenced by the field clamp. Therefore, QMs were designed and optimized in considering the influence of the field clamp. Magnetic field measurements were performed by means of a Hall probe and a long search coil. A magnet field measurement by a Hall probe was carried out together with the field clamp and BM for S-LSR. For 12-quadrupole magnets, the measurement by the long search coil which moves in horizontal direction was carried out. The results for each measurements will be discussed.  
 
WEPKF057 Design and Study of a Superferric Model Dipole and Quadrupole Magnets for the GSI Fast-pulsed Synchrotron SIS100. dipole, quadrupole, synchrotron, insertion 1735
 
  • A.D. Kovalenko, N.N. Agapov, V. Bartenev, A. Donyagin, I. Eliseeva, H.G. Khodzhibagiyan, G.L. Kuznetsov, A. Smirnov, M.A. Voevodin
    JINR, Dubna, Moscow Region
  • E. Fischer, G. Moritz
    GSI, Darmstadt
  New experimental results from the investigation of a model superferric Nuclotron-type dipole and quadrupole magnets are presented. The magnets operate at pulse repetition rate f = 1Hz, providing peak magnetic field B = 2 T and the field gradient G = 34 T/m in the dipoles and quadrupoles respectively. The superconducting coil is made from a hollow multi-filamentary NbTi cable cooled with two phase helium flow. Different possibilities were investigated to reduce AC power losses in the case of a cold iron yoke (T=4.5K). The achieved results are discussed. The value of 9W/m has been obtained for dipole magnet with the yoke at T=50K. The first 50 K yoke quadrupole was designed and tested. Other problems, connected with the magnetic field quality, mechanical and cryogenic stability of the magnets under SIS100 operating conditions are also discussed.  
 
WEPKF072 Clearing Electrodes for Vacuum Monitoring at the Fermilab Recycler vacuum, electron, antiproton, monitoring 1771
 
  • D.R. Broemmelsiek, S. Nagaitsev
    Fermilab, Batavia, Illinois
  The Fermilab Recycler is a fixed 3.3-km 8-GeV kinetic energy storage ring located in the Fermilab Main Injector tunnel. Each split-plate beam position monitor in the Recycler is also used to generated an ion clearing field for ions trapped by the antiproton beam. Approximately 100 locations have been instrumented with pico-amp meters to measure the electron current, generated by the beam-ionized residual gas in the vacuum chamber. This electron current is found to be proportional to the beam current and to the residual gas pressure in the Recycler and may be used to monitor the Recycler vacuum.  
 
WEPKF085 Secondary Electron Emission Measurements for TiN Coating on Stainless Steel of SNS Accumulator Ring Vacuum Chamber electron, vacuum, simulation, cathode 1804
 
  • P. He, H.-C. Hseuh, R. Todd
    BNL, Upton, Long Island, New York
  • B. Henrist, N. Hilleret
    CERN, Geneva
  • S. Kato, M. Nishiwaki
    KEK, Ibaraki
  • R.E. Kirby, F. Le Pimpec, M.T.F. Pivi
    SLAC, Menlo Park, California
  BNL is responsible for the design and construction of the US Spallation Neutron Source (SNS) accumulator ring. Titanium Nitride(TiN) coating on the stainless steel vacuum chamber of the SNS accumulator ring is needed to reduce undesirable resonant multiplication of electrons. The Secondary Electron Yield(SEY) of TiN coated chamber material has been measured after coated samples were exposed to air and after electron and ion conditioning. We are reporting about the TiN coating system setup at BNL and SEY measurements results performed at CERN, SLAC and KEK. We also present updated electron-cloud simulation results for the SNS accumulator assuming different SEY values.  
 
WEPLT054 Electron Cloud Build up in Coasting Beams electron, proton, simulation, accumulation 1963
 
  • G. Rumolo
    GSI, Darmstadt
  • G. Bellodi
    CCLRC/RAL/ASTeC, Chilton, Didcot, Oxon
  • K. Ohmi
    KEK, Ibaraki
  • F. Zimmermann
    CERN, Geneva
  Electrons could in principle accumulate in the potential of coasting beams of positively charged particles until a balance between the beam force and space charge force from the electrons is reached. But the continuous interaction between a non-ideal perturbed coasting beam and the cloud of electrons being trapped by it, together with the reflection and secondary emission processes at the inner pipe wall, can alter this picture and cause a combined cloud or beam transverse instability long before the concentration of electrons reaches the theoretical equilibrium value. The issue is addressed in this paper by means of combined build-up and instability simulations carried out with the HEADTAIL code.  
 
WEPLT055 Observation of Ultracold Heavy Ion Beams with Micrometer Size by Scraping electron, emittance, storage-ring, heavy-ion 1966
 
  • M. Steck, K. Beckert, P. Beller, B.  Franzke, F. Nolden
    GSI, Darmstadt
  The existence of an ordered beam state for low intensity, electron cooled heavy ion beams has been evidenced by a sudden reduction of the momentum spread. The detection of a similar effect in the transverse degree of freedom by non-destructive diagnostics is ruled out by the limited resolution of beam profile detectors. A method to probe the horizontal beam size of an electron cooled beam in a dispersive section has been developed. It is based on beam scraping and allows a resolution on the order of micrometers. This good transverse resolution for the cooled ion beam is achieved by precise changes of the ion energy which is varied by changes of the electron beam energy. The lower resolution limit due to power supply ripple is estimated to be below 1 micrometer. This method evidenced that the reduction of the momentum spread by one order of magnitude coincides with a reduction of the transverse beam emittance by 2-3 orders of magnitude, at least. A horizontal beam radius of a few micrometer could be demonstrated for electron cooled heavy ion beams with less than 1000 particles. This gives new evidence for the formation of an ordered beam arranged as a linear string of ions.  
 
WEPLT057 Simulation Results on Cooling Times and Equilibrium Parameters for Antiproton Beams at the HESR electron, target, antiproton, simulation 1972
 
  • A. Dolinskii, O. Boine-Frankenheim, B.  Franzke, M. Steck
    GSI, Darmstadt
  • A. Bolshakov, P. Zenkevich
    ITEP, Moscow
  • A.O. Sidorin, G.V. Troubnikov
    JINR, Dubna, Moscow Region
  The High Energy Storage Ring HESR is part of the "International Accelerator Facility for Ion and Antiproton Beams" proposed at GSI. For internal target experiments with antiproton beams in the energy range 0.8 GeV to 14.5 GeV a maximum luminosity of 5 inverse nbarn per second and a momentum resolution on the order of 10 ppm have to be attained. Electron cooling is assumed to be the most effective way to counteract beam heating due to target effects and intra-beam scattering. Cooling times and equilibrium parameters have been determined by means of three different computer codes: BETACOOL, MOCAC, and PTARGET. The results reveal that the development of fast, "magnetized" electron cooling with beam currents of up to 1 A and variable electron energies of up to 8 MeV in an extremely homogeneous longitudinal magnetic field of up to 0.5 T is crucial to achieve the required equilibrium beam parameters over the envisaged range of antiproton energies.  
 
WEPLT075 Status Report on the Beam Dynamics Developments for the SPIRAL 2 Project linac, quadrupole, rfq, dipole 2023
 
  • R. Duperrier, D. Uriot
    CEA/DSM/DAPNIA, Gif-sur-Yvette
  • P. Bertrand, F. Varenne
    GANIL, Caen
  • J.-L. Biarrotte
    IPN, Orsay
  • J.-M. De Conto
    ISN, Grenoble
  • E. Froidefond
    LPSC, Grenoble
  • N. Pichoff
    CEA/DAM, Bruyères-le-Châtel
  The driver for the SPIRAL 2 project aims to accelerate a 5 mA D+ beam up to 20 A.MeV and a 1 mA beam for Q/A=1/3 up to 14.5 A.MeV. It operates in a continuous wave regime (cw), is designed for a maximum efficiency in the transmission of intense beams. Recent studies have led to change the reference design. The current design consists in an injector (ECR sources + LEBTs with the possibility to inject from several sources + a Radio Frequency Quadrupole) followed by a superconducting section based on an array of independently phased cavities where the transverse focalisation is performed by warm quadrupoles. This paper presents the beam dynamics studies associated to these new choices, the HEBT design and the fast chopping in the MEBT.  
 
WEPLT076 SPIRAL 2 RFQ Design rfq, vacuum, emittance, electron 2026
 
  • R. Ferdinand, G. Congretel, A. Curtoni, O.D. Delferriere, A. France, D.L. Leboeuf, J. Thinel, J.-C. Toussaint
    CEA/DSM/DAPNIA, Gif-sur-Yvette
  • M. Di Giacomo
    GANIL, Caen
  The SPIRAL2 RFQ is designed to accelerate at 88MHz two kinds of charge-over-mass ratio, Q/A, particles. The proposed injector can accelerate a 5 mA deuteron beam (Q/A=1/2) or a 1 mA particles beam with q/A=1/3 up to 0.75 MeV/A. It is a CW machine which has to show stable operation, provide the request availability, have the minimum losses in order to minimize the activation constraints and show the best quality/cost ratio. It will be a 4-vane RFQ type, with a mechanical assembly, the global assumption being to build an RFQ without any brazing step. Extensive modelisation was made to ensure a good vane position under RF. A 1-m long hot model prototype is under construction in order to validate the manufacturing concept.  
 
WEPLT098 Experience with Long Term Operation with Demineralized Water Systems at DAFNE wiggler, synchrotron, vacuum, booster 2080
 
  • L. Pellegrino
    INFN/LNF, Frascati (Roma)
  During eight years operation of the Dafne water cooling system we coped with several critical situations and managed successfully specific upgrades to the demineralized water system. Here we revise critically the collected data and the experience gained in the field of copper corrosion and related water treatment.  
 
WEPLT102 Electron Cooling Experiments at HIMAC Synchrotron simulation, electron, heavy-ion, injection 2089
 
  • K. Noda, T. Furukawa, T. Honma, S. Shibuya, D. Tan, T. Uesugi
    NIRS, Chiba-shi
  • T. Iwashima
    AEC, Chiba
  • I.N. Meshkov, E. Syresin
    JINR, Dubna, Moscow Region
  • S. Ninomiya
    RCNP, Osaka
  In the HIMAC synchrotron, the electron cooling experiments have been carried out since 2000 in order to develop new technologies in heavy-ion therapy and related research. Among of them, especially, the cool-stacking method has been studied to increase the intensity of heavy ions such as Fe and Ni in order to study the risk estimation of the radiation exposure in space. The simulation was carried out in order to optimize the stacking intensity under various the injection periods. In addition, the beam heating by the RF-KO and the clearing the secondary ion in the cooler were applied to avoid the instability occurred when the beam density became high. We will report the experiment results.  
 
WEPLT109 Simulation of Ep Instability for a Coasting Proton Beam in Circular Accelerators electron, proton, vacuum, simulation 2107
 
  • K. Ohmi, T. Toyama
    KEK, Ibaraki
  • G. Rumolo
    GSI, Darmstadt
  ep instability is discussed for a coasting beam operation of J-PARC 50 GeV Main Ring. Our previous study (PAC2003) was focussed only ionization electron. We now take into account electrons created at the chamber wall due to proton loss and secondary emission with higher yield than ionization.  
 
WEPLT116 Lattice Design and Cooling Simulation at S-LSR laser, electron, lattice, quadrupole 2122
 
  • T. Shirai, H. Fadil, S. Fujimoto, M. Ikegami, A. Noda, M. Tanabe, H. Tongu
    Kyoto ICR, Uji, Kyoto
  • T. Fujimoto, H. Fujiwara, K. Noda, S. Shibuya, T. Takeuchi
    NIRS, Chiba-shi
  • M. Grieser
    MPI-K, Heidelberg
  • H. Okamoto, Y. Yuri
    HU/AdSM, Higashi-Hiroshima
  • E. Syresin
    JINR, Dubna, Moscow Region
  A compact ion cooler ring, S-LSR is under construction in Kyoto University. The circumference is 22.557 m and the maximum magnetic rigidity is 1 Tm. One of the important roles of S-LSR is a test bed to examine the lowest temperature limit of the ion beams using cooling techniques. The ultimate case is a crystalline one. The ring optics of S-LSR has a high super periodicity and a low phase advance to reduce the beam heating from the lattice structure. S-LSR has an electron beam cooling device and a laser cooling system for Mg. The simulation results show the possible limit of the ion beam temperature and the dependence on the operating betatron tunes.  
 
WEPLT123 Engineering Design of High-current 81.36 MHz RFQ with Elliptic Coupling Windows rfq, vacuum, alignment, coupling 2143
 
  • D. Kashinskiy, A. Kolomiets, S. Minaev, V. Pershin, B.Y. Sharkov, T. Tretyakova
    ITEP, Moscow
  Four-vane RFQ structure with elliptic coupling windows has been originally developed at ITEP for injection into ITEP-TWAC synchrotron/storage ring complex, being lately adapted for RIA project too. As the electrodynamics simulations show, this structure combines the high efficiency with the operating mode stability against asymmetric detuning and electrode misalignment. A considerable reduction of structure diameter due to coupling windows becomes important for low frequency range which is necessary for the heavy ion acceleration. At the same time, the electrode configuration allows the efficient cooling and high duty factor operation. A mechanical design of 81 MHz, 1.6 MeV/u, 6 m long heavy ion RFQ section is discussed. The outer tank is made of two layers, steel and copper, joined by using the thermal diffusion technology. Each electrode is supplied with the alignment mechanism and connected to the tank by the flexible conducting insert. The whole setup is in manufacturing now.  
 
WEPLT128 Charge Particle Source for Industrial and Research Accelerators Operating at the Poor Vacuum Conditions vacuum, electron, cathode, background 2149
 
  • E.O. Popov, A.A. Pashkevich, S.O. Popov, A.V. Vitugov
    IOFFE, St. Petersburg
  We investigated the original method of fabrication of the great number of emitting tips by pulling liquid metal through the holes in track membrane under influence of electric field. The track membranes are produced by cyclotron of Physicotechnical Institute. This method enables to fabricate up to 1·108 emitting tips per square cm. Special test facility to investigate emitter parameters operating at different values of background residual gas pressure was designed and developed. The liquid metal multiple tip field emitters possess some unique characteristics which are attractive in accelerators for material irradiation: unlimited life expectancy, large current densities (about 100 mA per sq. cm), practically unlimited surface, stable emission in poor vacuum.  
 
WEPLT143 Simulation Calculations of Stochastic Cooling for Existing and Planned GSI Facilities antiproton, pick-up, simulation, kicker 2170
 
  • I. Nesmiyan
    National Taras Shevchenko University of Kyiv, Radiophysical Faculty, Kiev
  • F. Nolden
    GSI, Darmstadt
  The process of longitudinal stochastic cooling is simulated using a Fokker-Planck model. The model includes the sensitivities of pick-up and kicker electrodes as calculated from field theoretical models. The effect of feedback through the beam is taken into account. Intra beam scattering is treated as an additional diffusive effect. The calculations cover the existing system of the ESR storage ring at GSI as well as the cooling system for secondary heavy ion and antiproton beams at the proposed new accelerator facility. The paper discusses the resulting cooling times. Requirements on the system layout as amplification factors and electrical power can be derived from the simulations.  
 
WEPLT145 Beam Loss Studies in High-intensity Heavy-ion Linacs linac, simulation, beam-losses, emittance 2176
 
  • P.N. Ostroumov, V.N. Aseev, E.S. Lessner, B. Mustapha
    ANL/Phys, Argonne, Illinois
  A low beam-loss budget is an essential requirement for high-intensity machines and represents one of their major design challenges. In a high-intensity heavy-ion machine, losses are required to be below 1 W/m for hands-on-maintenance. The driver linac of the Rare Isotope Accelerator (RIA) is designed to accelerate beams of any ion to energies from 400 MeV per nucleon for uranium up to 950 MeV for protons with a beam power of up to 400 kW. The high intensity of the heaviest ions is achieved by acceleration of multiple-charge-state beams, which requires a careful beam dynamics optimization to minimize effective emittance growth and beam halo formation. For beam loss simulation purposes, large number of particles must be tracked through the linac. Therefore the computer code TRACK [P.N. Ostroumov and K.W. Shepard, PRST AB 11, 030101 (2001)] has been parallelized and calculations is being performed on the JAZZ cluster [*] recently inaugurated at ANL. This paper discusses how this powerful tool is being used for simulations for the RIA project to help decide on the high-performance and cost-effective design of the driver linac.

* The Jazz Cluster, http://www.lcrc.anl.gov/jazz

 
 
WEPLT146 Mismatch Oscillations in High-current Accelerators quadrupole, emittance, focusing, vacuum 2179
 
  • O.A. Anderson
    LBNL, Berkeley, California
  Strong space charge challenges the designers of modern accelerators such as those used in Heavy Ion Inertial Fusion. Simple, accurate design tools are useful for predicting beam behavior, such as phase advances and envelope oscillation periods, given the beam emittance and charge and the lattice parameters. Along with the KV beam model, the smooth approximation [*] is often used. It is simple but not very accurate in many cases. Although Struckmieir and Reiser [**] showed that the stable envelope oscillations of unbalanced beams could be obtained accurately, they used a hybrid approach where the phase advances σ0 and σ were already known precisely. When starting instead with basic quantities–quadrupole dimensions, field strength, beam line charge and emittance–the smooth approximation formulas give substantial errors (10% or more). We previously described an integration method [***] for matched beams that yields fairly simple third-order formulas for σ0, σ, beam radius and ripple. Here we extend the method to include small-amplitude mismatch oscillations. We derive a simple modification of the smooth approximation formulas and show that it improves the accuracy of the predicted envelope frequencies significantly–for example, by a factor of five when σ0 is 83 degrees.

* M. Reiser, Particle Accelerators 8, 167 (1978) ** J. Struckmeier and M. Reiser, Particle Accelerators 14, 227 (1984)*** O. A. Anderson, Particle Accelerators 52, 133 (1996)

 
 
WEPLT152 Experimental Results of the Small Isochronous Ring space-charge, simulation, cyclotron, diagnostics 2194
 
  • J.A. Rodriguez, F. Marti, R.C. York
    NSCL, East Lansing, Michigan
  • E. Pozdeyev
    Jefferson Lab, Newport News, Virginia
  The Small Isochronous Ring (SIR) has been in operation since December 2003. The main purpose of this ring, developed and built at the National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University (MSU), is to simulate the dynamics of intense beams in large accelerators. To observe the same effects, the beam power needed in SIR is orders of magnitude lower and the time scale is much longer than in the full scale machines. These differences simplify the design and operation of the accelerator. The ring measurements can be used to validate the results of space charge codes. After a variable number of turns, the injected hydrogen bunch (with energies up to 30 keV) is extracted and its longitudinal profile is measured using a fast Faraday cup. We present a summary of the design, the results of the first six months of operation and the comparison with selected space charge codes.  
 
WEPLT183 Clearing of Electron Cloud in SNS electron, space-charge, extraction, proton 2248
 
  • L. Wang, Y.Y. Lee, D. Raparia, J. Wei, S.Y. Zhang
    BNL, Upton, Long Island, New York
  In this paper we describe a mechanism using the clearing electrodes to remove the electron cloud in the Spallation Neutron Source (SNS) accumulator ring, where strong multipacting could happen at median clearing fields. A similar phenomenon was reported in an experimental study at Los Alamos laboratory's Proton Synchrotron Ring (PSR). We also investigated the effectiveness of the solenoid's clearing mechanism in the SNS, which differs from the short bunch case, such as in B-factories.  
 
THZCH02 Electron Cooling: Remembering and Reflecting electron, proton, storage-ring, antiproton 244
 
  • I.N. Meshkov
    JINR, Dubna, Moscow Region
  The report contains a brief review of developments in electron cooling methods. The influence of electron cooling concepts on progress in particle beam physics is considered, particularly: development of alternative and complementary cooling methods - stochastic, laser, muon cooling; physics of cooled and intense particle beams; ordering effects in cooled ion beams and the idea of crystalline beams; intrabeam scattering in cooled beams, etc. Creation of new accelerator technology, based on electron cooling and its application to different fields of experimental physics, particle, nuclear and atomic physics, is described. Modern trends and new concepts of electron cooling applications are discussed.  
Video of talk
Transparencies
 
THPKF040 Development of a Femtosecond Pulse Radiolysis for Reaction Analysis in Nano-space laser, electron, linac, gun 2365
 
  • Y. Yoshida, T. Kozawa, S. Tagawa, J. Yang
    ISIR, Osaka
  A new femtosecond pulseradiolysis system was developed in Osaka University for the study of radiation-induced ultrafast physical and chemical reactions in femtosecond time regions. In the pulseradiolysis system, a femtosecond electron beam produced by a photocathode RF gun is used as an irradiation source, while a mode-locked Ti:Sapphire femtosecond laser was used as a probe light source. A time jitter between the electron pulse and the femtosecond laser was compensated by a jitter compensation technique used a femtosecond streak camera. An oblique incidence of the probe light is considered in the system to reduce the degradation of velocity difference between the electron and the laser light in samples. A time resolution of <100 fs is expected in the pulse radiolysis system for the analysis of utrafast physical and chemical reactions in nano-space.  
 
THPKF052 The Project of Accelerator Mass-Spectrometer at BINP ion-source, target, tandem-accelerator, focusing 2389
 
  • M. Petrichenkov, N. Alinovsky, V. Klyuev, E. Konstantinov, S.G. Konstantinov, A. Kozhemyakin, A. Kryuchkov, V.V. Parkhomchuk, A. Popov, S. Rastigeev, V.B. Reva, B. Sukhina
    BINP SB RAS, Novosibirsk
  The project of creation of first Russian accelerator mass-spectrometer at BINP is described. The scheme of spectrometer includes two types of ion sources (sputter and gaseous ones), low energy beam line with analysers, electrostatic tandem accelerator with accelerating voltage up to 2 MV and magnesium vapours stripper and also includes the high energy beam line with analysers. The results of first experiments with ion sources are given also.  
 
THPLT003 Vibrating Wire Scanner Parameters Optimization proton, electron, pick-up, vacuum 2460
 
  • S.G. Arutunian, K.G. Bakshetyan, N.M. Dobrovolski, M.R. Mailian, V.A. Oganessian, H.E. Soghoyan, I.E. Vasiniuk
    YerPhI, Yerevan
  • K. Wittenburg
    DESY, Hamburg
  The idea to use the metallic vibrating wire as a scanner of particles beams was experimentally confirmed [1, 2] and showed unprecedented sensibility and a huge dynamic rage of the output signal. In this work the response time of the system is estimated on the base of the dynamic model of heat transfer through the wire. A comparison of different materials of the wire is presented and the most suitable materials for different tasks are suggested. The dielectric materials are considered as possible materials of the wire, use of which allows to eliminate the electromagnetic induction from high current beams during the scanning of beam halo. The results of scanning of the iron ion beam of the mass spectrometer are presented. 1. Arutunian S.G., Avetisyan A.E., Dobrovolski N.M., Mailian M.R., Vasiniuk I.E, Wittenburg K., Reetz R., Problems of Installation of Vibrating Wire Scanners into Accelerator Vacuum Chamber. - Proc. 8-th Europ. Part. Accel. Conf. (3-7 June 2002, Paris, France), pp. 1837-1839. 2. Arutunian S.G., Dobrovolski N.M., Mailian M.R., Vasiniuk I.E., Vibrating wire scanner: first experimental results on the injector beam of Yerevan synchrotron.- Phys. Rev. Special Topics. - Accelerators and Beams, 2003, v. 6, 042801.  
 
THPLT030 A Novel Device for Non-intersecting Bunch Shape Measurement at the High Current GSI-Linac electron, background, linac, space-charge 2541
 
  • P. Forck, C. Dorn, M.H. Herty, P. Strehl
    GSI, Darmstadt
  • V. Peplov
    RAS/INR, Moscow
  • S. Sharamentov
    ANL, Argonne, Illinois
  Due to the high current of heavy ions accelerated at the UNILAC at GSI, non-intersecting beam diagnostics are mandatory. For bunch length and bunch structure determination in the range of 0.3 to 5 ns a novel device has been realized. It uses the time spectrum of secondary electrons created by atomic collisions between beam ions and residual gas molecules. These electrons are accelerated by an electric field of 400 V/mm toward an electro-static energy analyzer. The analyzer is used to restrict of the effective source region. Then the electrons are deflected by an rf-resonator running in phase with the acceleration frequency (36 or 108 MHz) to transform the time spectrum into spatial separation. The detection is done with a multi-channel plate equipped with a phosphor screen and observed by a digital CCD camera. The achieved time resolution is at least 50 ps, corresponding to 2 degree of rf frequency. The general layout of the device and first results will be presented.  
 
THPLT032 Computer Controlled Beam Diagnostics for the HICAT Facility diagnostics, linac, pick-up, synchrotron 2547
 
  • M. Schwickert, A. Peters
    GSI, Darmstadt
  A set of 93 diagnostic devices for beam diagnostics in the heavy ion cancer therapy facility (HICAT) at the university hospital in Heidelberg is currently under development at GSI. For the HICAT facility that is presently under construction, all beam diagnostic devices are fully computer controlled and allow an automated detection of all relevant beam parameters. The HICAT rasterscan method with active variation of intensity, energy and beam size requires the exact knowledge of the time resolved and spatial structure of the ion beam. An overview of the integrated devices is presented and the intensity measurement of both, the DC and AC beam in the different parts of the accelerator facility are reviewed. Additionally, the timing and control of the diagnostic devices are described.  
 
THPLT033 The Heavy Ion Gantry of the HICAT-facility beam-transport, heavy-ion, light-ion, dipole 2550
 
  • U. Weinrich, R. Fuchs
    GSI, Darmstadt
  • P. Emde
    MAN Technologie AG, Mainz
  The Heavy Ion Cancer Therapy Project HICAT at the University Hospital of Heidelberg is under construction. One unique feature of the treatment facility is the first heavy ion gantry in the world. The Gantry will allow the patient treatment with different ion species up to 430 MeV/u with full geometrical flexibility. This functionality has to be maintained for up to 300 000 rotations over the envisaged life cycle of 15 years. GSI has taken the responsibility to coordinate the design and construction of all the different required components. At the time of the conference the design will be finished and the construction started. The contribution will report on challenging construction items like the survey and alignment strategy, safety aspects, flexibility of the ion optics. In order to gain confidence on the principle a test bench with the last part of the gantry was already mounted in a fixed manner at GSI and beam measurements were performed. The results of these tests will also be reported.  
 
THPLT041 Beam Test Stand of the RFQ-drifttube-combination for the Therapy Center in Heidelberg rfq, emittance, ion-source, simulation 2571
 
  • A. Bechtold, M. Otto, U. Ratzinger, A. Schempp, E. Vassilakis
    IAP, Frankfurt-am-Main
  • B. Schlitt
    GSI, Darmstadt
  A beam test stand for the Heidelberg medicine RFQ has been installed at the IAP in Frankfurt. The installation consists of a 8 keV/u H+ duoplasmatron ion source, the 400 keV/u RFQ itself and several diagnostic elements comprising a slit-grid emittance measurement system for scanning the transverse beam profile and a bending magnet for measuring the longitudinal beam properties. The test installation will be described in detail, first measurements will be presented and compared to corresponding beam dynamic simulations.  
 
THPLT063 Proposal of Carbon-beam Facility for Cancer Therapy in Japan linac, synchrotron, rfq, extraction 2634
 
  • K. Noda, T. Fujisawa, T. Furukawa, Y. Iwata, T. Kanai, M. Kanazawa, N. Kanematsu, A. Kitagawa, Y. Kobayashi, M. Komori, S. Minohara, T. Murakami, M. Muramatsu, S. Sato, Y. Sato, S. Shibuya, E. Takada, O. Takahashi, M. Torikoshi, E. Urakabe, S. Yamada, K. Yoshida
    NIRS, Chiba-shi
  Since 1994, the clinical trial at HIMAC has been successfully being progressed and more than 1,700 patients have treated with carbon ions. Owing to the good result of HIMAC, several medical groups in Japan have strongly required the carbon therapy facility. Based on the development of accelerator and the irradiation technologies for 10 years, therefore, we started to design a carbon therapy facility in Japan. The accelerator complex for the facility consists of two ECR ion sources with permanent magnets, an injector linac cascade (RFQ+IH) with the energy of 4 MeV/n, a synchrotron ring with the maximum energy of 400 MeV/n and beam delivery system for three treatment rooms. The R&D for the new facility has been already approved and will be started from April 2004. We will describe the conceptual design of the new facility.  
 
THPLT078 Construction of FFAG Accelerators in KURRI for ADS Study proton, acceleration, booster, ion-source 2676
 
  • M. Tanigaki, K. Mishima, S. Shiroya
    KURRI, Osaka
  • S. Fukumoto, Y. Ishi
    Mitsubishi Electric Corp, Energy & Public Infrastructure Systems Center, Kobe
  • M. Inoue
    SLLS, Shiga
  • S. Machida, Y. Mori
    KEK, Ibaraki
  KART (Kumatori Accelerator driven Reactor Test) project has started at Kyoto University Research Reactor Institute (KURRI) from the fiscal year of 2002. The purpose of this project is to demonstrate the basic feasibility of ADS, studying the effect of incident neutron energy on the effective multiplication factor of the subcritical nuclear fuel system. We are now constructing a proton FFAG accelerator complex as a neutron production driver for this project. Our accelerator complex consists of a 2.5 MeV FFAG betatron as an injector and 20 MeV and 150 MeV FFAG synchrotrons as a booster and a main ring, respectively. Our FFAG betatron is a spiral sector type. Both booster and main rings are radial sector type FFAG synchrotrons, but different in the production of required magnetic field with a certain magnetic field index. The distribution of magnetic field is determined by the shaped pole-face in the main ring while the magnetic field is realized by use of trim coils in the booster ring. This FFAG complex will be combined with our Kyoto University Critical Assembly (KUCA) in KURRI by the end of March 2006 and the experiments will begin as soon as the whole system is ready.  
 
THPLT079 The Study of APF-IH Linac linac, focusing, acceleration, proton 2679
 
  • K. Yamamoto, T. Hattori, K. Yamamoto
    RLNR, Tokyo
  • M. Okamura
    RIKEN, Saitama
  • S. Yamada
    NIRS, Chiba-shi
  We have manufactured the IH linac with Alternating Phase Focus as the test machine of medical accelerator injection. It will accelerate C4+ ion up to 2MeV/u from 40 keV/u, the tank length is around 1.5m, operation frequency is 100MHz. Furthermore, We have succeeded the acceleration test using proton with simple acceleration system consist of P.I.G. ion source, bending magnets and focus lenses, less than 5m long. Otherwise, We have been making the program of beam dynamics with the results of the electro-magnetic simulation soft (Micro-Wave-Studio,OPERA-3D), it has the merit of easily to calculate the 3D- beam dynamics in the tank. We will report the some results of the test and the beam simulation and the comparisons.  
 
THPLT093 Particle-in-cell Numerical Simulations of Particle Dynamics in Beams and ECR Sources electron, simulation, plasma, ion-source 2712
 
  • G. Shirkov, V. Alexandrov, V. Shevtsov
    JINR/PPL, Dubna, Moscow Region
  A summary of recent development of physical and mathematical basements and the first version of computer code library based on the particle-in-cell method are presented. The code library is aimed for the three-dimensional (3D) simulation of the ECR plasma and ion production in the ECR ion source. The particle-in-cell (finite particle) method is one of the most powerful methods for the numerical simulation of multicomponent ECR plasma and electron-ion beams. This method allows studying the detailed characteristics of plasma, taking into account the distribution functions of particles (spatial, velocity and energy distributions), real self and external fields, particle-particle interactions and many other effects. This technique promises to provide very precise numerical simulations and optimizations of ECR ion sources. The first results of simulations of ECR source plasma are presented. It has been shown that a complete and adequate description of ECR plasma requires the full-scale 3D model and computer codes. This is out of frames of existed project and could be an aim of some addition investigations.  
 
THPLT094 Ordered Ion Beam in Storage Rings simulation, storage-ring, scattering, emittance 2715
 
  • A. Smirnov, I.N. Meshkov, A.O. Sidorin, E. Syresin, G.V. Troubnikov
    JINR, Dubna, Moscow Region
  • T. Katayama
    CNS, Saitama
  • H. Tsutsui
    SHI, Tokyo
  The using of crystalline ion beams can increase of the luminosity in the collider and in experiments with targets for investigation of rare radioactive isotopes. The ordered state of circulating ion beams was observed experimentally at several storage rings. In this report a new criteria of the beam orderliness are derived and verified with BETACOOL code with using molecular dynamics technique. The sudden reduction of momentum spread observed on a few rings is described with this code. The simulation shows a good agreement with the experimental results. The code has then been used to calculate characteristics of the ordered state of ion beams for ion rings which will have experimental programs for the study of crystalline beams. A new strategy of the cooling process is proposed which permits to increase the linear density of the ordered ion beam.  
 
THPLT099 The Analysis of the Electron Beam Scanning Method for the Beam Profile Monitoring. electron, scattering, injection, space-charge 2721
 
  • D.A. Liakin
    ITEP, Moscow
  The method of the beam profile monitoring with scanning electron beam is analyzed. Simulation model of the ion/electron beam interaction is presented and some simulation results are shown. In the report the estimation of overall performance characteristics of this method such as sensitivity, spatial resolution, frequency bandwidth etc. are given.  
 
THPLT100 Development of a Permanent Magnet Residual Gas Profile Monitor With Fast Readout electron, synchrotron, injection, photon 2724
 
  • D.A. Liakin, S.V. Barabin, V. Skachkov
    ITEP, Moscow
  • P. Forck, T. Giacomini
    GSI, Darmstadt
  • A. Vetrov
    MSU, Moscow
  The beam profile measurement at modern ion synchrotrons and storage rings require high timing performances on a turn-by-turn basis. From the other hand, high spatial resolutions are very desirable for cold beams. We are developing a residual gas monitor to cover the wide range of beam currents and transversal distributions of particles. It supplies the needed high-resolution and high-speed tools for beam profiling. The new residual gas monitor, will operate on secondary electrons whose trajectories are localized within 0.1 mm filaments. The required magnetic field of 100 mT will be excited by a permanent magnet. In the fast turn-by-turn mode the beam profile will be read out with a resolution of 1 mm by a 100-channel photodiode-amplifier-digitizer. The high resolution mode of 0.1 mm is provided by a CCD camera with upstream MCP-phosphor screen assembly. In this paper the first results of the photodiode-digitizer device testing, the compact mechanical design features and simulation results of the permanent magnet device are presented.  
 
THPLT112 Methods and Instrumentation for Measurement of Low Ion Beam Currents at Cryring pick-up, background, injection, monitoring 2748
 
  • A. Paal, A. Källberg, A. Simonsson
    MSL, Stockholm
  • J. Dietrich, I. Mohos
    FZJ/IKP, Jülich
  In many CRYRING experiments an accurate measurement of the circulating ion beam current is essential for determination of e.g. absolute cross sections. However, the current produced from the ion source can be very low. Furthermore, when surface barrier detectors are used, for example in the merged electron-ion beam experiments, the current has to be kept low to avoid saturation. With new electronics, using an Integrating Current Transformer with 5 V/A sensitivity, the current resolution of the Bergoz Beam Charge Monitor (BCM) has been increased to below 1 nA for bunched beams. The sum signal of the capacitive pick-up located at the farthest point from the RF-system is integrated by a second gated integrator. The RMS resolution is about 100 pA. To measure the intensity of coasting beams neutral particle detectors and a residual-gas beam profile monitor are used, calibrated with the BCM output during 20-100 ms after acceleration. The micro-channel plate detectors can handle a few Mcps count rate with a maximum 1 cps dark count rate. Presently a 50 Mcps secondary electron multiplier is being tested as a neutral particle monitor, having a maximum dark count rate of 0.05 cps  
 
THPLT114 A New Mono-energetic Neutron Beam Facility in the 20-180 MeV Range proton, target, light-ion, background 2753
 
  • V.G. Ziemann, L.-O. Andersson, T. Bergmark, O. Bystrom, A. Bäcklund, H. Calen, L. Einarsson, C. Ekström, J. Fransson, K.J. Gajewski, N. Haag, T. Hartman, E. Hellbeck, T. Johansen, O. Jonsson, B. Lundström, R.P. Peterson, L. Pettersson, A. Prokofiev, D. Reistad, P.-U. Renberg, R. Wedberg, D. Wessman, L. Westerberg, D. van Rooyen
    TSL, Uppsala
  • J. Blomgren, S. Pomp, U. Tippawan, M. Österlund
    INF, Uppsala
  Recent interest in nuclear applications involving neutrons, like ransmutation of nuclear waste, fast-neutron cancer therapy, dose to personnel in aviation and electronics failures due to cosmic-ray neutrons, motivate the development of a facility producing intense mono-energetic neutron beams. At The Svedberg laboratory (TSL), Uppsala, Sweden, we have developed such a facility by utilizing the existing cyclotron and inserting a flexible Lithium target in a rebuilt beam line. The new facility can operate at unsurpassed quasi-monoenergetic neutron intensities and provides large flexibility of the neutron beam properties, like diameter and shape.  
 
THPLT129 Ion Chambers for Monitoring the NuMI Beam at FNAL target, hadron, proton, instrumentation 2768
 
  • S.E. Kopp, D. Indurthy, R. Keisler, S. Mendoza, Z. Pavlovich, M. Proga, R.M. Zwaska
    The University of Texas at Austin, Austin, Texas
  • M. Diwan, B. Viren
    BNL, Upton, Long Island, New York
  • A.R. Erwin, H.P. Ping, C.V. Velisaris
    UW-Madison/PD, Madison
  • D. Harris, A. Marchionni, J. Morfin
    Fermilab, Batavia, Illinois
  • J. McDonald, D. Naples, D. Northacker
    University of Pittsburgh, Pittsburgh, Pennsylvania
  We summarize selected instrumentation under construction for the NuMI neutrino beam facility at Fermilab. An array of foil secondary emission monitors (SEM's) will measure the 120GeV proton beam position, profile and halo at 10 stations along the transport to the NuMI target. The final two foil SEM's align the proton beam to within 50 microns on target. These are capable of withstanding the 400kW proton beam and causing <5·10-6 beam loss. Further instrumentation includes four stations of ionization chambers located downstream of the decay volume, one upstream and three downstream of the beam dump. The latter three monitor the tertiary muon beam, the first monitors the remnant hadron beam. The ion chamber arrays align the proton beam to 14microRadian and the neutrino beam to within 50 microRadian, as well as monitoring flux to better than 1%. The ion chambers are designed to withstand the ~1GRad doses and 109 particle/cm2/spill fluxes anticipated during NuMI beam operations. Beam tests and R&D efforts are discussed.  
 
THPLT145 Automated High-power Conditioning of Medical Accelerators radiation, medical-accelerators, vacuum, shielding 2795
 
  • S.M. Hanna, S. Storms
    Siemens Medical Solutions USA, Inc., Oncology Care Systems Group, Concord
  Medical accelerators require arc-free operation. Due to high-field emission, arcing and outgasing can occur in high-power accelerators. Therefore, the accelerator?s inner surfaces have to be conditioned before its use at high gradient levels in Radiation Therapy machine. At Siemens, we have developed a techniqu·101 to automatically condition an accelerator waveguide structure by continually inspecting the accelerator running conditions (arcing and vacuum) and stepping up the pulse repetition frequency (PRF) and RF power until reaching maximum power rating. The program implemented also reads, displays, and archives the data it collects along the full process of conditioning.  
 
THPLT167 SNS Laser Profile Monitor Progress laser, electron, feedback, optics 2852
 
  • W. Blokland, A.V. Aleksandrov, S. Assadi, C. Deibele, W. Grice, S. Henderson, T. Hunter, P. Ladd, G.R. Murdoch, J. Pogge, K. Potter, T.J. Shea, D. Stout
    ORNL/SNS, Oak Ridge, Tennessee
  • V. Alexandrov
    BINP SB RAS, Protvino, Moscow Region
  SNS will use a Nd:YAG laser to measure transverse profiles in the 186-1000 MeV super-conducting LINAC (SCL) and Ti:Sapphire modelock laser to measure longitudinal profiles in the 2.5 MeV Medium Energy Beam Transport (MEBT). The laser beam is scanned across the H- beam to photo-neutralize narrow slices. The liberated electrons are collected to provide a direct measurement of the transverse or longitudinal beam profile. We have successfully measured the transverse profile with a prototype system on the MEBT beam. The final SCL system uses an optical transport line that is installed alongside the 300 meter super-conducting LINAC to deliver laser light at 8 locations. Possible vibrations in the optical transport system can lead to inaccuracies in the profile measurement. We will use an active feedback system on a mirror to correct any vibration up to 2 KHz. In this paper we describe our vibration studies and vibration cancellation system as well as the progress in the design, installation and testing of various subsystems for both the transverse and the longitudinal profiles.  
 
THPLT183 Results from the Commissioning of the NSRL Beam Transfer Line at BNL octupole, target, beam-transport, optics 2879
 
  • N. Tsoupas, S. Bellavia, R. Bonati, K.A. Brown, I.-H. Chiang, C. Gardner, D. Gassner, S. Jao, I. Marneris, A. McNerney, D. Phillips, P. Pile, R. Prigl, A. Rusek, L. Snydstrup
    BNL, Upton, Long Island, New York
  The NASA SPACE RADIATION LABORATORY (NSRL) has started operations at the Brookhaven National Laboratory in 2003. The NSRL facility will be used by NASA to study radiation effects. The NSRL facility utilizes proton and heavy-ion beams of energies from 50 to 3000 MeV/n which are accelerated by the AGS_Booster synchrotron accelerator. The beams were extracted[1] ,and transported to a sample which is located 100 m downstream. To date, protons, 12C, 56Fe, 48Ti ion beams of various magnetic rigidities have been transported to the sample location. The NSRL beam transport line has been designed to employ octupole magnetic elements[2] which transform the normal (Gaussian) beam distribution on the sample into a beam with rectangular cross section, and uniformly distributed over the sample. No beam-collimation is applied along any point of the NSRL beam transport line and the beam focusing on the sample is purely magnetic. The experimental and theoretical horizontal and vertical beam envelopes of the first order optics will be presented. The theoretical beam profiles and uniformities at the location of the sample, when the magnetic octupoles are excited (third order optics), will be compared with the experimentally measured ones.  
 
FRYACH01 HICAT - The German Hospital-Based Light Ion Cancer Therapy Project synchrotron, extraction, injection, beam-transport 290
 
  • H. Eickhoff, T. Haberer, B. Schlitt, U. Weinrich
    GSI, Darmstadt
  At the University Clinics at Heidelberg /Germany the realization of a cancer Therapy facility using light and medium ions (from protons up to oxygen) has started. This facility will be capable to treat about 1000 patients per year by means of the 'intensity controlled rasterscan technique', that has been already successfully applied to about 200 patients since 1998 at the GSI therapy pilot project. The presentation will give an overview of the facility layout and especially the accelerator- and beam transport systems, capable to provide 3 treatment places with light ions between 50 and 430 MeV/u. Two treatment places are located after horizontal beam lines and one after an isocentric gantry. A further horizontal beam line for research and development activities is foreseen. Besides the technical description and the status and schedule for the project realization organizational aspects of this project will be discussed with the project leadership at the University Clinics, the strong technical assistance of GSI and the role of industrial partners.  
Video of talk
Transparencies
 
FRYBCH01 Clean Energy and the Fast Track to Fusion Power plasma, target, electron, neutral-beams 295
 
  • C. Llewellyn Smith
    UKAEA Culham, Culham, Abingdon, Oxon
  The theoretical attractions of fusion are clear: used as fuel in a fusion power plant, the lithium in one laptop battery together with 40 litres of water would produce 200,000 kW hours of electricity in an environmentally benign manner. The Joint European Torus (JET), which has produced 16MW, has shown that fusion can work in practice. ITER (the International Tokamak Experimental Reactor) is now essential to test integration of the components at the heart of a fusion reactor, and confirm that a burning plasma, in a fusion device scaled up in all dimensions by a factor of two from JET, to power plant size, has the expected behaviour. ITER should confirm that a fusion power plant can be built. The challenge will then be to build a power plant that would be sufficiently reliable and robust to be economically viable. This will require intensive research and development on the materials needed to construct the plasma vessel and surrounding blanket. These materials will have to be tested under reactor conditions at a dedicated facility called IFMIF (International Fusion Materials Facility). Construction of IFMIF in parallel with ITER would put fusion firmly on the 'fast track' (strongly advocated by the British Government) to the construction of a commercial fusion power plant, which could in principle be in operation within 30 years. I shall describe how a fusion power plant would work, the advantages and disadvantages of fusion, and the challenges that lie ahead.  
Video of talk
Transparencies