
ROTATING ELECROMAGNETIC FIELD TRAP FOR  
HIGH TEMPERATURE PLASMA AND CHARGE CONFINEMENT 

V. Danilov, ORNL, Oak Ridge  

Abstract 
This paper demonstrates that there exists a special 

combination of oscillating electromagnetic fields capable 
of trapping ultra high charge densities. Contrary to 
conventional electromagnetic traps, the motion in this 
dynamic trap is stable for arbitrarily high electromagnetic 
field amplitudes. This, in turn, leads to the possibility of 
using enormous electric and magnetic fields from RF or 
laser sources to confine dense ultrahigh temperature 
plasmas and particle beams.  

INTRODUCTION 
In this paper we consider primarily the linear stability 

of nonrelativistic particles. Consequently, we focus on 
electric fields having linear dependence on the 
coordinates (i.e., quadrupole fields) and on constant 
magnetic fields. There are combinations of electric 
quadrupole and constant magnetic fields for which 
trapped particle motion is stable � these correspond to the 
Penning trap fields (see, e.g., [1]).  The fields, which obey 
stationary Maxwell equations, are: 
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where Α>0  gives the electric field gradient and ∆ is the 
magnetic field. Now let e>0 be the modulus of the 
electron charge and Me its mass. For nonrelativistic 
electrons the oscillation frequency in the z direction 
is ee ΜΑ=Ζ /ω . The squares of the remaining two 
frequencies are: 
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 In order for these to be real and positive, the following 
inequality must hold: ee /22 ΑΜ>∆ . 

  Field combination (1) is not the only one that provides 
stable motion. If the magnetic field is at an angle with the 
z axis, stable motion is still obtained when the magnetic 
field along the z axis is sufficiently strong. For example, 
if 3/2 =ΑΜ∆ ee  the maximum acceptable angle of the 
magnetic field with z axis is 38.4°. 

The practical problem is that it is not possible to 
generate strong stationary electric fields. RF or laser 
electric fields are orders of magnitude larger than 
stationary fields. In the next section we will show how to 
combine oscillating electromagnetic fields, assuming zero 
stationary electric field, such that in some rotating frame 
the fields resemble the Penning fields of Eq. (1). The idea 
is motivated by electromagnetic traps based on alternating 
gradient focusing (e.g. Paul traps), but the principle of 

this trap is different in the sense that if the rotation 
frequency is much less than the particle oscillation 
frequencies, the Hamiltonian of the motion will be nearly 
time independent and the motion is stable in the limit of 
arbitrary large electromagnetic fields. This leads to the 
possibility to use compression of the electromagnetic field 
to achieve extraordinary plasma temperatures and 
densities (for alternating gradient traps particle 
frequencies of motion can not significantly exceed those 
of the oscillating fields � the corresponding Mathieu 
equation gives unstable solutions).  

IROTATING ELECTROMAGNETIC 
FIELDS WITH STABLE MOTION 

Our goal is to find a combination of oscillating fields 
(with zero static electric field) such that in some 
periodically rotating system the fields take the form of 
Eq. (1). We consider only leading terms in the Taylor 
expansion of the oscillating field near the centre of the 
trap and treat independently modes with uniform nonzero 
magnetic field (magnetic dipole modes) and linear electric 
field (electric quadrupole modes). If the rotation 
frequency is much smaller than the particle oscillation 
frequencies we will have fully stable motion (in a frame 
rotating with frequency ω, the centrifugal and the Coriolis 
force are of the order of re

2ωΜ . These should be much 
smaller than the field force, with corresponding 
oscillation frequencies ωi (i=1,2,3): 

rr iee
22 ωω Μ<<Μ or iωω << .). In the nonrotating 

(laboratory) system, the quadrupole electric field can be 
written as ,Χ⋅Μ=Ε

rr
 where },,{ ΖΥΧ=Χ

r
is the 

coordinate vector and M is a matrix with Tr M=0 (as a 
consequence of 0=Ε⋅∇

r
). Also, for electric quadrupole 

modes, the magnetic field at the origin is equal to zero, 
and the matrix M is symmetric. This follows from 
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. Let O3 be the time dependent 

matrix coupling the laboratory to the rotating coordinate 
system. The magnetic field vector NΒ

r
 in the rotating 

system is: ΒΟ=Β
rr

3N . The quadrupole electric field 
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in the rotating system is:  
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where },,{ ΝΝΝΝ ΖΥΧ=Χ
r

is the coordinate vector in 
the new rotated frame. In the rotating system the fields 
have to be of the (1) form:  
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where M1 is the quadrupole field matrix in the rotated 
frame. 

Now let us find a matrix O3 such that the quadrupole 
field matrix M contains only elements that are periodic 
harmonic functions without constant terms: 
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where l is a finite integer, 0 and ,
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There are infinitely many solutions for the matrix O3 
that satisfy relations (3). Before explaining the general 
approach, we give one example: 
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From (2) and (3) one can calculate the matrix M of the 
electric quadrupole field in the laboratory frame: 
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This means that in the lab frame the electric field is a 
combination of 4 quadrupole fields: 
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The magnetic field is:  
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Therefore, the combination (7-8) leads to a rotating 
coordinate system in which the field orientation is of the 
type (1). The general relation between the matrices O3 and 
M is:  
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One can see that in order to have zero static electric 
field, the products of the first row of O3  matrix elements 
should have time averages equal to 1/3 for the squared 
elements and zero for the cross terms. Additionally, the 
sum of these three matrix elements squared should be 
equal to 1 to satisfy the orthogonality of the matrix. Of 
course, there are an infinite number of periodic solutions 
for elements of O3, since we have infinite number of 
harmonics and only few relations to satisfy. We limit 
ourselves with the example (5) as a proof of the existence 
of such dynamic systems and consider in the next section 
achievable electron densities. 

ACHIEVABLE CHARGE DENSITIES 
There are various ways to obtain fields (7-8). One 

possibility is to use open systems. This is applicable to RF 
and to laser fields as well. One needs to form a Hermite-
Gaussian beam in an open resonator. Another option is to 
build a cavity with fields (7-8).  Because the fields obey 
Maxwell equations, the creation of the fields is a matter of 
design and we concentrate on physically achievable 
densities with RF and with laser fields. First, we consider 
the well developed region of RF frequencies around 10 
GHZ. We assume all 3 frequencies of the system (1) are 
of the order of the magnetic field rotation frequency. For 
the nonrelativistic electron the rotation frequency is: 

)(1086.22/ 10 ΤΒ⋅≈ΜΒ= ee e πν .          (10) 
For a field of 1 Tesla, the oscillation frequency is about 

3 times larger than 10 GHz. Magnetic field amplitude of 1 
Tesla corresponds to an electric field of 300 MV/meter, 
which is about that achieved at a copper surface at this 
frequency. But here we must mention one of the most 
pronounced advantages of radiation fields: contrary to a 
stationary magnetic field, the electromagnetic field 
density can be increased orders of magnitude in free 
space as compared to the density at the reflective 
surfaces if it is formed by choosing a special design for 
the optical system.  Figure 1 shows the trajectory of a 
particle in 10GHz fields with B=1T, electric field gradient 

mV /1025.2 10⋅=Α  and initial conditions x0 = y0 
= 1mm, and the remaining coordinates equal to zero).  
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Figure 1 Sample trajectory for the rotating field trap 

The plot shows the trajectory after 10 (left) and 100 
(right) field oscillation periods. For this particular case the 
motion becomes unstable when the frequency of the 
magnetic field exceeds approximately 12.6 GHz. 
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Consider a sphere of electrons trapped in these fields. A 
conventional �accelerator� criterion of its stability is that 
the space charge tuneshift due to self fields should not 
exceed about 10% of the unperturbed single-particle 
frequency: 

22 /)2(2.0 crn eee πν≈ ,                     (11) 
where re is the classical electron radius. Equation (11) 

gives ne≈2.56⋅1011cm-3 for a moderate 1 Tesla dipole 
magnetic field of the form given in Eq. (8). This field has 
one static and two oscillating components. For this type 
of trap electromagnetic fields can be squeezed to obtain 
very large gradients �the system size, though, would be 
extremely large. However, the static magnetic component 
provides a limitation � its maximum achievable value is 
about 20 T (achieved for superconducting magnets). For 
this limiting value, Eq. (11) gives ne≈1014cm-3. In fact, the 
static magnetic field is not necessary - it only enhances 
the region of stability in the parameter space (see 
explanations after (1)). If we take the radius of the 
electron sphere to be 6 cm, an electron cloud of density 
ne≈1014cm-3 would have an overall charge of about 1 
coulomb. However, the size of the system would be of the 
order of 30 m in radius)! To estimate the size of the trap 
with some given gradient a we take Eqs (10-11). Having 
in mind that z0 >>λ we take  z0 ≈ 3λ.  The full size 
squared (equal to twice the rms size) of the radiation spot 
near the trap centre is W0

2=(λz0/π). The maximum field at 
the rms size is W0A/2. The distance z of the mirror from 
the trap center is determined by the maximum achievable 
field Emax: z=z0W0A/2Emax. For example, one may 
assume that the achievable field for superconducting 
mirror is about 100 MV/m for 10 GHz. This gives z=16.9 
m for the full size of the radiation spot at the mirror,5.5 
meters. The mirror radius should be at least 3 times larger 
(i.e. 16.5 meters) to reduce field radiation from the 
system. In total we need 6 pairs of mirrors to generate the 
fields (7-8). This shows that the open system may be not 
an optimal choice for such a trap, but it also shows that 
there is, in principle, no physical obstacle to its 
construction. 

 Of course, for such sizes and intensities electrons 
become moderately relativistic, but we anticipate that the 
motion will be stable in this case also. Since the trap size 
should be less than the wavelength, one can estimate the 
maximum electron energy in such a trap by equating the 
rotation radius to approximately 10% of the wavelength. 
For moderate 1 Tesla 10 GHz magnetic field this yields: 

MeVeVceV 1101.0)( 6 =≈Β=Ε λ .    (12) 
This corresponds to an electron temperature of about 10 

billion K. For an ultimate field of the order of 20 T, the 
electrons with density ne≈1014cm-3 have ultra long 
confinement times, comparable to accelerator lifetimes of 
particles (minutes or hours).   

When the oscillating frequency of the field is much 
smaller than the particle oscillation frequency, the motion 
is approximately that of a time independent Hamiltonian. 
For this case there exist self consistent equilibrium 

distributions for fully or partially nonneutral plasmas for 
specific values of total charge, total angular momentum 
and total energy (see, e.g., [2-3]). This, in turn, suggests 
enhanced stability and long confinement for fusion 
purposes. If we get long living electron cloud with big 
density, it will trap positive ions in its potential with 
ultrahigh temperature and densities, comparable to the 
electron ones. This is a topic for a separate treatment and 
is beyond subject of this paper. 

Now we present a quick estimate for the laser trap. 
The fields in Eqs. (7-8), except for the static magnetic 
component, can be again generated in open systems. 
Without a static magnetic field the motion can still be 
stable, but the region of stability in parameter space is 
smaller (see next paragraph after (1)). In laser fields the 
laser beam should be squeezed to obtain an electron 
rotation frequency, νe larger than the laser frequency,νl: 

lee e νπν ≥ΤΒ⋅≈ΜΒ= )(1086.22/ 10 . As an 

example, for an NdYAG laser, we have 114310 −≈ clν , 

and this gives T410≥Β . Assuming the laser beam spot 
size near the trap center is about the size of the laser 
wavelength, we get a laser instant power 
of GW23≥Ρ . Then Eq. (11) gives n ≈ 22104.1 ⋅ cm-3 
in this micro spheroid. 

CONCLUSION 
This paper presents a new concept of traps for high 
temperature, high intensity plasma and charge 
confinement. It is shown that with achievable RF fields it 
is possible to practically confine electron plasma with 
temperature 10 Billion K and density n≈1014cm-3 with 
ultra long particles lifetimes.  
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