The Measurements of the Longitudinal Beam Profile on the Preinjector VEPP-5.

Sergei Gurov

EPAC'04, 4-9 July, Lucerne.

The Budker Institute of Nuclear Physics

Guideline.

1. VEPP-5 forinjector and tasks

2. Electron beam probe: - idea - device

- measurements

3. Streak camera: - limitations

- RF cavity promise advantages
- device and measurement
- idea of spiral sweep

VEPP-5 COMPLEX (project)

Positron conversion efficiency. Project is 2-3 %.

First result (May 2004) is 1^{6} or 3×10^{8} per pulse or $1,5 \times 10^{10}$ per second.

The main part of work is for positrons production.

Layout of VEPP-5 forinjector.

Compression system.

The compression system: two cavities that operate at the 16th RF Subharmonic (178.5 MHz) and RF buncher that operates at the main accelerator frequency (2856 MHz).

The scheme of electron beam probe

Single bunch regime

 $A \propto \frac{\rho \cdot I}{pc \cdot V}$

 $B \propto \frac{\rho}{pc \cdot V} \cdot \frac{dI}{dt}$

Multi bunch regime.

Pre-buncher system switch off.

The main factors limited of time resolution is:

• velocity spread photoelectrons: (signal lengthening at photocathode)

• space-charge effect: (signal lengthening from photocathode to sweeping system)

• statistical noise:

K.Scheidt, «Review of streak cameras for accelerators: features, applications and results», EPAC-2000.

 $\Delta t \propto \frac{N}{V^3}$

The advantages of RF cavity using:

First mention about using streak camera on colliders:

Journal «Atomic energy», 1965

E.I.Zinin, L.S.Korobeynikov, G.N.Kulipanov, B.L.Lazarenko, Yu.G.Matveev, S.G.Popov, A.N.Skrynsky, T.P.Starodubtseva, G.M.Tumaykin

«Control System of Electron Beam Parameters in Electron-Electron Storage Ring VEP-1 »

On the photo from left to right: G.N.Kulipanov, S.G.Popov, A.N.Skrynsky, G.M.Tumaykin

The valuation of photons number in visible range from beam with charge of $Ne = 10^{10}$ electrons and energy $E = 260M_{2}B$

Cherenkov radiation:Nch := Ne
$$\cdot \alpha \cdot \frac{Lch}{c} \cdot \left(1 - \frac{1}{\varepsilon}\right) \cdot \Delta \omega$$
Nch = 1.6×10^{12} Transition radiition:Ntr := Ne $\cdot \frac{2 \cdot \alpha}{\pi} \cdot \ln(\gamma) \cdot \ln\left(\frac{\omega 1}{\omega 2}\right)$ Ntr = 2×10^8 Synchrotron radiation:Nsr := Ne $\cdot \frac{4}{9} \cdot \alpha \cdot \gamma \cdot d\psi \cdot S\omega \cdot \frac{\Delta \omega}{\omega av}$ Nsr = 9.2×10^7

The experiment in search of the available glass.

The cone must be created from material remained transparency under beam influence.	Institute of Chemical Kinetics and Combustion		
	Energy	3 MeV	
	Pulse duration	3 µs	
	Current	50 µA	
	Charge per pulse	1.6*10 ¹²	

Samples of glass	Treatment time, minutes	f (Hz)	Total charge	Result
N 1	20	1.6	3*10 ¹⁵	become black.
N 2	20	12.5	$2.4*10^{16}$	Lose transparency, split
	22	1.6	$3.4*10^{15}$	Without change
N 3	+19	+25	$+4.6*10^{16}$	transparent, split, hot ~ 80 C ^o

On the preinjector VEPP-5.

	/export/linac/oduser/ccd/ccd 192.168.6.11	1200
File Options	5	Help
	CCD Camera Control System	
Start		
 external program 		
Cycle		
□ process		
☐ inverted □ color		
brightness		
<u>x</u> 255		
exposition		
<u>1</u> 244		
312 : 251		
1021 : 69		
Exit		
		自己是
	4	42
		4

г ⊴⊵

Spiral scanning.

One single light signal of several ten duration with picoseconds resolution on all duration

High quality RF cavity

It is not possible fast withdrawal of RF power

<u>Decision:</u> 1) Two cavities with closely frequency

2) Fast withdrawal in other RF cavity with the same frequency

Two cavity with different frequency.

Status of streak camera with spiral scanning

The assembling of 4 cavities has been produced.

 $F1 = F3 = 2856\pm 2$ МГц $F2 = F4 = 2786\pm 2$ МГц $\Delta F = 70$ МГц

It is possible see one single light signal of 3 ns duration with time resolution better then 2 ps.

In this moment the production of RF amplifier on these frequencies is go on.

Thank you for attention. Your questions, please.