Paper | Title | Other Keywords | Page | ||||||
---|---|---|---|---|---|---|---|---|---|
MOOCH02 | First Full Beam Loading Operation with the CTF3 Linac | linac, beam-loading, gun, acceleration | 39 | ||||||
|
The aim of the CLIC Study is to investigate the feasibility of a high luminosity, multi-TeV linear e+e- collider. CLIC is based on a two-beam method, in which a high current drive beam is decelerated to produce 30 GHz RF power needed for high-gradient acceleration of the main beam running parallel to it. To demonstrate the outstanding feasibility issues of the scheme a new CLIC Test Facility, CTF3, is being constructed at CERN by an international collaboration. In its final configuration CTF3 will consist of a 150 MeV drive beam linac followed by a 42 m long delay loop and an 84 m combiner ring. The installation will include a 30 GHz high power test stand, a representative CLIC module and a test decelerator. The first part of the linac was installed and commissioned with beam in 2003. The first issue addressed was the generation and acceleration of a high-current drive beam in the "full beam loading" condition where RF power is converted into beam power with an efficiency of more than 90%. The full beam loading operation was successfully demonstrated with the nominal beam current of 3.5 A. A variety of beam measurements have been performed, showing good agreement with expectations.
|
|
|
Video of talk
|
|
Transparencies
|
|
||
MOPLT014 | Testing of the LHC Magnets in Cryogenic Conditions: Current Experience and Near Future Outlook | dipole, multipole, injection, sextupole | 560 | ||||||
|
For the Large Hadron Collider under construction at CERN, a necessary and primordial condition prior to its installation is that all the main twin-aperture Dipole and Quadrupole magnets are tested in the 1.9K cryogenic conditions. These tests are not feasible at the manufacturers and hence, are carried out at CERN at a purpose built facility on the site. This presentation will give an overall view of the issues related to the operation of the tests facility. In particular, it will give the goals that need to be met to ensure the magnet integrity and performance and the context & constraints on the test programme. Results accumulated from the tested magnets and the ensuing tests stream-lining will be presented, together with some of the explanations and hard limits. Finally, some improvements planned for efficient operation will be given within the confines of the testing programme as was foreseen and the project goals and deadlines.
|
|
|
||||||
MOPLT017 | Beam Commissioning of the SPS LSS4 Extraction and the TT40 Transfer Line | extraction, kicker, septum, controls | 569 | ||||||
|
The new fast extraction system in LSS4 of the SPS and the transfer line TT40 were installed between 2000 and 2003, and commissioned with beam in late 2003. The extraction system and transfer line will serve both the anti-clockwise ring of the Large Hadron Collider (LHC), and the long baseline neutrino (CNGS) facility. The layout and functionality of the main elements are briefly explained, including the various hardware subsystems and the controls system. The safety procedures, test objectives and results of the system commissioning with beam are described, together with the test methodology. Conclusions are drawn concerning the performance of the system elements, agreement between predicted and expected activation levels and test efficiency and procedures. The test results are also briefly discussed in the context of future LHC beam commissioning activities.
|
|
|
||||||
MOPLT032 | Breakdown Resistance of Refractory Metals Compared to Copper | site, vacuum, cathode, collider | 614 | ||||||
|
The behaviour of Mo, W and Cu with respect to electrical breakdown in ultra high vacuum has been investigated by means of a capacitor discharge method. The maximum stable electric field and the field enhancement factor, beta, have been measured between electrodes of the same material in a sphere/plane geometry for anode and cathode, respectively. The maximum stable field increases as a function of the number of breakdown events for W and Mo. In contrast, no systematic increase is observed for Cu. The highest values obtained are typically 500 MV/m for W, 350 MV/m for Mo and only 180 MV/m for Cu. This conditioning, found for the refractory metals, corresponds to a simultaneous decrease of beta and is therefore related to the field emission properties of the surface and their modification upon sparking. Accordingly, high beta values and no applicable field increase occur for Cu even after repeated breakdown. The results are in agreement with rf breakdown experiments [*] performed on prototype 30 GHz accelerating structures for the CLIC accelerator.
|
* W. Wuensch, C. Achard, S. Döbert, H. H. Braun, I. Syratchev, M. Taborelli, I. Wilson, "A Demonstration of High Gradient Acceleration", CERN-AB-2003-048-RF; CLIC-Note-569, Proc. PAC2003. |
|
||||||
MOPLT038 | Conceptual Design of the LHC Beam Dumping Protection Elements TCDS and TCDQ | proton, extraction, dumping, vacuum | 629 | ||||||
|
The Beam Dumping System for the Large Hadron Collider, presently under construction at CERN, consists, per ring, of a set of horizontally deflecting extraction kicker magnets, vertically deflecting steel septa, dilution kickers and finally, a couple of hundred metres further downstream, an absorber block. A fixed diluter (TCDS) will protect the septa in the event of a beam dump that is not synchronised with the particle free gap or a spontaneous firing of the extraction kickers which will cause the beam to sweep over the septum. A mobile diluter block (TCDQ) will protect the superconducting quadrupole immediate downstream of the extraction as well as the arc at injection energy and the triplet aperture at top energy from bunches with small impact parameters. The conceptual design of the protection elements will be described, together with the status of the mechanical engineering.
|
|
|
||||||
MOPLT041 | Production of Superconducting Accelerator Modules for High Current Electron Storage Rings | storage-ring, vacuum, electron, damping | 638 | ||||||
|
For Diamond Light Source, ACCEL was awarded to produce three more superconducting 500 MHz accelerator modules of the Cornell CESR design. With the already 6 modules produced for Cornell, NSRRC and CLS, this module can now be considered as a kind of standard product. In this paper we describe the basic parameters and guaranteed values of this module and will also report on the performance of delivered modules.
|
|
|
||||||
MOPLT106 | MICE: the Muon Ionisation Cooling Experiment | emittance, factory, background, scattering | 782 | ||||||
|
The provision of intense stored muon beams would allow the properties of neutrinos to be measured precisely and provide a route to multi-TeV lepton-anti-lepton collisions. The short muon-lifetime makes it impossible to employ traditional cooling techniques while maintaining the muon-beam intensity. Ionisation cooling, a process in which the muon beam is passed through a series of liquid hydrogen absorbers followed by accelerating RF-cavities, is the proposed cooling technique. The international Muon Ionisation Cooling Experiment (MICE) collaboration proposes to perform an engineering demonstration of ionisation cooling. The MICE cooling channel, the instrumentation and the implementation at the Rutherford Appleton Laboratory is described together with the predicted performance of the channel and the measurements that will be made.
|
|
|
||||||
MOPLT118 | Muon Test Area at Fermilab | linac, beam-cooling, booster, factory | 812 | ||||||
|
A construction of a new experimental area designed to develop, test and verify muon ionization cooling using the 400- MeV Fermilab Linac proton beam was finished in fall of 2003. This area will be used initially for cryogenic tests of liquid-hydrogen absorbers for the MUCOOL R&D program and, later, for high-power beam tests of these absorbers and other prototype muon-cooling apparatus. The experimental scenarios being developed for muon facilities involve collection, capture, and cooling of large-emittance, high-intensity muon beams~1013 muons at a repetition rate of 15Hz, so that conclusive tests of the apparatus require full Linac beam, or 1.6 x 1013 p at 15 Hz. The area has 12MW 805MHz, 5MW 201MHz RF, 4K Helium, 500W refrigeration and 400MeV H-/proton beam.
|
|
|
||||||
TUPKF079 | A Low Noise RF Source for RHIC | beam-losses, acceleration, controls, luminosity | 1123 | ||||||
|
The Relativistic Heavy Ion Collider requires a low noise rf source to ensure that beam lifetime during a store is not limited by the rf system. The beam is particularly sensitive to noise from power line harmonics. Additionally, the rf source must be flexible enough to handle the frequency jump required for rebucketing (transferring bunches from the acceleration to the storage rf systems). This paper will describe the design of a Direct Digital Synthesizer (DDS) based system that provides both the noise performance and the flexibility required.
|
Work performed under the auspices of the US Department of Energy |
|
||||||
WEILH01 | Methods for Successful Technology Transfer in Physics | radiation, electron, collider, plasma | 198 | ||||||
|
The development of accelerators for scientific research generates significant technologies of interest to industry. As physicists and technologists we also require strong partnerships with industry in order that it may supply us with the instrumentation and systems we require for new apparatus. We will discuss the methods developed for the UK Particle Physics and Astronomy Research Council (PPARC) and applied on behalf of CERN to encourage successful knowledge transfer into industry. Case studies will illustrate the hurdles that must be surmounted and effective methods to build successful partnerships, licensing opportunities and spinout companies. Factors considered will include assessment of the commercial potential of technologies, personal motivations for academic/industrial collaboration, sources of funding, and effects on the academic groups involved in knowledge transfer activity.
|
|
|
Video of talk
|
|
Transparencies
|
|
||
WEPKF010 | Design of an Automatic System for the Electrical Quality Assurance during the Assembly of the Electrical Circuits of the LHC | dipole, sextupole, quadrupole, superconducting-magnet | 1612 | ||||||
|
During the assembly of the LHC one of the challenges will be the correct wiring of the 1712 circuits powering the 10094 magnet units, for which all-together 70000 splices have to be done. Considering the complexity of the electrical scheme the risk of wrong wiring is high. Errors, if not detected during the assembly phase, will perturb the LHC operation. A method has been developed to verify automatically the cabling scheme. It first detects the continuity of a portion of circuit and then verifies the correct polarity and type of the magnets in the circuit. A 108-meter LHC cell is the shortest length that can be tested. The system is composed of a unit to be placed at the center of the cell and two de-multiplexers positioned at the extremities of the cell. The central unit contains a data acquisition system where in total 217 signals can be acquired and more than 3000 voltage combinations are possible. Pointing to different databases, a LabVIEW program automatically executes the test procedure, generates, and stores the reports. The hardware and software design, the data flow between databases, and the testing methodology applied to the different circuit types are described.
|
|
|
||||||
WEPKF056 | Reducing Output Current Ripple of Power Supply with Component Replacement | power-supply, feedback, background, synchrotron | 1732 | ||||||
|
Correction magnets of synchrotron storage ring are served with linear power supplies (correction power supply) with 100 ppm output current ripple in National Synchrotron Radiation Research Center. Reducing output current ripple of correction power supply might reduce perturbation of beam position of storage ring. Replace correction power supplies with lower output current ripple ones is straightforward but costs lots of money. Without adding any other circuit and electronic component, some components of correction power supply are replaced by ones with more precious and lower output fluctuation; so that the same circuitry structure of correction power supply is kept without increasing its complexity and could reach 25 ppm output current ripple.
|
|
|
||||||
WEPLT025 | LHC Reference Database : Towards a Mechanical, Optical and Electrical Layout Database | vacuum, collider, radio-frequency, injection | 1882 | ||||||
|
The LHC project has entered a phase of integration and installation of thousands of diverse components. The Hardware Commissioning work has also started. Collecting and distributing reliable and coherent information on the equipments and their layout becomes a crucial requirement in the lifecycle of the project. Existing database tools had to evolve to a more generic model to cover not only optical layout, but also the mechanical and the electrical aspects. This paper explains the requirements, the implementation and the benefits of this new database model.
|
|
|
||||||
WEPLT033 | The LHC Radiation Monitoring System for the Environment and Safety | radiation, monitoring, radioactivity, photon | 1903 | ||||||
|
A state of the art radiation monitoring and alarm system is being implemented at CERN for the LHC. The RAdiation Monitoring System for the Environment and Safety (RAMSES) comprises about 350 monitors and provides ambient dose equivalent rates measured in the LHC underground areas as well as on the surface inside and outside the CERN perimeter. In addition, it monitors air and water released from the LHC installations. Although originally conceived for radiation protection only, RAMSES also integrates some conventional environmental measurements such as physical and chemical parameters of released water and levels of non-ionizing radiation in the environment. RAMSES generates local radiation warnings, local alarms as well as remote alarms on other monitored variables, which are transmitted to control rooms. It generates operational interlocks, allows remote supervision of all measured variables as well as data logging and safe, long-term archiving for off-line data analysis and reporting. Requirements of recent national and international regulations in combination with CERN's specific technical needs were translated into the RAMSES specifications. This paper outlines the scope, the organization, the main system performance and the system design.
|
|
|
||||||
THPLT022 | The Generic VME PMC Carrier Board: A Common Digital Hardware Platform for Beam Diagnostics and Feedbacks at PSI | diagnostics, feedback, proton, fibre-optics | 2517 | ||||||
|
Rapid progress in digital electronics allows digitization of monitor signals at a very early stage of the signal processing chain, providing optimum performance and maximum flexibility for today's accelerator instrumentation. While the analog front-ends of such systems are usually specific for each monitor type, the subsequent digital part of the processing chain can be unified for many different measurement tasks. The "VME generic PMC Carrier board" (VPC) was developed to achieve this unification at the PSI electron and proton accelerator diagnostics and fast data acquisition and feedback systems. The core of the VME64x board consists of two Virtex2Pro FPGAs with two PowerPCs each, a floating point DSP and RAM. The FPGAs can acquire and process measurement data from the VMEbus P0/P2 connectors or from two application-dependent PMC mezzanine modules. Two 2 GBaud fibre optics transceivers may also be used to aquire or distribute measurement data. Envisaged applications include digital beam position (DBPM) and current monitors for proton beams, data processing for a muon decay experiment, and general beam diagnostics as well as global feedbacks at SLS accelerators and beamlines.
|
|
|
||||||
THPLT129 | Ion Chambers for Monitoring the NuMI Beam at FNAL | target, hadron, ion, proton | 2768 | ||||||
|
We summarize selected instrumentation under construction for the NuMI neutrino beam facility at Fermilab. An array of foil secondary emission monitors (SEM's) will measure the 120GeV proton beam position, profile and halo at 10 stations along the transport to the NuMI target. The final two foil SEM's align the proton beam to within 50 microns on target. These are capable of withstanding the 400kW proton beam and causing <5·10-6 beam loss. Further instrumentation includes four stations of ionization chambers located downstream of the decay volume, one upstream and three downstream of the beam dump. The latter three monitor the tertiary muon beam, the first monitors the remnant hadron beam. The ion chamber arrays align the proton beam to 14microRadian and the neutrino beam to within 50 microRadian, as well as monitoring flux to better than 1%. The ion chambers are designed to withstand the ~1GRad doses and 109 particle/cm2/spill fluxes anticipated during NuMI beam operations. Beam tests and R&D efforts are discussed.
|
|
|
||||||
THPLT152 | Operation of the Position Measurements for the Isotope Production Facility | isotope-production | 2813 | ||||||
|
The Isotope Production Facility (IPF) will provide isotopes for medical purposes by using a 100-MeV H+-beam spur beam line from the Los Alamos Neutron Science Center (LANSCE) facility. Beam position measurements for IPF use a standard micro-stripline beam position monitor (BPM) with both an approximate 50-mm and 75-mm radius. The associated cable plant is unique in that it unambiguously provides a method of verifying the operation of the complete position measurement. The processing electronics module uses a log ratio technique with an error correcting software algorithm so that each the overall position measurement is periodically calibrated over a dynamic range of > 86 dB with errors less than 0.1 dB within this range. A National Instruments LabVIEW virtual instrument performs automatic periodic calibration and verification, and serves the data via the Experimental Physics and Industrial Control System (EPICS) channel access protocol. In order to report the data to the LANSCE facility operators and accelerator physicists, the served data are displayed and archived. This paper will describe the measurement system, commissioning and initial operating experiences.
|
|
|
||||||
THPLT165 | Synchrotron Light Interferometry at JEFFERSON Lab | synchrotron, betatron, monitoring, alignment | 2846 | ||||||
|
The hyper-nuclear physics program at JLAB requires an upper limit on the RMS momentum spread of dp/p<3e-5. The momentum spread is determined by measuring the beam width at a dispersive location (D~4m) in the transport line to the experimental halls. Ignoring the epsilon-beta contribution to the intrinsic beam size, this momentum spread corresponds to an upper bound on the beam width of σ_beam<120um. Typical techniques to measure and monitor the beam size are either invasive or do not have the resolution to measure such small beam sizes. Using interferometry of the synchrotron light produced in the dispersive bend, the resolution of the optical system can be made very small. The non-invasive nature of this measurement allows continuous monitoring of the momentum spread. Two synchrotron light interferometers have been built and installed at JLAB, one each in the Hall-A and Hall-C transport lines. The devices operate over a beam current range from 1uA to 100uA and have a spatial resolution of 10um. The structure of the interferometers, the experience gained during its installation, beam measurements and momentum spread stability are presented. The dependence of the measured momentum spread on beam current will be presented.
|
|
|
||||||
THPLT173 | RHIC BPM Performance: Comparison of Run 2003 and 2004 | background, proton, pick-up, quadrupole | 2867 | ||||||
|
Identification of malfunctioning BPMs plays an important role in any orbit or turn-by-turn analysis. Singular value decomposition (SVD)and Fourier transform methods were recently employed to identify malfunctioning BPMs at RHIC. A detailed statistical comparison between the two methods for Run 2003 was in good agreement and proved to be a robust method to identify faulty BPMs. We evaluate detailed BPM performance for different versions of BPM low-level software in 2003 and 2004.
|
|
|