Paper | Title | Other Keywords | Page | ||||||
---|---|---|---|---|---|---|---|---|---|
MOPKF082 | A Multi-bunch, Three-dimensional, Strong-strong Beam-beam Simulation Code for Parallel Computers | luminosity, simulation, single-bunch, beam-beam-effects | 509 | ||||||
|
We have developed a parallel simulation code allowing the self-consistent, three-dimensional simulation of the strong-strong beam-beam effect, using a particle-on-mesh technique and fast elliptic solvers. It is able to operate with sufficiently high logitudinal resolution to treat phase-averaging and hourglass effects in the interaction point (IP) correctly. This code has been generalized to handle the collisions of an arbitrary set of bunches at arbitrary positions in the ring (parasitic crossings), using appropriately reduced longitudinal resolution of collisions not in the design IP. We provide benchmarking results and parameter studies based on PEP-II.
|
|
|
||||||
MOPLT003 | Upgrading the LNLS Control System from a Proprietary to a Commercial Communications Environment | power-supply, monitoring, feedback, linac | 530 | ||||||
|
The LNLS Control System was built over a proprietary technology, due to governmental policy of information technology in the mid 80's. This made interfacing to commercial systems difficult, limited the technology transfer to the private sector, required a staff with specific knowledge and reduced the possibility of new implementations on the system. Nowadays, the cost to move all of our hardware to a commercial one is out of our budget. This paper describes a proposal, the viability study and first results to move only the communication interfaces to a commercial environment, keeping most of our hardware unchanged and opening the way to gradually move the system to widely accepted standards, when and if necessary. This solution allows a smooth implementation without long periods of machine shutdown and keeps the possibility to operate the machine concurrently between old and new communication interfaces.
|
|
|
||||||
MOPLT007 | Base Line Design for a Beta-beam Neutrino Facility | ion, acceleration, linac, injection | 542 | ||||||
|
The term beta-beam has been coined for the production of pure beams of electron neutrinos or their antiparticles through the decay of radioactive ions circulating in a storage ring. The neutrino source itself consists of a high energy storage ring (gamma ~150), with long straight sections in line with the experiment(s). The radioactive ions (6He and 18Ne) will be produced in an ISOL type target system. Due to the short life times of around 1s at rest, the beam needs to be accelerated as quickly as possible. For this a staged system of accelerators is proposed. The chain starts with a linac followed by a rapid cycling synchrotron for acceleration up to ~300 MeV/u. For further acceleration the existing PS and SPS machines are used. Finally, after acceleration to SPS top energy, the ions are transferred to the decay ring where they are merged with the already circulating bunch through a longitudinal stacking procedure. The base line design of the beta beam facility will be presented and the major design problems encountered as well possible solutions will be discussed.
|
|
|
||||||
MOPLT042 | Interaction of the CERN Large Hadron Collider (LHC) Beam with Solid Metallic Targets | proton, simulation, collider, heavy-ion | 641 | ||||||
|
The LHC will operate at 7 TeV with a luminosity of 1034 cm-2s-1. This requires two beams, each with 2808 bunches. The nominal intensity per bunch is 1.1 1011 protons. The energy stored in each beam of 350 MJ could heat and melt 500 kg of copper. Protection of machine equipment in the presence of such powerful beams is essential. In this paper the mechanisms causing equipment damage in case of a failure of the machine protection system are discussed. An energetic heavy ion beam induces strong radial hydrodynamic motion in the target that drastically reduces the density in the beam heated region [*], leading to a much longer range for particles in the material. For the interaction of the LHC proton beams with a target a similar effect is expected. We carried out two-dimensional hydrodynamic simulations of the heating of a solid copper block with a face area of 2cm x 2cm irradiated by the LHC beam with nominal parameters. We estimate that after an impact of about 100 bunches the beam heated region has expanded drastically. The density in the inner 0.5 mm decreases by about a factor of 10. The temperature in this region is about 10 eV and the pressure about 15 GPa. The material in the heated region is in plasma state while the rest of the target is in a liquid state. The bulk of the following beam will not be absorbed and continue to tunnel further and further into the target. The results allow estimating the length of a sacrificial absorber, if such device should be installed for an LHC upgrade. A very interesting "spinoff" from this work would be the study of high-energy-density states of matter induced by the LHC beam, because a specific energy deposition of 200 kJ/g is achieved after 2.5 micros.
|
* N.Tahir et al., Phys. Rev. E, 63, 2001 |
|
||||||
MOPLT047 | Lattice Design Study for HESR | quadrupole, lattice, sextupole, focusing | 653 | ||||||
|
The important feature of High Energy Storage Ring is the combination of phase space cooled beams with internal targets, which allows to reach high luminosities up to 2*1032cm-2s-1. However, the requirement to have the strongly focused beam on the target causes the high chromaticity value on the target straight section and as in result to the squeezing of dynamic aperture after sextupole correction of the chromaticity. Simultaneously, the momentum-compaction factor is one of the most important characteristics of an accelerator, which defines the collective instability threshold. Therefore, the HESR lattice has to have the following features: low or negative momentum compaction factor, dispersion free straight sections, convenient method to correct the chromaticity by the sextupoles, sufficiently large dynamic aperture. In this work we develop lattice, which meets all these requirements for HESR.
|
|
|
||||||
MOPLT099 | NSC KIPT Accelerator on Nuclear and high Energy Physics | quadrupole, dipole, electron, injection | 761 | ||||||
|
One of the main reasons for the outflow of experts in nuclear physics and adjacent areas of science from Ukraine is the absence of modern accelerating facilities, for conducting research in the present fields of interest worldwide in this area of knowledge. A qualitatively new level of research can be achieved by the construction of a new generation accelerator applying the latest developments in the field of electron beam acceleration, in particular on the basis of superconducting accelerating structures of the TESLA type. Such structures may be used for continuous, polarized electron beams, which is crucial e.g. for thin(?) experiments checking modern theoretical models of interactions of nuclear substance, and for beams with high current and extremely short pulses for research in free electron laser and neutron physics. Such a facility will create an opportunity for carrying out research representing the interest of scientists from other countries, which will promote the integration of Ukrainian science into European and worldwide research.
|
|
|
||||||
MOPLT104 | Quantitative Optimisation Studies of the Muon Front-End for a Neutrino Factory | lattice, linac, emittance, proton | 776 | ||||||
|
In a Neutrino Factory, short proton pulses hit a target, producing pions at widely varying angles and energies. Efficient pion capture is required to maximise the yield of decayed muons, which proceed via acceleration stages into a muon storage ring to produce neutrinos. This paper presents optimisation of a solenoidal decay channel designed for high-emittance pions, based on schemes from CERN and RAL. A non-linear tracking code has been written to run under an optimisation algorithm where every beamline element can be varied, which is then deployed as a distributed computing project. Some subsequent stages of muon beamline are also simulated, including RF and non-RF phase-rotation techniques and in one option, initial muon acceleration to 400MeV. The objective is to find optimal transmissions for each front-end concept.
|
|
|
||||||
MOPLT105 | Implementation of MICE at RAL | vacuum, emittance, synchrotron, shielding | 779 | ||||||
|
The Muon Ionisation Cooling Experiment (MICE) is motivated by the vision of the neutrino factory (NF). The cost and practicality of the NF depends on an early control of the emittance of the muon beam that will be accelerated and stored to produce the neutrino beams. A number of possibilities for transverse cooling of the emittance have been proposed including ionisation cooling. In such a concept, the muon beam is alternatively slowed down in cryogenic absorbers (energy loss by ionisation) and then re-accelerated in RF cavities to replace the lost energy. This process reduces the transverse momentum of the beam while maintaining the average momentum in the z-direction. The energy absorbing material should be characterised by a high stopping power and low multiple scattering: The material of choice is liquid hydrogen. MICE will replicate a piece of the NF cooling channel. The engineering of a safe system with thin windows for the containment of the liquid hydrogen and other features needed to safely operate will test the practical application of the cooling scheme and its performance. MICE is proof of principle for this untried technology. The paper reviews progress in MICE and the plans for its implementation at RAL.
|
The MICE Collaboration |
|
||||||
TUXCH01 | Review of ISOL-type Radioactive Beam Facilities | ion, linac, heavy-ion, ion-source | 45 | ||||||
|
The ISOL technique was invented in Copenhagen over 50 years ago and eventually migrated to CERN where a suitable proton drive beam was available at the Syncho-Cyclotron. The quick spread of the technique from CERN to many other laboratories has resulted in a large user community, which has assured the continued development of the method, physics in the front-line of fundamental research and the application of the method to many applied sciences. The technique is today established as one of the main techniques for on-line isotope production of high intensity and high quality beams. The thick targets used allows the production of unmatched high intensity radioactive beams. The fact that the ions are produced at rest makes it ideally suitable for low energy experiments and for post acceleration using well established accelerator techniques. The many different versions of the technique will be discussed and the many facilities spread all over the world will be reviewed. The major developments at the existing facilities and the challenges encountered will be presented. Finally, the possibility of using the resulting high intensity beams for the production of intense neutrino beams will be briefly discussed.
|
|
|
Video of talk
|
|
Transparencies
|
|
||
TUYACH01 | Laser-acceleration and Laser-cooling for Ion Beams | ion, proton, laser, acceleration | 54 | ||||||
|
The acceleration or cooling of particles with lasers has been the subject of growing interest over the last years. Because of the huge difference in mass, the acceleration of ions was so far limited to thermal expansion from laser plasmas, driven by the hot electron temperature. In recent years, due to the development of short-pulse ultra-intense lasers, the manipulation of ions has now become possible. Especially the generation of high quality, intense ion beams from laser solid interaction has attracted large attention and is investigated at many laboratories world-wide. For the first time, intense, directed, low emittance beams of ions have been observed, having several MeV of particle energy right from the source. A wealth of applications including next generation ion sources can be envisioned. The talk will give an overview of the status of laser cooling and ion acceleration including the last experimental results. In addition, an overview of the current and future research activities will be presented.
|
|
|
Video of talk
|
|
Transparencies
|
|
||
TUZACH01 | Positron Source Options for Linear Colliders | positron, photon, radiation, electron | 69 | ||||||
|
Linear colliders require sources delivering particle intensities much higher than sources for storage rings and even several orders of magnitude larger than the SLC positron source, the highest intensity positron source operated so far. A fundamental limitation for the intensity of a positron source is set by the thermal stress in the target. Besides improvements of conventional positron sources, i.e. sources where an electron beam creates electron position pairs in an electromagnetic cascade, new concepts based on the direct conversion of gamma radiation offer possibilities for increased particle intensities. In these sources the hard gamma radiation has to be produced either in an undulator or by backscattering of laser light off an electron beam. An additional advantage of gamma radiation based sources is the possibility to produce polarized positrons. The talk will give an overview of the developments of high intensity unpolarized and polarized positron sources for linear colliders.
|
|
|
Video of talk
|
|
Transparencies
|
|
||
TUPKF002 | TRIUMF ISAC II RF Control System Design and Testing | controls, coupling, feedback, linac | 953 | ||||||
|
The rf control system for the ISAC II superconducting cavities is a hybrid analogue/digital design which has undergone several iterations in the course of its development. In the current design, the cavity operates in a self-excited feedback loop, while phase locked loops are used to achieve frequency and phase stability. Digital signal processors are used to provide amplitude and phase regulation, as well as mechanical cavity tuning control. The most recent version also allows for the rapid implementation of operating firmware and software changes, which can be done remotely, if the need arises. This paper describes the RF control system and the experience gained in operating this system with a four-cavity test facility.
|
|
|
||||||
TUPKF005 | Inductive Output Tube Based 300 kW RF Amplifiers for the Diamond Light Source | power-supply, klystron, factory, synchrotron | 962 | ||||||
|
All currently operating synchrotron light sources use klystron amplifiers to generate the RF power for the accelerator cavities. In TV broadcasting systems on the other hand, Inductive Output Tubes (IOT)are replacing the classical klystron based systems in all new high power UHF transmitters. The Diamond Light Source will be the first synchrotron to be operated using IOTs. For each accelerating cavity a total of four IOTs will be combined with a waveguide combiner to achieve the RF power requirement of 300 kW at 500 MHz. All IOTs will be supplied from a common crowbarless high voltage power supply. Three such systems will be installed starting in October 2004. This paper gives an overview of the design of the amplifiers, including the first test results from the factory commissioning.
|
|
|
||||||
TUPLT010 | Aperture and Stability Studies for the CNGS Proton Beam Line | extraction, injection, proton, dipole | 1150 | ||||||
|
The knowledge of the beam stability at the CNGS target is of great importance, both for the neutrino yield and for target rod resistance against non-symmetric beam impact. Therefore, simulating expected imperfections of the beam line elements and possible injection errors into the CNGS proton beam line, the beam spot stability at the target was investigated. Moreover, the mechanical aperture of the CNGS proton beam line was simulated and the results confirmed that the aperture is tight but sufficient.
|
|
|
||||||
TUPLT018 | Layout of the Storage Ring Complex of the International Accelerator Facility for Research with Ions and Antiprotons at GSI | antiproton, storage-ring, ion, electron | 1174 | ||||||
|
The storage ring complex of the new international accelerator facility consists of three different rings: the Collector Ring CR, the accumulator/decelerator ring RESR and the New Experimental Storage Ring NESR. The CR will serve for fast stochastic precooling of antiproton and rare isotope (RI) beams. Cooling time constants of about 100 ms for RI beams are envisaged. For experiments with RI beams the RESR serves as a decelerator ring. Precooled RI beams will be injected at 740 MeV/u and then decelerated to variable energies down to 100 MeV/u within about 1 s. The NESR will be the main instrument for nuclear and atomic physics. Besides experiments using an internal gas target, the NESR offers the possibility to collide circulating bunches of ions with electron bunches counter-propagating in a small 500 MeV electron storage ring. The physics program with antiprotons requires the accumulation of high intensity antiproton beams. The accumulation of 7×1010 antiprotons at 3 GeV per hour is foreseen. This will be accomplished by operating the RESR as an accumulator ring equipped with a stochastic cooling system. The NESR could then be used to decelerate antiprotons to 30 MeV.
|
|
|
||||||
TUPLT023 | A New Ion Beam Beam Facility for Slow Highly Charged Ions | ion, ion-source, extraction, electron | 1189 | ||||||
|
A new ion beam facility for slow highly charged ions is presented. It will provide slow highly charged ions from an Electron Cyclotron Resonance (ECR) ion source as well as very highly charged ions at lower ion currents from an Electron Beam Ion Trap (EBIT). As ECR ion source a SUPERNANOGAN source* is applied. The Dresden EBIT**, a room-temperature EBIT, is used to produce comparatively low currents of very highly charged ions. This very compact and long-term stable device is producing highly charged ions at ultimate low costs. The Dresden EBIT working with electron energies up to 15 keV at electron currents up to 50 mA is able to produce bare nuclei up to nickel as Fe26+ or Ni28+, helium-like ions for medium Z such as Ge30+ or Kr34+ and neon-like ions for elements of the high-Z region such as Xe44+ or Ir67+. The ion currents extracted from the Dresden EBIT are typically in the range of some nA per pulse. With the new ion beam facility outstanding possibilities for a wide range of investigations are opened up in areas such as surface analysis, materials science and nanotechnology as well as for basic research in different fields as for instance in atomic and solid state physics.
|
*The Pantechnik Catalogue, August 2001 Edition, Caen 2001, France **V.P.Ovsyannikov, G.Zschornack; Review of Scientific Instruments, 70 (1999) 2646 |
|
||||||
TUPLT046 | Luminosity Considerations for Internal and External Experiments at COSY | luminosity, injection, extraction, proton | 1255 | ||||||
|
The future physics program at the Cooler-Synchrotron COSY in Jülich requires intense beams to provide high luminosities up to 1032cm-2s-1 for internal and external experiments. In 2003 the number of unpolarized protons could significantly be increased up to the theoretical space charge limit of COSY. This was achieved by careful study and adjustment of all subsystems in the accelerator chain of COSY. The intensities for polarized proton beams are at best an order of magnitude lower compared to one for unpolarized beams, depending on the beam current provided the injector cyclotron. Still there is some potential for further enhancement of polarized beam intensities. In this paper, luminosity considerations for polarized and unpolarized beams at COSY are presented taking into account different machine cycles and operation modes for internal and external experimental set-ups.
|
|
|
||||||
TUPLT052 | GANIL Status Report | ion, cyclotron, secondary-beams, acceleration | 1270 | ||||||
|
The GANIL facility (Caen, France) is dedicated to the acceleration of heavy ion beams for nuclear physics, atomic physics, radiobiology and material irradiation. The production of radioactive ion beams for nuclear physics studies represents the main part of the activity. The in-flight fragmentation method was already used, since 1994, with the SISSI device. Since September 2001, SPIRAL, the Radioactive Ion Beam Facility at GANIL, delivers radioactive species produced by the ISOL method. The heavy ion beams of GANIL are sent onto a target and source assembly, and the radioactive beams are accelerated up to a maximum energy of 25 MeV/u by the cyclotron CIME. The operation and the running statistics of GANIL-SPIRAL are presented, with particular attention to the first SPIRAL beams. Few results about the cyclotron CIME, as the mass selection and tuning principle are summarized. The recent developments for increasing stable beams intensities, up to a factor 13 for argon, for use with SPIRAL, SISSI, or the LISE spectrometer, are presented. Considering the future of GANIL, SPIRAL II projects aims to produce high intensity secondary beams, by fission induced with a 5 mA deuteron beam in an uranium target.
|
|
|
||||||
TUPLT057 | Beam Dynamics Studies for the Fault Tolerance Assessment of the PDS-XADS Linac Design | linac, quadrupole, beam-losses, simulation | 1282 | ||||||
|
In order to meet the high availability/reliability required by the PDS-XADS design the accelerator needs to implement, to the maximum possible extent, a fault tolerance strategy that would allow beam operation in the presence of most of the envisaged faults that could occur in its beamline components. In this work we report the results of beam dynamics simulations performed to characterize the effects of the faults of the main linac components (cavities, deflecting and focusing magnets,
) on the beam parameters. The outcome of this activity is the definition of the possible corrective and preventive actions that could be conceived (and implemented in the system) in order to guarantee the fault tolerance characteristics of the accelerator.
|
|
|
||||||
TUPLT060 | Production of Radioactive Ion Beams for the EXCYT Facility | ion, ion-source, cyclotron, cathode | 1291 | ||||||
|
The EXCYT facility (EXotics with CYclotron and Tandem) at the INFN-LNS is based on a K-800 Superconducting Cyclotron injecting stable heavy-ion beams (up to 80 MeV/amu, 1 emA) into a target-ion source assembly to produce the required nuclear species, and on a 15 MV Tandem for post-accelerating the radioactive beams. After thermal ANSYS simulations, during May 2003 the Target-Ion Source assembly (TIS) was successfully tested at GANIL under the same operational conditions that will be initially used at EXCYT. Yields and production efficiencies for 8,9Li were compatible with the ones obtained at SPIRAL. Following suggestions by the Referees and the LNS Research Division, we decided to deliver 8Li as the first EXCYT radioactive beam (primary beam 13C). This choice also takes in account the availability of MAGNEX in 2004 as well as the requests and the first results obtained by the Big Bang collaboration. The commissioning of the EXCYT facility is foreseen by the end of 2004 together with the start of nuclear experiments program. In this poster we also report prospective ion beams currently in development.
|
|
|
||||||
TUPLT061 | Production and Transport of Radioactive Francium for Magneto-optical Trapping | ion, extraction, quadrupole, laser | 1294 | ||||||
|
An innovative facility for the production and trapping of francium isotopes is operating at the INFN laboratories in Legnaro, Italy. The goal is to obtain a dense cloud of cold and possibly polarized radioactive atoms for a wide range of fundamental studies. Among them are high-resolution laser spectroscopy, alpha-decay asymmetries from deformed nuclei, and tests of the standard model at low transferred momenta. The production of francium is achieved by sending a 100-MeV oxygen-18 beam from the Tandem-XTU accelerator on a thick gold target. The extraction of Fr+ is enhanced by heating the target to 1200 K and by biasing it at +3 kV. The ions are transported to the magneto-optical trap (MOT) through a 7-m electrostatic beam line. The diagnostic systems for monitoring the beam intensity (105 ions/s) are based on silicon detectors sensitive to the alpha particles from Fr decays. Beams of stable Rb+ can also be used for optimizing the transport and trapping processes. Prior to injection into the MOT the beam is neutralized and released in atomic form by a heated yttrium or zirconium foil. Details on the production, transport and neutralization processes are presented.
|
|
|
||||||
TUPLT062 | Design of the Proton Beam Line for the Trade Experiment | quadrupole, dipole, emittance, cyclotron | 1297 | ||||||
|
The TRADE (Triga Accelerator Driven Experiment)experiment, to be performed in the TRIGA reactor of the ENEA-Casaccia centre consists in the coupling of a 140-300 MeV, 0.5 mA proton beam produced by a cyclotron to a target hosted in the central thimble of the reactor scrammed to sub-criticality. A 30 m long beamline has been designed to transfer the beam injecting it from the top of the pool with special care of having low losses in TRIGA building where a limited shielding of the line is possible. A particular attention was paid to reduce the number and size of elements in the last part of the beamline that are immersed in the pool's water. The paper presents a description of the beam line, the design criteria and the results of beam dynamics calculations.
|
|
|
||||||
TUPLT103 | Possibilities for Experiments with Rare Radioactive Ions in a Storage Ring Using Individual Injection | ion, injection, kicker, electron | 1393 | ||||||
|
A radioactive ion beam produced at a target bombarded with a primary beam has after a fragment separator a relatively large emittance and small production rate. For instance, typical flux of 132Sn isotope at the exit of fragment-separator is about 5×105 ions/s. Conventionally used scheme of the ion storage in a ring based on multitutrn injection and (or) RF stacking and stochastic cooling application can not provide a high storage rate at so pure intensity especially for short lived isotopes. In this report we discuss an alternative storage scheme which is oriented to the continuous ion beam from fragment separator at production rate of 104 ions/s or even less. It is based on the fact, that at low production rate the parameters of each particle can be measured individually with rather high accuracy. The particle trajectory can be individually corrected in a transfer channel from fragment separator to the storage ring using system of fast kickers. A fast kicker in the ring synchronized with a circulating bunch provides continuous injection of the ions. The scheme permits to store the ion number required for precise mass measurements and internal target experiment. A hope to obtain large luminosity of ion-electron collisions is related with a possibility of the ion beam crystallization at small particle number.
|
|
|
||||||
TUPLT105 | Measurement of Activation Induced by an Argon Beam in a Copper Target at the SIS18 | ion, radioactivity, heavy-ion, radiation | 1399 | ||||||
|
Results of the measurement of activation induced by Argon beam with energies of E=100,200,800 MeV/u in the copper target are presented. The densities of various radioactive isotopes are derived from the measurements. Long-time prediction of radioactivity and accumulated doses in the accelerator equipment is calculated.
|
|
|
||||||
TUPLT106 | New Developments of a Laser Ion Source for Ion Synchrotrons | laser, ion, ion-source, extraction | 1402 | ||||||
|
Laser Ion Sources (LIS) are well suited to filling synchrotron rings with highly charged ions of almost any element in a single turn injection mode. We report the first measurements of the LIS output parameters for Pb27+ ions generated by the new 100 J/1 Hz Master Oscillator - Power Amplifier CO2-laser system. A new LIS has been designed, built and tested at CERN, as an ion source for ITEP-TWAC accelerator/accumulator facility, and as a possible future source for an upgrade of the Large Hadron Collider (LHC) injector chain. The use of the LIS based on 100 J/1 Hz CO2-laser together with the new ion LINAC, as injector for ITEP-TWAC project is discussed.
|
|
|
||||||
TUPLT117 | Test of Materials for the High Temperature Intense Neutron Target Converter | radiation, electron, vacuum, diagnostics | 1413 | ||||||
|
Nowadays in LNL INFN (Italy) the project for gain and study of short-lived radioactive isotopes is in progress [1]. The intense neutron target is required for these goals. In BINP, Russia, the design of high temperature target cooled by radiation is proposed. Presented paper describes the results of preliminary test of materials for the target converter: MPG6-brand graphite, graphite material on the basis of 13C, boron carbide, glassy carbon. Test included the distributed heating over volume of samples with the electron beam up to conditions, simulating the converter working regime (heating power density up to 1300 W/cm2, temperature up to 20000C, temperature gradient up to 1000C/mm). Graphite materials show its adaptability under conditions specified.
|
|
|
||||||
TUPLT118 | Test of Construction for High Temperature Intense Neutron Target Prototype | simulation, electron, vacuum, radiation | 1416 | ||||||
|
Within the framework of the creation of the high temperature intense neutron target prototype, the thermal tests of the preliminary design were done in BINP. Tests were aimed at experimental definition of temperature and heat flux distribution over the construction, heat transfer via the contact areas between materials selected, specifying the properties of these materials. This paper presents the experimental test results as well as the comparison of experimental data with the results of numerical simulation of the working regimes of the construction.
|
|
|
||||||
TUPLT121 | Compact Tandem Accelerator Based Neutron Source for the Medicine | vacuum, ion, tandem-accelerator, ion-source | 1422 | ||||||
|
Status of original heavy hydrogen ion electrostatic accelerator-tandem is described. Potential electrodes with vacuum insulation organize tract for accelerating ion beam before and after gas stripper, located inside the high voltage electrode. There are no accelerating tubes in the tandem proposed. 20 kHz, 10 kW, 500 kV compact sectioned rectifier is a high voltage source. Both the geometry of neutron source and results of the rectifier testing are presented. Estimation of yield and space-energy distribution of neutron, as a result of nuclear reactions produced by heavy hydrogen ion in beryllium or carbon targets are given. Result of Monte-Carlo simulation of neutron and photon transferring for these sources of neutron is the distribution of the absorbed dose incide phantom. Result of the simulation are compared with result of the experiment. The possibility of use of this neutron source for the neutron or neutron capture therapy is discussed too.
|
|
|
||||||
TUPLT136 | Proton Beam Line for the ISIS Second Target Station | extraction, septum, dipole, quadrupole | 1443 | ||||||
|
The ISIS facility, based at the Rutherford Appleton Laboratory in the UK, is an intense pulsed source of Muons and Neutrons used for condensed matter research. The accelerator facility delivers an 800 MeV proton beam of 2.5x1013 protons per pulse at 50 Hz. As part of the facility upgrade, which includes increasing the source intensity to 3.7x1013 protons per pulse using a dual harmonic RF system, it is planned to share the source with a second, 10 Hz, target station. A beam line supplying this target will extract from the existing target station beam line. Measurements and models characterising the optical functions around the extraction point of the existing line are discussed. The optical design, diagnostics and beam correction systems for second target station beam line are presented.
|
|
|
||||||
TUPLT142 | Status of Design of Muon Beamline for the Muon Ionisation Cooling Experiment | emittance, quadrupole, dipole, proton | 1461 | ||||||
|
The MICE collaboration proposes to install a Muon Ionisation Cooling Experiment at the ISIS facility, at Rutherford Appleton Laboratory. This experiment will be the first demonstration of ionisation cooling as a means to reduce the large transverse emittance of the muon beam, produced during the early stages of a neutrino factory. In order to permit a realistic demonstration of cooling, a source of muons must be produced, possessing particular qualities, notably in emittance and momenta. This paper describes the present design for the muon beamline source, and the plans for its implementation at RAL.
|
|
|
||||||
TUPLT149 | Beam Manipulation and Compression Using Broadband RF Systems in the Fermilab Main Injector and Recycler | emittance, proton, booster, antiproton | 1479 | ||||||
|
Successful tests of new method for beam manipulation, compression, and stacking using the broadband RF systems in the Fermilab Recycler and Main Injector are described. Under usual conditions an unbunched beam can be confined to a fraction of the azimuth of the ring by a set of "Barrier Pulses" which repel particles trying to escape from the ends of the segment of beam. One way to compress or expand the azimuthal extent of the segment of beam is to slowly change the distance between barrier pulses. However when it is desired to rapidly compress or expand the length of the segment, a linear ramp can be superimposed on the waveform between barrier pulses. This causes particles at the front and back of the beam segment to be accelerated or decelerated by differing amounts, and the velocity correlation along the length of the beam segment causes it to expand or contract. When the expansion or contraction is halfway completed, the ramp voltage is reversed so the all particles will come relatively to rest at the end of the process. With the Barrier pulses following appropriately, no particles leak out the ends of the beam segment and the emittance is preserved.
|
|
|
||||||
TUPLT159 | First Commissioning Experiments at DARHT-II | electron, induction, emittance, diagnostics | 1497 | ||||||
|
The second axis of the Dual Axis Radiographic Hydro-Test (DARHT) facility will provide up to four short(< 150 ns) radiation pulses for flash radiography of high-explosive driven implosion experiments[1]. The DARHT-II linear induction accelerator (LIA) will produce a 2-kA,18-MeV,2-micro-s electron beam. A fast kicker will cleave four short pulses out of the beam, which will focused onto a tantalum target for conversion to bremsstrahlung pulses for radiography. The first tests of the second axis accelerator were designed to demonstrate the technology, and to meet the modest performance requirements for closing out the DARHT-II construction project. These experiments demonstrated that we could indeed produce a 1.2 kA beam with pulse length 0.5-1.2 s and accelerate it to 12.5 MeV. These de-rated parameters were chosen to minimize risk of damage in these first experiments with this novel accelerator. The beam was stable to the BBU instability for these parameters. In fact, we had to reduce the magnetic guide field by a factor of 5 before any evidence of BBU was observed. We will discuss the results of these experiments and their implications, as well as our plans for continuing with DARHT-II commissioning.
|
|
|
||||||
TUPLT163 | Achieving Beam Quality Requirements for Parity Experiments at Jefferson Lab | feedback, electron, polarization, damping | 1509 | ||||||
|
Measurement of asymmetry between alternating opposite electron polarization in electron-nucleon scattering experiments can answer important questions about nucleon structures. Such experiments impose stringent condition on the electron beam quality, and thus the accelerator used for beam creation and delivery. Of particular concern to such ?parity? experiments is the level of correlation between beam characteristics (orbit, intensity) and electron polarization that can obscure the real asymmetry. This can be introduced at the beam forming stage, created due to scraping, or not damped to desired level due to defective transport. Suppression of such correlation thus demands tight control of the beam line from cathode to target, and requires multi-disciplined approach with collaboration among nuclear physicists and accelerator physicists/engineers. The approach adopted at Jefferson Lab includes reduction of correlation source, improving low energy beam handling, and monitoring and correcting global transport. This paper will discuss methods adopted to meet the performance criteria imposed by parity experiments, and ongoing research aimed at going beyond current performance.
|
|
|
||||||
TUPLT168 | SNS Beam Commisioning Status | linac, emittance, proton, beam-transport | 1524 | ||||||
|
The Spallation Neutron Source accelerator systems will provide a 1 GeV, 1.44 MW proton beam to a liquid mercury target for neutron production. The accelerator complex consists of an H- injector capable of producing 38 mA peak current, a 1 GeV linear accelerator, an accumulator ring and associated transport lines. The linear accelerator consists of a Drift Tube Linac, a Coupled-Cavity Linac and a Superconducting Linac which provide 1.5 mA average current to the accumulator ring. The staged beam commissioning of the accelerator complex is proceeding as component installation progresses. In three separate beam commissioning runs, the H- injector and Drift Tube Linac tanks 1-3 have been commissioned at ORNL. Several important performance goals have been achieved, namely 38 mA peak beam current, 1 msec beam pulse length and 1 mA average beam current. Results and status of the beam commissioning program will be presented.
|
|
|
||||||
TUPLT186 | Managing System Parameters for SNS Magnets and Power Supplies | power-supply, vacuum, controls, linac | 1565 | ||||||
|
The Spallation Neutron Source (SNS), currently under construction at Oak Ridge, Tennessee, is a collaborative effort of six U.S. Department of Energy partner laboratories. With over 312 magnets and 251 power supplies that comprise the beam transport lines and the accumulator ring, it is a challenge to maintain a closed loop on the variable parameters that are integral to these two major systems. This paper addresses the input variables, responsibilities and design parameters used to define the SNS magnet and power supply systems.
|
|
|
||||||
WEXCH01 | Experience with LHC Magnets from Prototyping to Large-scale Industrial Production and Integration | dipole, quadrupole, superconducting-magnet, sextupole | 118 | ||||||
|
The construction of the LHC superconducting magnets is approaching one third of its completion. At the end of 2003, main dipoles cold masses for more than one octant were delivered; meanwhile the winding for the second octant was almost completed. The other big magnets, like the main quadrupoles and the insertion quadrupoles, have entered into series production as well. Providing more than 20 km of superconducting magnets, with the quality required for an accelerator like LHC, is an unprecedented challenge in term of complexity that has required several steps from the construction of 1 meter-long magnets in the laboratory to today production of more than one 15 meter-long magnet per day in Industry. The work and its organization is made even more complex by the fact that CERN supplies most of the critical components and part of the main tooling to the magnet manufacturers, both for cost reduction and for quality issues. In this paper the critical aspects of the construction and the time plan will be reviewed and the actual achievements in term of quality and construction time will be compared with the expectations.
|
|
|
Video of talk
|
|
Transparencies
|
|
||
WEOBCH01 | Performance Requirements for Monitoring Pulsed, Mixed Radiation Fields around High-energy Acclerators | radiation, monitoring, simulation, hadron | 147 | ||||||
|
Radiation protection survey around CERN's High Energy Accelerators represents a major technical and physical challenge due to the pulsed and complexity of the mixed radiation fields. The fields are composed of hadrons, leptons and photons ranging in energy from fractions of eV to several 10 GeV. In preparation of the implementation of a Radiation Monitoring System for the Environment and Safety (RAMSES) of the future Large Hadron Collider (LHC) and its injectors comprehensive studies were performed to evaluate the suitability of different existing monitors for this task. Different ionization chambers were exposed to short, high-intensity radiation pulses and their saturation levels for high dose rates determined. Limiting factors such as recombination effects and the capacity of the electronics to process a high number of charges within very short time were studied in detail. These results are being used to optimize the design of the read-out electronics. In additional studies, the response of two different types of ionization chambers to high-energy radiation was investigated by measurements in the mixed radiation fields of the CERN EU high-energy Reference Field (CERF) facility. The results of the experiments agreed well with calculations, clearly demonstrating that modern Monte-Carlo simulation techniques can be used to design radiation monitors and to optimize their performance.
|
|
|
Video of talk
|
|
Transparencies
|
|
||
WEOBCH02 | Design, Construction, and Initial Operation of the SNS MEBT Chopper System | linac, beam-transport, rfq, extraction | 150 | ||||||
|
The chopper system for the Spallation Neutron Source (SNS) provides a gap in the beam for clean extraction from the accumulator ring. It consists of a pre-chopper in the low-energy beam transport (LEBT) and a faster chopper in the medium-energy beam transport (MEBT). We report here on the final design, fabrication, installation, and first beam tests of the MEBT chopper. The traveling-wave deflector is a meander-line design that matches the propagation of the deflecting pulse with the velocity of the beam at 2.5 MeV, after the radio-frequency quadrupole (RFQ) acceleration stage. The pulser uses a series of fast-risetime MOSFET transistors to generate the deflecting pulses of ± 2.5 kV with rise and fall times of 10 ns. We describe the design and fabrication of the meander line and pulsers and report on the first operation during initial beam tests at SNS.
|
|
|
Video of talk
|
|
Transparencies
|
|
||
WEODCH02 | Interaction of Stored Ions with Electron Target in Low Energy Electrostatic Ring | electron, ion, cathode, proton | 162 | ||||||
|
The KEK electrostatic ring is used for investigations of molecular, bimolecular and DNA ions. The electron target installed in this ring has same construction as usual electron cooler. The interaction of stored ions with the electrons increases the ion lifetime at electron cooling caused by a suppression of the ion scattering on the residual gas atoms. The proton lifetime of 2 s was increased in the experiments by factor 2 at the electron cooling with the electron beam current of 0.2 mA, the proton energy of 20 keV and the residual gas pressure of 0.04 nTorr. However the electron-ion interaction can decrease the ion lifetime caused by an excitation of the transverse instability produced by an intensive electron beam. So in the KEK electrostatic ring the proton lifetime is reduced to 1.7 s at detuning of electron acceleration voltage from nominal cooler value on 0.4 V. The simulation of electron cooling and transverse instability of the light and DNA ions are discussed in this report.
|
|
|
Video of talk
|
|
Transparencies
|
|
||
WEPKF006 | Field Quality and Hysteresis of LHC Superconducting Corrector Magnets | dipole, multipole, injection, quadrupole | 1600 | ||||||
|
The Large Hadron Collider (LHC) will use some 6400 superconducting corrector magnets. There are 19 corrector types. These are assembled 14 different types of magnets of which 4 are nested. They are being manufactured by 4 firms in Europe and 3 in India. The magnetic field quality is measured at room temperature by 12 magnetic measurement benches employed by the corrector manufacturers. CERN performs magnetic measurement at 4.2K and at 1.9K on a small subset of corrector magnets. The paper discusses the correlation between the warm and cold field measurements. The field quality is compared to the magnet design expectations and to the target field quality for LHC. Many corrector circuits will be powered in a way which cannot be predicted before LHC will start operation and which even then may change between physics runs. The measured magnetic hysteresis and its influence on possible setting errors during operation is discussed, in particular for the orbit correctors and the tuning/trim quadrupole magnet circuits.
|
|
|
||||||
WEPKF008 | A Strategy for Sampling of the Field Quality of the LHC Dipoles | dipole, multipole, injection, dynamic-aperture | 1606 | ||||||
|
We have measured the magnetic field of a considerable fraction of the superconducting LHC main dipoles, of the order of 300 in warm conditions and 100 in cold conditions. All LHC dipoles will be measured in warm conditions at the manufacturers to steer the production inside the acceptance limits imposed by beam dynamics. Using the available data we analysed the distributions of the main field and higher order field errors in warm and cold conditions, as well as the distribution of the warm-to-cold correlation. Based on this analysis we predict the minimum number of magnets that should be measured in cold conditions in order to guarantee that (1) the production is controlled within the specified limits (2) the field is known to a sufficient level for a sound installation and (3) the uncertainty on the knowledge of the magnetic field of the LHC dipoles is small enough for the commissioning of the accelerator and to insure operation of the machine in any condition, including higher energy. The main outcome of this analysis is that cold measurements on a fraction of the order of one third of the total production, i.e. approximately 400 dipoles, will be sufficient to achieve the above objectives.
|
|
|
||||||
WEPKF011 | Performance of the Superconducting Matching Quadrupoles for the LHC Insertions | quadrupole, multipole, insertion, alignment | 1615 | ||||||
|
The optics flexibility of the LHC insertions is provided by the individually powered quadrupoles in the dispersion suppressors and matching sections. These units comprise special quadrupole magnets of the MQM and MQY type and range in length from 5.4 m to 11.4 m. In total, 82 insertion quadrupoles will be assembled at CERN. In this paper we present the advance in construction and report on the performance of the first series built quadrupoles. In particular, we present the quench performance of the individual magnets and alignment measurements of the cold masses, and discuss the field quality trends and possible implications.
|
|
|
||||||
WEPKF021 | Non-destructive Testing of Bus-bar Joints Powering LHC Superconducting Magnets, by Using Gamma Sources | quadrupole, dipole, superconducting-magnet, photon | 1642 | ||||||
|
The main LHC superconducting magnets (dipoles and quadrupoles) are powered by using Rutherford type cables, stabilized electrically and thermally with copper profiles. The portions of cables are connected to each other by a soft soldering technique (Sn96Ag4) with the overlapping length corresponding to one pitch of the superconducting strands. The splice constitutes a ?composite? structure with the interchanging layers of Sn96Ag4 and NbTi superconductor, located inside a Cu cage. In order to assure a high level of reliability (failure probability not exceeding 10-8) for some 10000 connections in the LHC, a non-destructive technique of checking the quantity of solder in the joint is planned to be implemented. The technique is based on a gamma ray source (241_Am) and the detection is position-sensitive in the transmission mode. 5 scintillating detectors of gamma rays are used and their accumulated length corresponds to the length of the radioactive source (120 mm). The method can be used in-situ, the equipment being optimized and portable, with implementation of direct on-line operation mode. The relevant criteria of acceptance of the splices have been defined. The first results of application of this technique will be shown.
|
|
|
||||||
WEPKF027 | R&D Vacuum Issues of the Future GSI Accelerator Facilities | ion, vacuum, dipole, synchrotron | 1657 | ||||||
|
The new GSI accelerator facilities are planned to deliver heavy ion beams of increased energy and highest intensity. Whereas the energy is planned to be increased roughly by a factor of 10, the ion beam intensities are planned to be enlarged by three orders of magnitude. To achieve highest beam intensities, medium charged heavy ions (e.g. U28+) are accelerated. Since the ionization cross sections for these ions are comparably high, a UHV-accelerator system with a base pressure in the low 10-12mbar regime is required, even under the influence of ion beam loss induced desorption processes. An intensive program was started to upgrade the UHV system of the existing synchrotron SIS18 (bakeable) and to design and lay out the UHV systems of the future synchrotron SIS100 and SIS300 (mainly cryogenic). The strategy of this program includes basic research on the physics of the ion induced desorption effects as well as technical developments, design and prototyping on bakeable UHV components (vacuum chambers, diagnostics, bakeout-control, pumping speed), collimator for controlled ion beam loss, NEG coating and cryogenic vacuum components.
|
|
|
||||||
WEPKF049 | Stretched Wire Flip Coil System for Magnetic Field Measurements | multipole, quadrupole, insertion, insertion-device | 1714 | ||||||
|
A flip-coil system using a stretched wire measuring the magnetic field properties of accelerator magnets is described. This system is similar to the conventional rotating coil system except that the stretched wires are used instead of wires wound on the machined surface. This system has advantage of simple fabrication and flexible operation so that different length and bore magnets can be easily measured using the same system. The system also has two loop coils to buck the dominant fundamental field so as to increase the measurement accuracy. This kind of system has issues related to the reproducibility, accuracy of the measured results. The system is evaluated to verify its performances and its results were discussed. The analyzing methods and various efforts to keep the system in high accuracy are presented. Measurement results with this loop coil system were compared with that of the other system.
|
|
|
||||||
WEPKF073 | 2nd Generation LHC IR Quadrupoles Based on Nb3Sn Racetrack Coils | quadrupole, luminosity, alignment, interaction-region | 1774 | ||||||
|
After the LHC operates for several years at nominal parameters, it will be necessary to upgrade it for higher luminosity. Replacing the baseline NbTi low-beta quadrupoles with a higher performance magnets based on advanced superconducting materials and magnet technologies is one of the most straightforward ways in this direction. Preliminary studies show that high-performance Nb3Sn strands to be available within the next few years allow increasing the quadrupole aperture up to 110 mm using a 4-layer shell-type coil and providing the same 200 T/m field gradient with 20% margin as the baseline magnets. It will allow reduction of b* by a factor of 3. An alternative approach to the quadrupole design is based on simple flat racetrack coils. This paper discusses the possibilities and limitations of large-aperture racetrack quadrupole designs and compares them to the shell-type magnets.
|
|
|
||||||
WEPLT056 | An Electron Cooling System for the Proposed HESR Antiproton Storage Ring | electron, antiproton, storage-ring, acceleration | 1969 | ||||||
|
The HESR storage ring in the proposed new international accelerator facility will provide high quality antiproton beams for experiments with an internal target. In order to achieve the design luminosity for collisions with a hydrogen target powerful beam cooling is required. For dedicated experiments ultimate resolution is demanded. Therefore it is foreseen to provide cooled antiproton beams in the energy range 0.8-14 GeV with an energy spread of 100 keV or better. According to computer simulations the required cooling rates can be achieved by electron cooling with an electron current of 1 A. The conceptual design of an electron beam device which is based on electrostatic acceleration of the electrons and their transport in longitudinal magnetic fields into a cooling section with a strong magnetic field of up to 0.5 T will be presented. This design will allow cooling in the magnetized regime in order to reach the required high cooling rates. Some novel features for the generation and regulation of the accelerating voltage and for the beam transport are proposed.
|
|
|
||||||
WEPLT057 | Simulation Results on Cooling Times and Equilibrium Parameters for Antiproton Beams at the HESR | electron, antiproton, ion, simulation | 1972 | ||||||
|
The High Energy Storage Ring HESR is part of the "International Accelerator Facility for Ion and Antiproton Beams" proposed at GSI. For internal target experiments with antiproton beams in the energy range 0.8 GeV to 14.5 GeV a maximum luminosity of 5 inverse nbarn per second and a momentum resolution on the order of 10 ppm have to be attained. Electron cooling is assumed to be the most effective way to counteract beam heating due to target effects and intra-beam scattering. Cooling times and equilibrium parameters have been determined by means of three different computer codes: BETACOOL, MOCAC, and PTARGET. The results reveal that the development of fast, "magnetized" electron cooling with beam currents of up to 1 A and variable electron energies of up to 8 MeV in an extremely homogeneous longitudinal magnetic field of up to 0.5 T is crucial to achieve the required equilibrium beam parameters over the envisaged range of antiproton energies.
|
|
|
||||||
WEPLT078 | The IFMIF High Energy Beam Transport Line | linac, octupole, simulation, space-charge | 2032 | ||||||
|
The IFMIF project (International Fusion Materials Irradiation Facility) requests two linacs designed to accelerate 125 mA deuteron beams up to 40 MeV. The linac has to work in CW mode and uses one RFQ and 10 DTL tanks. After extraction and transport, the deuteron beams with strong internal space charge forces have to be bunched, accelerated and transported to target for the production of high neutron flux. This paper presents the high energy beam transport line which provides a flat rectangular beam profile on the liquid lithium target. Transverse uniformisation is obtained by using non-linear mutipole lenses (octupoles and duodecapoles). Beam dynamics with and without errors has been study.
|
|
|
||||||
WEPLT113 | Development of New Hydrostatic Levelling Equipment for Large Next Generation Accelerator | ground-motion, site, alignment, klystron | 2113 | ||||||
|
The Hydrostatic Levelling Systems (HLS) are installed and commissioned in many laboratories. We have developed a new type hydrostatic levelling equipment for the large future accelerator. The designing points are as followings: (1) use of half filled water level sensor instead of the usual full filled level sensor, (2) the capacitive sensor is supported by an invar rod and (3) use of digitized signal transfer system. These three points are very important factor to apply the leveling system to large next generation accelerator in order to obtain good temperature stability and being free from the environmental electronic noises. We have obtained a typical resolution of the equipment as 0.3 micron-meter, though usual HLS shows the value ten times as much. We are going to show a detailed report about the system including data obtained.
|
|
|
||||||
WEPLT126 | Beam Dynamics Simulation in High Energy Electron Cooler | electron, simulation, antiproton, vacuum | 2146 | ||||||
|
The article deals with electron beam dynamics in projected high energy electron cooler. Classical electrostatic scheme with several MeV electron energy is considered. The increase of transversal energy of electrons in an accelerating section, in bends and at the matching point of magnetic fields is calculated. In order to calculate beam behavior in bends with electrostatic compensation of centripetal drift new ELEC3D electro- and magnitostatic 3D code is developed. BEAM code is used for simulation of dynamics in an accelerating section. The methods of keeping low transversal energy are estimated.
|
|
|
||||||
WEPLT141 | Beam-power Calibration System for Industrial Electron Accelerators | electron, simulation, radiation, monitoring | 2167 | ||||||
|
Modern electron accelerators for industrial application provide particle energy of up to 10 MeV and beam power of up to 100 kW. Such a beam is ejected into an air using a scanning system. The measuring channel based on a total-absorption calorimeter of flow-type for a beam calibration with respect to energy flow is designed. The processes of beam interaction with the primary measuring converter (a water-cooled beam absorber of especial geometry) were previously studied using a computer simulation. The metering circuit of the channel is made as a stand-alone module with LCD display and control keypad. It performs the operations of temperature measurement at the input and output of the absorber, as well as a water flow-rate determination. The absorbed power is calculated from measured parameters and then is displayed and stored into channel memory using appropriate software. The process is carried out both in off-line mode and under control of the external PC via a serial interface of RS-232 type.
|
|
|
||||||
WEPLT172 | Design & Handling of High Activity Collimators &Ring Components on the SNS | vacuum, shielding, linac, extraction | 2233 | ||||||
|
Design & Handling of High Activity Collimators on the SNS*G Murdoch,S Henderson, K Potter,T Roseberry,Oak Ridge National Laboratory, USA,H Ludewig, N Simos, Brookhaven National Laboratory, USAJ Hirst, Rutherford Appleton Laboratory,UK, The Spallation Neutron Source accelerator systems will provide a 1GeV, 1.44MW proton beam to a liquid mercury target for neutron production. The expected highest doses to components are in the collimator regions. This paper presents the mechanical engineering design of a typical collimator highlighting the design features incorporated to assist with removal once it is activated. These features include shielding and lifting fixtures but more importantly a double contained flexible water system incorporating remote water couplings.Also presented is a mechanism that allows axial removal of vacuum bellows and its associated vacuum clamps.*SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy. SNS is a partnership of six national laboratories: Argonne, Brookhaven, Jefferson, Lawrence Berkeley, Los Alamos and Oak Ridge.
|
|
|
||||||
THOACH03 | Top-up Operation at SPring-8 - Towards Maximizing the Potential of a 3rd Generation Light Source | injection, storage-ring, beam-losses, single-bunch | 222 | ||||||
|
Top-up operation maximizes research activities in a light source facility by an infinite beam lifetime and photon beam stability. We have been improving the SPring-8 accelerators to achieve the ideal top-up operation. For the perturbation-free injection, we adjusted the magnetic field shape of four bump magnets to close the bump orbit, and introduced a scheme to suppress the stored beam oscillation induced by the nonlinearlity of sextupole magnets. These reduced the horizontal oscillation down to a third of the stored beam size. For the loss-free injection, beam collimators were installed upstream of the injection line. This realized the injection efficiency of ~100% under the restricted gap condition of in-vacuum insertion devices (ID). Since autumn 2003, we have been injecting the beams keeping the photon beam shutters opened and ID gaps closed. We developed a bunch-by-bunch feedback system to reduce the beam loss further with all the ID gaps fully closed by lowering the operating chromaticity. The operation with constant stored current is scheduled in June 2004. We present the overview and progress of the SPring-8 top-up operation focusing on our developments and results.
|
|
|
Video of talk
|
|
Transparencies
|
|
||
THOALH02 | Development of the Non-invasive Beam-size Monitor using ODR | electron, radiation, emittance, optics | 256 | ||||||
|
The beam-size monitor based on Optical Diffraction Radiation (ODR) has been developed at the KEK-ATF. Because of its non-invasive nature, the ODR monitor might be one candidate to measure the extreme-low emittance electron beam for future LC?s and x-ray free electron lasers. To evaluate the beam-size, the angular distribution of the ODR emitted by the beam when crossing a slit in a metallic foil was measured. In the first trial, we observed interference patterns between ODR and backgrounds which may be the synchrotron radiation from most nearest bending magnet at the ATF extracted line. By the installation of the ceramic mask in front of our target, this interference was vanished. And comparing with the result of ODR measurements, we installed the wire scanner in the same position of our monitor. In this paper, we will present developments of the ODR monitor with some experimental results.
|
|
|
Video of talk
|
|
Transparencies
|
|
||
THPKF034 | Design of a Photoneutron Source based on a 5 MeV Electron Linac | electron, linac, photon, simulation | 2347 | ||||||
|
A photoneutron source, based on a 5 MeV electron linac was designed by means of the MCNP simulation code. Although higher electron energies are required to produce acceptable neutron fluxes, the availability of a 5 MeV electron linac developed at the Dipartimento di Fisica (Università di Messina) has suggested this project, in sight of a future development and testing of the studied neutron source. Be and BeD2 targets were considered, whose neutron production was studied optimizing two sequential steps: the bremsstrahlung production in a suitable e-gamma converter and the (gamma,n) production in an properly designed photoneutron target-reflector-moderator system. As a result of a comparative study of different materials performances, a 0.88 mm-thick W layer was chosen as e-gamma converter. A natural graphite reflector was designed, surrounding the target, enhancing the neutron flux of two order of magnitude. The final neutron flux, at 50 cm from the photoneutron target, thermalized by a 12.2 cm-thick PE layer, was estimated to be 8.48E+07 n/cm2/sec/mA with Be target and 1.23E+08 n/cm2/sec/mA with BeD2 target.
|
|
|
||||||
THPKF052 | The Project of Accelerator Mass-Spectrometer at BINP | ion, ion-source, tandem-accelerator, focusing | 2389 | ||||||
|
The project of creation of first Russian accelerator mass-spectrometer at BINP is described. The scheme of spectrometer includes two types of ion sources (sputter and gaseous ones), low energy beam line with analysers, electrostatic tandem accelerator with accelerating voltage up to 2 MV and magnesium vapours stripper and also includes the high energy beam line with analysers. The results of first experiments with ion sources are given also.
|
|
|
||||||
THPKF061 | RT-office for Electron Beam, X-ray, and Gamma-ray Dosimetry | simulation, electron, radiation, shielding | 2403 | ||||||
|
An absorbed dose of electron beam (EB),X-ray (bremsstrahlung), and gamma-ray within the irradiated product is one of the most important characteristic for all industrial radiation-technological processes. The conception for design of the Radiation-Technological Office (RT-Office) - software tools for EB, X-ray, and gamma-ray dosimetry for industrial radiation technologies was developed by authors. RT-Office realize computer technologies at all basic stages of works execution on the RTL using irradiators of EB, X-ray, and gamma-ray in the energy range from 0.1 to 25 MeV. The specialized programs for simulation of EB, X-ray, and gamma-ray processing and for decision of special tasks in dosimetry of various radiation technologies were designed on basis of the RT-Office modules. The use of the developed programs as predictive tools for EB,X-ray, and gamma-ray dose mapping, for optimization of regimes irradiation to receive minimum for dose uniformity ratio, for reducing the volume of routine dosimetry measurements of an absorbed dose within materials at realization of the radiation-technological processes are discussed in the paper.
|
|
|
||||||
THPKF062 | Comparison of Dose Distribution Prediction in Targets Irradiated by Electron Beams with Dosimetry | electron, simulation, radiation | 2406 | ||||||
|
The features of the absorbed depth-dose distribution (DDD) on boundaries of two contacting materials and material with air irradiated with an electron beam (EB) were predicted by simulation with the software ModeRTL (Modeling of the radiation-technological lines (RTL)). Validation of DDD prediction with dosimetry was fulfilled on the industrial RTL with linear electron accelerator LAE 13/9 at the INCT, Warsaw. Simulation and measurement of boundary effects of DDD were carried out for targets irradiated by scanning EB with energy 10 MeV on moving conveyer. The irradiated materials were represented as parallelepipeds with all sizes greater than range of electrons in material. Cellulose Triacetate (CTA) dosimetric film (FTR-125) in form of strips inserted between materials and air in parallel with an axis of EB was used for dosimetry. Such irradiation setup allows to receive the complete curve of DDD on the boundary of contacting materials by one dosimetric film. The physical regularities for DDD on the boundary of contacting materials predicted by simulation methods were experimentally confirmed. Investigation of those anomalies is necessary in practice to estimate the quality of an irradiation performed on RTL at realization of various industrial EB processing.
|
|
|
||||||
THPLT005 | Ultra-high Frequency Scanning Cavities for Non-relativistic Electron Beam | electron, polarization, impedance, single-bunch | 2466 | ||||||
|
The different scanning schemes based on the RF cavities for non-relativistic electron beam are examined. Optimization criteria for various types of cavities were developed. A complete picture of the beamscanning at a given point of interest is obtained.
|
|
|
||||||
THPLT009 | Comparative Transverse Distribution Measurements between the New SPS Rest Gas Ionisation Monitor and the Wire Scanner Monitors. | emittance, acceleration, proton, injection | 2478 | ||||||
|
During the past two years, a new Ionization Profile Monitor was installed and tested in the CERN SPS. In parallel modifications were made on various wire scanner monitors. The aim is to develop instruments performing reliable measurements of transverse beam distributions in the SPS and in the LHC, in order to control the stringent emittance preservation requirements. Measurements made with the two types of monitors were performed under various conditions of LHC type beams, ranging from a pilot bunch up to beams having in the SPS nominal distributions in bunch number, intensity and energy for injection into the LHC. The data provided by the two types of instruments are compared. In the case of discrepancies, an analysis of the possible reasons is made. The cures implemented and the improvements foreseen are discussed.
|
|
|
||||||
THPLT013 | Simulation of Multi-bunch Multi-turn Instabilities in High Energy Proton Rings: Algorithms and Results | simulation, impedance, proton, vacuum | 2490 | ||||||
|
A simulation code to study collective effects in multi-bunch proton machines has been developed and applied to the CERN SPS and LHC. The 3D simulation program allows the exploration of long-range effects due to resistive-wall and HOMs in circular, elliptic and rectangular vacuum chambers also for uneven filling schemes. The code has been benchmarked with measurements in the SPS. Results obtained for LHC, including beam stability and emittance growth, are presented and discussed.
|
|
|
||||||
THPLT031 | Comparison of Rate Equation Models for Equilibrium Beam Parameters | scattering, electron, antiproton, storage-ring | 2544 | ||||||
|
We calculate equilibrium beam parameters from the counteraction of intrabeam scattering (IBS), electron cooling (EC) and target interaction for typical beams in the GSI cooler storge ring ESR and in the proposed HESR. This work is complementary to kinetic modeling efforts at GSI. We developed an easy to use simulation tool that includes various models for the EC rates and the IBS rates, averaged of the detailed ring lattices. The obtained scaling of the equilibrium parameters with beam current and energy are compared with existing experimental data from the ESR and with kinetic simulation results for the HESR.
|
|
|
||||||
THPLT050 | End to End Simulations of the RX2 Beam Transport | simulation, focusing, linac, cathode | 2595 | ||||||
|
RX2 is a project aiming to produce a high flux of X-rays for radiography purpose. We proposed an RF linac using a DC photo-injector producing 20 bunches with 100nC each at 352 MHz. The beam is then injected in 4 RF superconducting cavities and accelerated to 40 MeV. It is then focused on a target producing X-rays. Here is presented the design, the specificities, and the beam simulations from the cathode to the target by coupling 2 multiparticle codes : PARMELA and PARTRAN.
|
|
|
||||||
THPLT051 | End to End Multiparticle Simulations of the AIRIX Linac | simulation, cathode, electron, linac | 2598 | ||||||
|
AIRIX is a working 3 kA, 20 MeV induction accelerator. It has been designed with an enveloppe code : ENV. A new set of multiparticle codes (PBGUNS, MAGIC, PARMELA and PARTRAN) has been used recently to simulate the beam transport with an higher accuracy especially taking into account the field non-linearities. A dedicated space-charge routine has been written. The calculation results have been compared to experimental measurements.
|
|
|
||||||
THPLT058 | Commissioning of the OTR Beam Profile Monitor System at TTF/VUV-FEL Injector | emittance, electron, radiation, diagnostics | 2619 | ||||||
|
The TESLA Test Facility (TTF) linac at DESY is being extended to an energy of 1 GeV to drive a new Free Electron Laser facility (VUV-FEL)with wavelengths between 100 nm and 6 nm.Beam profile monitors based on optical transition radiation (OTR) are one of the most important electron beam diagnostics tools. The OTR imaging system is designed to measure the transverse beam size and shape with a resolution down to 10 um. The images are digitized by CCD cameras. A network structure allows a simpler topology to connect the large number of cameras (24).This paper considers the commissioning of the OTR beam profile monitors during the first running period of the injector in spring 2004.
|
|
|
||||||
THPLT064 | Enhancement of Laser Power from a Mode Lock Laser with an Optical Cavity | laser, resonance, electron, scattering | 2637 | ||||||
|
We have developed a laser-wire beam monitor to measure a beam profile in the KEK/ATF damping ring. This monitor is based on the inverse Compton scattering with a thin wire of the laser. The laser-wire is produced with a Fabry-Perot optical cavity in which laser power from a CW laser is stored and enhanced up to 1000 times. We have a plan to increase a gamma ray flux by using a pulsed laser instead of the CW laser. There are many applications for such a high flux gamma ray, e.g. medical use, transmutation and so on. We have done a test experiment of laser pulse stacking with a mode lock laser where wavelength is 1064 nm, repetition rate 357MHz, pulse width 7psec(FWHM) and a 42 cm long Fabry-Perot optical cavity. The experimental results show that laser power in the optical cavity can be enhanced by laser pulse stacking.
|
|
|
||||||
THPLT067 | Development of Optical Diffraction Radiation Beam Size Diagnostics at KEK Accelerator Test Facility | diagnostics, laser, radiation, photon | 2646 | ||||||
|
Extremely low emittance high current beam is required for the accelerators of the next generation such as linear collider to achieve a reasonable luminosity. However, up to now there is no a simple non-invasive technique for beam diagnostics. A method based on optical diffraction radiation (ODR) appearing when a charged particle passes through a slit between two semi-planes can be one of the promising approaches. The estimations show that it might be possible to measure the beam size as small as 10mcm for a single shot. For a test of the proposed technique we designed an experimental setup and installed it at the extraction line of the KEK-ATF (1.26GeV beam energy, 1010 e/bunch, rms beam size > 10mcm). The electron beam was moving through a 0.26mm wide slit. We have measured backward ODR angular distribution. We have observed the beam size effect on the measured quantities. The sensitivity to the beam size as small as 20mcm was achieved. However, some undesirable factors such as X-ray background, SR photons coming through the mask slit, big detector angular acceptance have to be reduced. In this case a few micrometers beam size could be measured.
|
|
|
||||||
THPLT106 | Measurement of Beam Polarization in VEPP-3 Storage Ring using Internal Target-based Moeller Polarimeter | polarization, electron, background, scattering | 2730 | ||||||
|
A method for beam polarization measurement in a storage ring has been for the first time developed and applied based on measuring the asymmetry in scattering of polarized beam electrons on the internal polarized gas jet target. Using this method we have studied the polarization in VEPP-3 booster storage ring. VEPP-3 is the source of polarized beams for VEPP-4M electron-positron collider in the planned experiment on high-precision mass measurement of tau-lepton near the production threshold of the latter (1777 MeV). Radiative polarization of beams obtained in VEPP-3 is used for absolute calibration of particle energy by the resonant depolarization technique after injection into VEPP-4M ring. The polarimeter design is described. Results of polarization measurements performed in 60 MeV range of VEPP-3 energy contiguous from above to tau-lepton production threshold are presented and discussed. The depolarizing influence of the integer machine spin resonance (1763 MeV) as well as of the combination spin resonances with the betatron frequencies are found to be significant.
|
|
|
||||||
THPLT111 | An Accelerator-based Thermal Neutron Source for BNCT Application | proton, electron, rfq, beam-loading | 2745 | ||||||
|
An accelerator-based thermal neutron source, aimed at the BNCT treatment of skin melanoma is in construction at the INFN-LNL in the framework of SPES project. The BNCT device exploit the intense proton beam provided by a 5 MeV, 30 mA RFQ that represent the first accelerating step of the SPES exotic nuclei production beam facility. Neutrons are generated by 9Be(p,n)9B nuclear reaction in a high power (150 kW) Beryllium target. The operational condition of the Beryllium converter is close to the condition of Be-armoured components in fusion reactors. The main difference consists in the necessity of limitation of structural materials amount used in the design in order to meet therapeutic irradiation requirements. Two possible design of neutron converter are developed: one with saddle block tiles brazed to CuCrZr tubes and another one with Be target made from solid Be block. Results of R&D works on the development of water cooled Be target for converter are presented, including data on selected materials, technological trials and mockups high heat flux testing.
|
|
|
||||||
THPLT114 | A New Mono-energetic Neutron Beam Facility in the 20-180 MeV Range | proton, ion, light-ion, background | 2753 | ||||||
|
Recent interest in nuclear applications involving neutrons, like ransmutation of nuclear waste, fast-neutron cancer therapy, dose to personnel in aviation and electronics failures due to cosmic-ray neutrons, motivate the development of a facility producing intense mono-energetic neutron beams. At The Svedberg laboratory (TSL), Uppsala, Sweden, we have developed such a facility by utilizing the existing cyclotron and inserting a flexible Lithium target in a rebuilt beam line. The new facility can operate at unsurpassed quasi-monoenergetic neutron intensities and provides large flexibility of the neutron beam properties, like diameter and shape.
|
|
|
||||||
THPLT122 | The Energy Deposition Profile of 0.1-3.0 MeV Electrons in NaCl | electron, scattering, positron, radiation | 2756 | ||||||
|
An analysis is presented of existing experimental and theoretical data of energy loss profiles and energy deposition in thick targets irradiated with MeV-energy electrons. A simple approximate calculation is proposed for the energy deposition profile of a perpendicular beam of 0.1-3 MeV electrons in matter. The results obtained with this method are in agreement with existing calculated and measured energy absorption profiles for a variety of materials. It will be shown that the build-up phenomenon has a significant effect on the energy deposition profile in thick samples. A systematic experimental investigation of the energy deposition profile of 0.5 MeV electrons in 0.2 - 0.8 mm thick NaCl platelets has been carried out. The distribution of the absorbed dose was determined with differential scanning calorimetry method by measuring either the latent heat of melting of the radiation-induced Na-precipitates or the stored energy.
|
|
|
||||||
THPLT129 | Ion Chambers for Monitoring the NuMI Beam at FNAL | hadron, ion, proton, instrumentation | 2768 | ||||||
|
We summarize selected instrumentation under construction for the NuMI neutrino beam facility at Fermilab. An array of foil secondary emission monitors (SEM's) will measure the 120GeV proton beam position, profile and halo at 10 stations along the transport to the NuMI target. The final two foil SEM's align the proton beam to within 50 microns on target. These are capable of withstanding the 400kW proton beam and causing <5·10-6 beam loss. Further instrumentation includes four stations of ionization chambers located downstream of the decay volume, one upstream and three downstream of the beam dump. The latter three monitor the tertiary muon beam, the first monitors the remnant hadron beam. The ion chamber arrays align the proton beam to 14microRadian and the neutrino beam to within 50 microRadian, as well as monitoring flux to better than 1%. The ion chambers are designed to withstand the ~1GRad doses and 109 particle/cm2/spill fluxes anticipated during NuMI beam operations. Beam tests and R&D efforts are discussed.
|
|
|
||||||
THPLT153 | Commissioning and Initial Operation of the Isotope Production Facility at the Los Alamos Neutron Science Center | kicker, isotope-production, diagnostics, beam-losses | 2816 | ||||||
|
The recently completed 100-MeV H+ Isotope Production Facility (IPF) at the Los Alamos Neutron Science Center (LANSCE) will provide radioisotopes for medical research and diagnosis, for basic research and for commercial applications. A change to the LANSCE accelerator facility allowed for the installation of the IPF. Three components make up the LANSCE accelerator: an injector that accelerates the H+ beam to 750-KeV, a drift-tube linac (DTL) that increases the beam energy to 100-MeV, and a side-coupled cavity linac (SCCL) that accelerates the beam to 800-MeV. The transition region, a space between the DTL and the SCCL, was modified to permit the insertion of a kicker magnet (23o kick angle) for the purpose of extracting a portion of the 100-MeV H+ beam. A new beam line was installed to transport the extracted H+ beam to the radioisotope production target chamber. This paper will describe the commissioning and initial operating experiences of IPF.
|
|
|
||||||
THPLT172 | Self-adaptive Feed Forward Scheme for the SNS Ring RF System | simulation, extraction, proton, accumulation | 2864 | ||||||
|
During one millisecond of injection stacking, the RF beam current varies from 0 to 50 Amperes. The control loops of the RF system are operative throughout this process. Acceptable setpoints will be found during commissioning, but as vacuum tubes age and beam currents increase these setpoints will become less optimal. A scheme by which the system can optimize itself is presented.
|
|
|
||||||
THPLT183 | Results from the Commissioning of the NSRL Beam Transfer Line at BNL | octupole, beam-transport, optics, ion | 2879 | ||||||
|
The NASA SPACE RADIATION LABORATORY (NSRL) has started operations at the Brookhaven National Laboratory in 2003. The NSRL facility will be used by NASA to study radiation effects. The NSRL facility utilizes proton and heavy-ion beams of energies from 50 to 3000 MeV/n which are accelerated by the AGS_Booster synchrotron accelerator. The beams were extracted[1] ,and transported to a sample which is located 100 m downstream. To date, protons, 12C, 56Fe, 48Ti ion beams of various magnetic rigidities have been transported to the sample location. The NSRL beam transport line has been designed to employ octupole magnetic elements[2] which transform the normal (Gaussian) beam distribution on the sample into a beam with rectangular cross section, and uniformly distributed over the sample. No beam-collimation is applied along any point of the NSRL beam transport line and the beam focusing on the sample is purely magnetic. The experimental and theoretical horizontal and vertical beam envelopes of the first order optics will be presented. The theoretical beam profiles and uniformities at the location of the sample, when the magnetic octupoles are excited (third order optics), will be compared with the experimentally measured ones.
|
|
|
||||||
FRXCH01 | Development of High Power Targets | radiation, proton, injection, recirculation | 276 | ||||||
|
High power targets are at the very heart of most applications of accelerators to science and technology. With many projects aiming to utilize beams in the multi-megawatt power range, solid targets, in particular stationary ones, become increasingly difficult. Liquid metal targets have become the concept of choice. Designs cover a variety of concepts ranging from free jets to allow extraction of low energy ? highly ionizing radiation (pions and muons) to fully enclosed systems if neutron generation is the main goal. Mercury is often the preferred target material due to its liquid state at room temperature and other favourable properties. Designs aiming at high temperature operation depending on small neutron absorption rely on PbBi as target material. Liquid lithium is proposed for a deuteron stripping target for the IFMIF project. Questions that need to be solved include solid-liquid metal reactions, radiation effects, general liquid metal technology, handling of spallation products as well as design of components and subsystems. In addition, short pulse operation leads to the generation of pressure waves inside the targets and the need to control their consequences.
|
|
|
Video of talk
|
|
Transparencies
|
|
||
FRXBCH01 | Novel Ideas and R&D for High Intensity Neutrino Beams | proton, factory, electron, storage-ring | 281 | ||||||
|
Recent developments in neutrino physics, primarily the conclusive demonstration of neutrino oscillations in both atmospheric neutrinos and solar neutrinos, provide the first conclusive evidence for physics beyond the Standard Model of particle physics. The phenomenology of neutrino oscillations, for three generations of neutrino, requires six parameters - two squared mass differences, 3 mixing angles and a complex phase that could, if not 0 or pi, contribute to the otherwise unexplained baryon asymmetry observed in the Universe. Exploring the neutrino sector will requires very intense beams of neutrinos, and needs novel solutions.
|
|
|
Video of talk
|
|
Transparencies
|
|
||
FRYBCH01 | Clean Energy and the Fast Track to Fusion Power | plasma, electron, neutral-beams, ion | 295 | ||||||
|
The theoretical attractions of fusion are clear: used as fuel in a fusion power plant, the lithium in one laptop battery together with 40 litres of water would produce 200,000 kW hours of electricity in an environmentally benign manner. The Joint European Torus (JET), which has produced 16MW, has shown that fusion can work in practice. ITER (the International Tokamak Experimental Reactor) is now essential to test integration of the components at the heart of a fusion reactor, and confirm that a burning plasma, in a fusion device scaled up in all dimensions by a factor of two from JET, to power plant size, has the expected behaviour. ITER should confirm that a fusion power plant can be built. The challenge will then be to build a power plant that would be sufficiently reliable and robust to be economically viable. This will require intensive research and development on the materials needed to construct the plasma vessel and surrounding blanket. These materials will have to be tested under reactor conditions at a dedicated facility called IFMIF (International Fusion Materials Facility). Construction of IFMIF in parallel with ITER would put fusion firmly on the 'fast track' (strongly advocated by the British Government) to the construction of a commercial fusion power plant, which could in principle be in operation within 30 years. I shall describe how a fusion power plant would work, the advantages and disadvantages of fusion, and the challenges that lie ahead.
|
|
|
Video of talk
|
|
Transparencies
|
|