

DESIGN CRITERIA AND TECHNOLOGY CHALLENGES FOR THE UNDULATOR OF THE FUTURE

H. KITAMURA RIKEN/SPring-8, Hyogo, Japan

Coworkers:

T. Hara, T. Tanaka, RIKEN/SPring-8, Hyogo, Japan T. Bizen, X. Marechal, T. Seike, JASRI/ SPring-8, Hyogo, Japan

SPring-8

Undulator

Quasi-monochromatic radiation Highly collimated radiation High brightness !!

Ordinary Undulators (Out-of-Vacuum)

Three Different Types for In-Vacuum Undulators

 In-vacuum undulators (IVUs) based on permanent magnet technology. Since 1990.
 Superconducting undulators (SCUs) of in-vacuum type Since 1999.
 Cryoundulators (CryoUs) Cryogenic permanent magnet undulators just proposed at SPring-8 in May,2004

In-vacuum undulator (SPring-8)

Brief History of In-vacuum Undulator **Development**

EPAC2004

199(199' 199'

Brief History of In-vacuum Undulator Development

1990 First IVU was operated at KEK 1997 Four IVUs were operated at SPring-8 1997 IVU of mini-gap type was operated at NSLS λ_u =11mm, N = 27, G_{min}= 3.2 mm (collaboration with SPring-8)

1999 IVU was operated at ESRF
2001 IVU was operated at SLS
2004 34 IVUs are operated in the world. SPring-8:20, ESRF:4, SLS:3, KEK:2, UVSOR:2, NSLS:2, PLS:1

Important Technological Points in IVU Developments

1. Ultrahigh vacuum → Baking

Permanent magnet (PM) with high coercivity Thermal treatment for PMs Coating on PMs

2. Flexible transition

Smooth and flexible transition necessary between PM array and vacuum chamber **3. Image current heating**

4. Radiation damage in permanent magnets

Important Technological Point-3 Image Current Heating

$$P = MI_b^2 \left(\frac{L_u}{\pi G}\right) \frac{\Gamma(3/4)}{\omega_0 \sigma_t^{3/2}} \sqrt{\frac{\mu_0 \rho}{2}}$$

K. Bane

SPring.8

SPring-8 case $I_b = 6 \text{ mA}, M=16, \sigma_t = 30 \text{ psec},$ $\omega_0 = 1.3 \text{ MHz}$ G = 8 mm, $\rho = 8E10-7 \text{ ohm.m (SS)}$ P = 50 W/m !! $\rho = 2E10-8 \text{ ohm.m (copper)}$ P = 8 W/m !!

Metal cover for magnet arrays

Important Technological Point-4

Radiation Damage in NdFeB PMs

Neutrons produced by electron beam irradiation

Observed in out-of-vacuum undulators at ESRF/APS

However,

Not observed in IVUs at SPring-8

Radiation Damage Test for NEOMAX-XX 2-GeV LINAC at PLS

Summary of Radiation Damage Test

Radiation resistance higher for NdFeB PMs with higher coercivity

Resistance improved drastically by thermal treatment for NdFeB PMs

Choice/treatment of PMs against radiation damage is the same for IVUs as UHV systems

SCU of In-Vacuum Type

Proposed by Forschung Karlsruhe Anka & ACCEL

R. Rossmanith, H. O. Moser, A. Geisler, A. Hobl, D. Krischel, M. Schillo

Prototype, $\lambda_u = 14$ mm B = 1.3 T at $G_{MAG} = 5$ mm

In-vacuum PM undulator B = 0.7 T

Proposed Scheme for In-Vacuum SCUs

How to realize $G_{MAG} = G_{VAC}$

Possibility of Reduction of Image Current Heating

If *RRR* = 60 (copper), Heating power can be reduced to 1/8 compared to that at room temp.

 $RRR=\frac{\rho (T=300K)}{\rho (T=4K)}$

Cooling capacity at 4K : several watts !

3.5-T SC wiggler Cold-bore type (not in-vacuum) E. Wallén and G. LeBlanc, MAX Lab. Operating !!

3.5-T SC wiggler Cold-bore type (not in-vacuum) E. Wallén and G. LeBlanc, MAX Lab. Operating !!

 $\lambda_u = 61 \text{ mm}, N=23, L=1.47 \text{m}$ $G_{VAC}=10.2 \text{ mm}, B = 3.5 \text{ T}$

I=200 mA, $\sigma=25$ psec,

 $P_{image} = 1.37 \text{ W}$ $P_{SR} = 0.26 \text{W}$

Scaling to SPring-8 case 100 mA, 16-bunch operation

$$P_{image} = 40 \text{ W}!$$

Motivation: NdFeB PMs Remanent field : - 0.1 %/K Coercivity : - 0.6%/K

Temperature Dependence of Remanent Field NEOMAX-XX (NdFeB, PrFeB)

Temperature Dependence of Coercivity NEOMAX-XX (NdFeB, PrFeB)

Characteristics of CryoU

- 1. Extension from ordinary IVU design
- 2. Compact cryocooler with 200 W at 80 K available
- 3. High resistance against large thermal budget
- 4. High resistance against radiation damage
- 5. 30 50 % higher field compared to ordinary IVU

Evaluation of Magnetic Performance of Cryoundulator (λ_u =14 mm)

Pure (Halbach) type

Hybrid type

Calculated Magnetic Field in CryoU

RADIA (Chubar, Elleaume and Chavanne)

Comparison of IVU, SCU & CryoU at G_{MAG}=5 mm

Summary

1. In-vacuum undulators

-Performance proven.

- -Standard device as an X-ray source in a medium-scale facility.
- -NdFeB with high coercivity or Sm₂Co₁₇ should be adopted.

2. Superconducting undulators of in-vacuum type

- -Generating highest field at the same magnetic gap.
- -First operation in an electron storage ring is expected.
- -Successful operation depends on the measure

against thermal budget problem.

3. Cryoundulators

-Magnetic performance is much higher than that of IVU but somewhat lower than that of SCU.

-Extension from IVU design. An old IVU can be remodeled to CryoU.

-High resistance against thermal budget.

Very narrow gap may be allowed.

Practical performance may be higher than that of SCU.

-Principle should be verified as soon as possible.

4. Outlook

Future undulator design?

One of the candidates: Combination of CryoU and HTSC

Flexible thermal conductor

Cryocooler

Permanent magnet

Magnet arrays for CryoU

Cryoundulator of prototype under construction

Thank you for your attention!

