

BESSY II OPERATED AS A PRIMARY SOURCE STANDARD

Roman Klein, Reiner Thornagel, Gerhard Ulm Physikalisch-Technische Bundesanstalt,

Institut Berlin

EPAC'04, Luzern, July 8, 2004

- Introduction to PTB
- BESSY II as a source of calculable synchrotron radiation
 - calibration principle
 - measurement of the storage ring parameters
 - application examples
- Outlook

- PTB: German national metrology institute, located in Braunschweig and Berlin
- responsible for the realization and dissemination of the legal units in Germany
- department "Photon Radiometry" located at BESSY II in Berlin-Adlershof
- tasks: Realization and dissemination of radiometric units in the UV, VUV, X-ray spectral range by using
 - BESSY II as primary source standard ("source-based radiometry")
 - a primary detector standard ("detector-based radiometry")
 - Characterization of optical components, in particular for EUV lithography
 - Other applications of quantitative radiation measurements

PTB Radiometry Laboratory at BESSY II

1	plane grating monochromator 30 eV to 1800 eV	4a	undispersed undulator radiation Compton backscattering
2	four crystal monochromator 1.75 keV to 10 keV	4b	plane grating monochromator at undulator 20 eV to 1900 eV
3a	undispersed bending magnet radiation	4c	deflected undispersed undulator radiation EUVL metrology test station
3b	normal incidence monochromator 3 eV to 35 eV	5	normal incidence monochromator 3 eV to 35 eV
30	deflected undispersed bending magnet radiation, EUV irradiation test station		

Source-based radiometry

Basis: Primary source standard electron storage ring BESSY II

- Task 2: Calibration of - energy-dispersive detectors (e. g. Si(Li), HPGe, CCD)

- monochromator-detector systems

Important property: BESSY II has a dynamic range of 12 orders of magnitude in photon flux!

Requirement for calibration: Special operation parameters of the storage ring

Storage ring BESSY II as primary source standard

Storage ring BESSY II as primary source standard

Ring name (Inst.)	Location	Beam energy / GeV	E _c / keV
SURF III (NIST)	Gaithersburg, USA	0.4	0.17
TERAS (NMIJ)	Tsukuba, Japan	0.8	0.57
VEPP-2M (INP)	Novosibirsk, Russia	0.7	0.62
BESSY II (PTB)	Berlin, Germany	1.7	2.5
VEPP-3 (INP)	Novosibirsk, Russia	2.0	4.8

Calculable synchrotron radiation from bending magnets

Radiant power of synchrotron radiation is determined by (Schwinger 1949):

(a) storage ring parameters(b) geometry parameters

Photon flux $\Phi = \Phi$ (*W*, *B*, *I*, Σ_y , ψ , *d*, *r*)

• electron beam and storage ring parameters

- W electron energy
- *B* magnetic induction
- I electron beam current
- $\Sigma_{\mathbf{v}}$ vertical size and divergence of the electron beam

• geometrical quantities

- d distance
- *r* radius of aperture
- ψ emission angle

calculation of the radiant power of synchrotron radiation with a relative uncertainty of < 0.1 %

requires precise determination of the storage ring parameters

parameter	value	rel. uncertainty
electron energy W	1718.60(6) MeV	3.5 ·10 ⁻⁵
magnetic induction B	1.29932(12) T	1 ·10 ⁻⁴
electron beam current I (example)	10.000(2) mA	2 ·10 ⁻⁴
eff. vert. divergence Σ_y	3.5(7) _µ rad	0.2
vert. emission angle ψ	0(2) _µ rad	-
distance d	30 000(2) mm	6.7 .10 ⁻⁵

Validation of the calculation of spectral power of BESSY:

- Comparison to black body in the IR/visible
- Comparison to radionuclides in the X-ray region
- Comparison of BESSY I and BESSY II
- •Total power measured with a primary detector standard

distance

electron energy resonant spin depolarization and Compton Backscattering

beam current two DC PCT, calibrated photodiodes

magnetic induction NMR probe movable to source point (modified vacuum chamber)

source size negligible influence at BESSY II

emission angle during calibration by vertical adjustment

projection of 5-fold slit to plane at known distance

Methods/Equipment

- Resonant spin depolarization for 1.7 GeV: strip-line for depolarization, rf-amplifier loss-detectors (see P. Kuske et al. Proc EPAC 2000, 1771)
- Compton Backscattering of laser photons for 900 MeV and 1.7 GeV: CO₂-laser HPGe-detector

BESSY II: electron energy measurement

Methods/Equipment

currents above 2 mA:

two DC Parametric current transformers

• currents below 2 mA:

three sets of N₂-cooled photodiodes with different filters, illuminated by synchrotron radiation

• currents below 200 pA: single electron counting

BESSY II: electron beam current measurement

BESSY II is a radiation source with a dynamical range of 10¹² in the photon flux

PIB Photon Radiometry

BESSY II: electron beam current measurement

BESSY II is a radiation source with a dynamical range of 10¹² in the photon flux

BESSY II: effective vertical divergence

Calibration of energy-dispersive detectors

- Si(Li)- detectors
- HPGe-detectors
- CCD- detectors
- flow proportional counters

e.g. for astronomy observatories

• CHANDRA (NASA)

XMM-Newton (ESA)

Calibration of radiation sources in the UV and VUV

Storage ring BESSY II as primary source standard

PTB in Berlin-Adlershof: Metrology with synchrotron radiation

Poster THPKF016

- First beam stored: 2007
- Start of user operation: 2008

- At BESSY II, PTB is operating a radiometry laboratory using synchrotron radiation from the UV to the X-ray range
- Radiometric units are realized and disseminated with high accuracy
- This is e.g. done by utilization of BESSY II as a Primary Source Standard; precise determination of storage ring parameters
- Future: PTB is constructing a 600 MeV electron storage ring, the **Metrology Light Source**, optimized for UV and EUV radiometry