Paper | Title | Other Keywords | Page | ||||||
---|---|---|---|---|---|---|---|---|---|
MOOCH01 | Beam Based Alignment at the KEK-ATF Damping Ring | quadrupole, emittance, alignment, lattice | 36 | ||||||
|
The damping rings for a future linear collider will have demanding alignment and stability requirements in order to achieve the low vertical emittance necessary for high luminosity. The Accelerator Test Facility (ATF) at KEK has successfully demonstrated the <5 pm vertical emittance specified for the GLC/NLC Main Damping Rings [*]. One contribution to this accomplishment has been the use of Beam Based Alignment (BBA) techniques. The mode of operation of the ATF presents particular challenges for BBA, and we describe here how we have deduced the offsets of the BPMs with respect to the quadrupoles. We also discuss a technique that allows for direct measurements of the beam-to-quad offsets.
|
* "Extremely Low Vertical-Emittance Beam in the Accelerator Test Facility at KEK", K. Kubo, et al., Phys.Rev.Lett.88:194801,2002 |
|
Video of talk
|
|
Transparencies
|
|
||
MOPKF048 | Injection Beam Loss at the SPring-8 Storage Ring | undulator, storage-ring, simulation, injection | 417 | ||||||
|
Capture efficiency of injection beam is extremely important for top-up operation because open photon shutter permits the bremsstrahlung from lost particles to be transported to experimental floor. Furthermore, since the SPring-8 storage ring has many in-vacuum insertion devices with narrow gap, the demagnetization by the lost electron bombardment is also serious to the beam injection with gap closing. To clarify the loss mechanism of injected beam at the SPring-8 storage ring, we investigate the loss process under various conditions of the storage ring, and especially measure the dependence of injection loss rate on gaps of insertion devices. Comparing the measurements with simulations, we found that an injected particle with a large horizontal amplitude begins to oscillate in vertical direction through error magnetic field and eventually disappears at the vertical limit. It is also found that the low chromaticity of the storage ring is effective for the reduction of injection beam loss. In this paper, we report the loss mechanism of the injection beam of the SPring-8 storage ring and the possible improvements of the capture efficiency.
|
|
|
||||||
MOPLT019 | Experience Gained in the SPS for the Future LHC Abort Gap Cleaning | injection, feedback, optics, proton | 575 | ||||||
|
Abort gap cleaning using a transverse damper (feedback) has been previously shown in the RHIC accelerator. We report on experimental results in the SPS, where the transverse damper was used to excite transverse oscillations on part of an LHC test beam, and by the induced losses, creating a practically particle free zone. It is proposed to use the same principle for abort gap cleaning in the LHC. For the LHC abort gap cleaning may be required at injection energy, during the ramp and at top energy. It is shown how the transverse excitation can be optimized taking into account the actual bandwidth of the damper systems and the possibility to fully modulate their input signal to match the beam batatron tune distribution. The cleaning efficiency and speed is estimated considering the porcesses involved, the cleaning (with damper) and the filling of the abort gap.
|
|
|
||||||
MOPLT024 | Flexibility, Tolerances, and Beam-Based Tuning of the CLIC Damping Ring | coupling, damping, closed-orbit, sextupole | 590 | ||||||
|
The present design of the CLIC damping ring can easily accommodate anticipated CLIC parameter changes. Realistic misalignments of magnets and monitors increase the equilibrium emittance. In simulations we study both the sensitivity to magnet displacements and the emittance recovery achieved by orbit correction, dispersion-free steering and coupling compensation.
|
|
|
||||||
MOPLT037 | Simulation of Transient Beam-feedback Interaction with Application to the Extraction of the CNGS Beam from the SPS | extraction, feedback, kicker, simulation | 626 | ||||||
|
For actual and future high energy proton accelerators, such as the LHC, transverse feedback systems play an essential role in supplying the physics experiments with high intensity beams at low emittances. We developed a simulation model to study the interaction between beam and transverse feedback system in detail, bunch-by-bunch and turn-by-turn, considering the real technical implementation of the latter. A numerical model is used as the nonlinear behavior (saturation) and limited bandwidth of the feedback system, as well as the transient nature at injection and extraction, complicates the analysis. The model is applied to the practical case of the CNGS beam in the SPS accelerator. This beam will be ejected from the SPS in two batches causing residual oscillations by kicker ripples on the second batch. This second batch continues to circulate for some 1000 turns after the first batch has been extracted and oscillations are planned to be damped by the feedback system. It is shown how the model can be extended to the case of transients at injection (LHC), and to include coupled bunch instability effects.
|
|
|
||||||
MOPLT046 | Overcoming Performance Limitations due to Synchrobetatron Resonances in the HERA Electron Ring | resonance, optics, closed-orbit, sextupole | 650 | ||||||
|
The HERA Electron Ring was suffering from strong synchrobetatron resonances which have been particularly detrimental after the HERA luminosity upgrade because of a reduced sychrotron tune due to stronger transverse focusing and a shift in the damping distribution in favor of transverse damping. It turned out to be most difficult to store a beam at the preferred working point for high electron spin polarization between the 2nd and the 3rd synchro-betatron satellite of the horizontal integer resonance. A comparative study of the resonance strength did not reveal any significant additional disadvantage of the new beam optics. However, a mechanism driven by closed orbit distortions was discovered which can increase the width of the resonance Qx+2Qs=0 by a large factor. This explains the operational difficulties. The remedy against this effect is quite straight forward. The Fourier component of the closed orbit near the horizontal tune must be avoided. This is enforced in HERA operations by rigerous orbit corrections and an orbit feedback system which reproduces well-corrected orbits reliably. Synchrobetatron resonances do not constitute a performance limitation of polarized lepton proton collisions in HERA any more.
|
|
|
||||||
MOPLT051 | Experimental Characterization of PEP-II Luminosity and Beam-beam Performance | luminosity, simulation, beam-losses, background | 665 | ||||||
|
The beam-beam performance of the PEP-II B-Factory has been studied by simultaneously measuring the instantaneous luminosity, the horizontal and vertical e+ and e- beam sizes in the two rings, and the spatial extent of the luminous region as extracted from BaBar dilepton data. These quantities, as well as ring tunes, beam lifetimes and other collider parameters are recorded regularly as a function of the two beam currents, both parasitically during routine physics running and in a few dedicated accelerator physics experiments. They are used to quantify, project, and ultimately improve the PEP-II performance in terms of achieved beam-beam parameters, dynamic-beta enhancement, and current-dependence of the specific luminosity.
|
|
|
||||||
MOPLT056 | Feasibility Study for a Very High Luminosity Phi-factory | luminosity, focusing, lattice, radiation | 680 | ||||||
|
Particle factories are facing their future by looking at the possibility of upgrading the luminosity by orders of magnitude. The upgrade challenges are more stringent at lower energies. Double symmetric rings, enhanced radiation damping, negative momentum compaction and very short bunches at the collision point are the main features of a phi-factory feasibility study presented in this paper. The bunch length of few millimeters at the crossing point of the beams is obtained by applying the Strong RF Focusing principle which provides a modulation of the bunch length along the ring by means of a large momentum compaction factor together with a very high RF gradient. The collider design fits the existing DAFNE infrastructures with completely rebuilt rings and upgraded injection system.
|
|
|
||||||
MOPLT087 | Research of Possibility to use Beam Polarization for Absolute Energy Calibration in High-precision Measurement of Tau Lepton Mass at VEPP-4M | resonance, polarization, energy-calibration, synchrotron | 737 | ||||||
|
Experiments of 2002-2003 years on measurement of duration of beam polarization existence in VEPP-4M electron-positron storage ring after injection of polarized beams from VEPP-3 booster at energies in the vicinity of tau-lepton production threshold (1777 MeV) are described. Polarized beams in such conditions are planned to use in the experiment at VEPP-4M with KEDR detector on high precision measurement of tau-lepton mass wiyh the help of resonant depolarization technique for absolute calibration of particle energy. It was shown that despite of closeness of the strong depolarizing integer spin resonance (1763 MeV) the polarization lifetime though is limited, but still is sufficient for realization of energy calibration procedure with a high accuracy (10-6).
|
|
|
||||||
MOPLT110 | Stochastic Cooling in Barrier Buckets at the Fermilab Recycler | pick-up, antiproton, electron, emittance | 794 | ||||||
|
The Fermilab Recycler is a fixed 8-GeV kinetic energy storage ring located in the Fermilab Main Injector tunnel near the ceiling. The role of stochastic cooling in the Recycler is to pre-cool the transverse phase-space of injected antiprotons for efficient electron cooling. This requires a gated stochastic cooling system working on beam confined in a barrier bucket. The performance of this system is reviewed. In addition, a study of the cooling rates and asymmptotic emittances as a function of beam intensity is presented.
|
|
|
||||||
MOPLT129 | Identifying Lattice, Orbit, and BPM Errors in PEP-II | coupling, emittance, lattice, luminosity | 839 | ||||||
|
The PEP-II B-Factory is delivering peak luminosities of up to7.4·1033 1/cm2 1/s. This is very impressive especially considering our poor understanding of the lattice, absolute orbit and beam position monitor system (BPM). A few simple MATLAB programs were written to get lattice information, like betatron functions in a coupled machine (four all together) and the two dispersions, from the current machine and compare it the design. Big orbit deviations in the Low Energy Ring (LER) could be explained not by bad BPMs (only 3), but by many strong correctors (one corrector to fix four BPMs on average). Additionally these programs helped to uncover a sign error in the third order correction of the BPM system. Further analysis of the current information of the BPMs (sum of all buttons) indicates that there might be still more problematic BPMs.
|
|
|
||||||
MOPLT177 | Stochastic Cooling Power Requirements | kicker, emittance, pick-up, luminosity | 941 | ||||||
|
A practical obstacle for stochastic cooling in high-energy colliders is the large amount of power needed for the cooling system. This paper discusses the cooling power needed for the longitudinal cooling process. Based on the coasting-beam Fokker-Planck equation, we analytically derived the optimum cooling rate and cooling power for a beam of uniform distribution and a cooling system of linear gain function. The results indicate that the usual back-of-envelope formula over-estimated the cooling power by a factor of the mixing factor $M$. On the other hand, the scaling laws derived from the coasting-beam Fokker-Planck approach agree with those derived from the bunched-beam Fokker-Planck approach if the peak beam intensity is used as the effective coasting-beam intensity. A longitudinal stochastic cooling system of 4 8 GHz bandwidth in RHIC can effectively counteract intrabeam scattering, preventing the beam from escaping the RF bucket becoming debunched around the ring.
|
|
|
||||||
TUPLT006 | Simple Analytic Formulae for the Properties of Nonscaling FFAG Lattices | quadrupole, lattice, injection, radio-frequency | 1138 | ||||||
|
A hallmark of the "non-scaling" FFAG lattices recently proposed for neutrino factories and muon colliders is that a wide range of momentum is compacted into a narrow radial band; dL/L is of order 10(-3) for dp/p of order unity. This property is associated with the use of F0D0 or FDF triplet lattices in which the F magnet provides a reverse bend. In this paper simple analytic formulae for key lattice properties, such as orbit displacement and path length as a function of momentum, are derived from thin-element models. These confirm the parabolic dependence of path-length on momentum observed with standard orbit codes, reveal the factors which should be adjusted to minimize its variation, and form a useful starting point for the thick-element design (for which analytic formulae are also presented). A key result is that optimized doublet, F0D0 and triplet cells of equal length and phase advance have equal path-length performance. Finally, in the context of a 10-20 GeV/c muon ring, the thin-element formulae are compared against lattice optical properties computed for thick-element systems; the discrepancies are small overall, and most discernible for the triplet lattices.
|
|
|
||||||
TUPLT059 | Evolution of Optical Asymmetries in the Elettra Storage Ring | quadrupole, optics, storage-ring, sextupole | 1288 | ||||||
|
Optical asymmetries have been measured and analyzed, before and after the magnet realignments. One way is to compare theoretical to measured orbit response matrices. Another way is to analyze the measured response matrix itself, by comparing the measured effects at identical optical positions. To evaluate the effects of the sextupoles on the optical asymmetries, the measurements have been performed with the sextupoles ON and OFF. The impact of a partial realignment is also analyzed both by varying the quadrupole excitations as well as by performing dispersion and coupling measurements. The results are presented in this paper.
|
|
|
||||||
TUPLT093 | Tune Survey of Dynamic Apertures for High-brilliance Optics of the Pohang Light Source | dynamic-aperture, emittance, lattice, simulation | 1375 | ||||||
|
The PLS storage ring is a 2.5 GeV light source and the dynamic apertures in a lattice for the low emittance in the ring have been investigated by a simulation method. The dynamic apertures that include effects of machine errors and insertion devices were obtained by a tune survey in the simulation. It was also shown that how large are the dynamic aperture compensated after corrections of a CODs. The betatron tune for the operation of the high-brilliance lattice are investigated based on the view point of dynamic apertures obtained from a tune survey.
|
|
|
||||||
TUPLT098 | Vertical Beam Motion in the AGOR Cyclotron | beam-losses, proton, resonance, cyclotron | 1384 | ||||||
|
Large-scale vertical excursions have been observed in the AGOR cyclotron for light ionbeams at energies close to the focussing limit (E/A =200 Q/A MeV per nucleon). With increasing radius the beam gradually moves down out of the geometrical median plane by several mm, leading to internal beamlosses. It was concluded that this effect is caused by a vertical alignment error of the coils combined with the weak vertical focussing for the beams concerned. Moving the main coils by a total of 0.37 mm has significantly improved the situation at large radii, but results in internal beamlosses for certain beams at small radii due to a large upward excursion. A systematic study of the vertical beam dynamics as a function of beam particle and energy will be presented. Possible causes and solutions will be discussed.
|
|
|
||||||
TUPLT145 | Transverse Coupling Measurement using SVD Modes from Beam Histories | coupling, lattice, simulation, quadrupole | 1470 | ||||||
|
In this report we investigate the measurement of local transverse coupling from turn-by-turn data measured at a large number of beam position monitors. We focus on a direct measurement of coupled lattice functions using the Singular Value Decomposition (SVD) modes and explore the accuracy of this method. The advantages and shortcomings of this model-independent method for coupling measurement will be also discussed.
|
|
|
||||||
TUPLT146 | Techniques to Extract Physical Modes in Model-independent Analysis of Rings | synchrotron, coupling, storage-ring, simulation | 1473 | ||||||
|
SVD mode analysis is a basic techinique in Model-Independent Analysis of beam dynamics. It decomposes the spatial-temporal variation of a beam centroid into a small set of orthogonal modes based on statistical analysis. Although such modes have been proven to be rather informative, each orthogonal mode may not correspond to an individual physical source but a mix of several in order to be orthogonal. Such mixing makes it difficult to quantitatively understand the SVD modes and thus limits their usefulness. Here we report a new techinique to untangle the mixed modes in storage ring analysis based on the fact that most of the physical modes in a ring have identifiable characteristics in frequency domain.
|
|
|
||||||
TUPLT161 | Normal Form Analysis of Linear Beam Dynamics in a Coupled Storage Ring | lattice, coupling, storage-ring, emittance | 1503 | ||||||
|
The techniques of normal form analysis, well known in the literature, can be used to provide a straightforward characterization of linear betatron dynamics in a coupled lattice. Here, we consider both the beam distribution and the betatron oscillations in a storage ring. We find that the beta functions for uncoupled motion generalize in a simple way to the coupled case. Defined in the way that we propose, the beta functions remain well behaved (positive and finite) under all circumstances, and have essentially the same physical significance for the beam size and betatron oscillations as in the uncoupled case. Application of this analysis to the online modeling of the PEP-II rings is also discussed.
|
|
|
||||||
TUPLT185 | Principle of Skew Quadrupole Modulation to Measure Betatron Coupling | coupling, quadrupole, simulation, injection | 1562 | ||||||
|
The idea of modulating Skew Qudrupoles to measure the ring betatron coupling was put forth by T. Roser. In this paper, analytical solutions for this technique is given. Simulation are also carried out based on RHIC. And other relevent issues concerning this technique's application are also discussed. All of them show this idea of modulating skew qudrupoles to measure the betatron coupling are applicable.
|
|
|
||||||
TUPLT190 | Acceleration of Polarized Beams using Multiple Strong Partial Siberian Snakes | resonance, injection, extraction, polarization | 1577 | ||||||
|
Acceleration of polarized protons in the energy range of 5 to 25 GeV is particularly difficult since depolarizing spin resonances are strong enough to cause significant depolarization but full Siberian snakes cause intolerably large orbit excursions. Using a 20 - 30 % partial Siberian snake both imperfection and intrinsic resonances can be overcome. Such a strong partial Siberian snake was designed for the Brookhaven AGS using a dual pitch helical superconducting dipole. Multiple strong partial snakes are also discussed for spin matching at beam injection and extraction.
|
|
|
||||||
WEXLH01 | Non-destructive Beam Measurements | dipole, quadrupole, resonance, emittance | 165 | ||||||
|
In high energy accelerators especially storage rings, non-destructive beam measurements are highly desirable to minimize the impact on the beam quality. In principle, the non-destructive tools can be either passive detectors like Schottky, or active devices which excite either longitudinal or transverse beam motions for the corresponding measurements. An example of such a device is ac dipole, a magnet with oscillating field, which can be used to achieve large coherent betatron oscillations. It has been demonstrated in the Brookhaven AGS that by adiabatically exciting the beam, the beam emittance growth due to the filamentation in the phase space can be avoided. This paper overviews both techniques in general. In particular, this paper also presents the beam tune measurement with Schottky detector, phase advance measurement as well as non-linear resonance measurements with the ac dipoles in the Brookhaven RHIC.
|
|
|
Video of talk
|
|
Transparencies
|
|
||
WEYLH02 | Single Particle Linear and Non-linear Dynamics | lattice, quadrupole, closed-orbit, optics | 184 | ||||||
|
I will give a comprehensive review of existing particle tracking tools to assess long-term particle stability for small and large accelerators in the presence of realistic magnetic imperfections and machine misalignments. The emphasis will be given to the tracking and analysis tools based upon the differential algebra, Lie operator, and "polymorphism". Using these tools, a uniform linear and non-linear analysis will be outlined as an application to the normal form. Finally I will compare simulation results with observations in existing circular accelerators. "Model independent analysis" will be treated as an example for measuring machine optics.
|
|
|
Video of talk
|
|
Transparencies
|
|
||
WEPKF034 | The Modified DAFNE Wigglers | wiggler, sextupole, collider, octupole | 1678 | ||||||
|
Modifications to the pole shape of a spare wiggler have been tested to increase the width of the good field region, with the aim of reducing the effect of nonlinearities affecting the dynamic aperture and the beam-beam interaction. Additional plates realized with the same material of the pole have been machined in several shapes and glued on the poles. Accurate measurements of the vertical field component on the horizontal symmetry plane of the magnet have been performed to find the best profile. The particle motion inside the measured field has been simulated to minimize the field integral on the trajectory, to determine the wiggler transfer matrix and to estimate the amount of non linear contributions. All wigglers in the collider have been modified to the optimized pole shape. Measurements with beam performed with the modified wigglers show a significant reduction of nonlinearities.
|
|
|
||||||
WEPKF043 | Measurement of the Vertical Quadrupolar Tune Shift in the Photon Factory Storage Ring | storage-ring, single-bunch, factory, photon | 1702 | ||||||
|
We measured the frequencies of vertical quadrupole oscillations in the 2.5-GeV Photon Factory storage ring at KEK. The measured vertical quadrupole tunes showed remarkable dependence of about -7.5E-5/mA on the bunch current. This contrasts with our previous result of about +4.8E-5/mA (presented in PAC2003) for the horizontal quadrupole tune shift. These results will suggest that the transverse wake forces in a quadrupolar mode contribute significantly to the transverse motions of particles in the Photon Factory storage ring.
|
|
|
||||||
WEPLT003 | The Study of 2D Sextupole Coupling Resonances at VEPP-4M | resonance, sextupole, dynamic-aperture, coupling | 1819 | ||||||
|
The Study of 2D Sextupole Coupling Resonances at VEPP-4M
|
|
|
||||||
WEPLT006 | Expected Performance and Beam-based Optimization of the LHC Collimation System | proton, collimation, injection, insertion | 1825 | ||||||
|
The cleaning efficiency requirements in the LHC are 2-3 orders of magnitude beyond the requirements at other super-conducting circular colliders. The achievable ideal cleaning efficiency in the LHC is presented and the deteriorating effects of various physics processes and imperfections are discussed in detail for the improved LHC collimation system. The longitudinal distribution of proton losses downstream of the betatron cleaning system are evaluated with a realistic aperture model of the LHC. The results from simplified tracking studies are compared to simulations with complete physics and error models. Possibilities for beam-based optimization of collimator settings are described.
|
|
|
||||||
WEPLT023 | Transverse Resistive Wall Impedance and Wake Function with Inductive Bypass | impedance, dipole, vacuum, simulation | 1876 | ||||||
|
We analyze the resistive wall impedance with an "inductive bypass" due to alternate current paths in the outer vacuum chamber proper. Also the corresponding wake function has been obtained which is useful for the simulation of beam stability in the time domain. Results are presented for the LHC.
|
|
|
||||||
WEPLT030 | Stability Diagrams for Landau Damping with Two-dimensional Betatron Tune Spread from Both Octupoles and Non-linear Space Charge applied to the LHC at Injection | space-charge, octupole, injection, damping | 1897 | ||||||
|
The joint effect of space-charge non-linearities and octupole lenses is discussed for the case of a quasi-parabolic transverse distribution of a monochromatic beam. The self-consistent non-linear space-charge tune shift corresponding to the above distribution function is first derived analytically. The exact dispersion relation is also given but not solved. Instead, noting that a good approximation of the non-linear space-charge tune shift is obtained considering only linear terms in the action variables, the dispersion relation is solved analytically in this approximate case. As expected, in the absence of external (octupolar) non-linearities, the result of Möhl and Schönauer is recovered: there is no stability region. In the absence of space charge, the stability diagrams of Berg and Ruggiero are also recovered. Finally, the new result is applied to the LHC at injection.
|
|
|
||||||
WEPLT045 | Experiments on LHC Long-range Beam-beam Compensation in the CERN SPS | emittance, beam-losses, simulation, closed-orbit | 1936 | ||||||
|
Long-range beam-beam collisions may limit the dynamic aperture and the beam lifetime in storage-ring colliders. Their effect can be compensated by a current-carrying wire mounted parallel to the beam. A compensation scheme based on this principle has been proposed for the Large Hadron Collider (LHC). To demonstrate its viability, a prototype wire was installed at the CERN SPS in 2002. First successful machine experiments explored the dependence of beam loss, beam size, and beam lifetime on the beam-wire distance and on the wire excitation. They appear to confirm the predicted effect of the long-range collisions on the beam dynamics. In 2004, two further wires will become available, by which we can explicitly demonstrate the compensation, study pertinent tolerances, and also compare the respective merits of different beam-beam crossing schemes for several interaction points.
|
|
|
||||||
WEPLT046 | Localizing Impedance Sources from Betatron-phase Beating in the CERN SPS | impedance, quadrupole, optics, focusing | 1939 | ||||||
|
Multi-turn beam-position data recorded after beam excitation can be used to extract the betatron-phase advance between adjacent beam position monitors (BPMs) by a harmonic analysis. Performing this treatment for different beam intensities yields the change in phase advance with current. A local impedance contributes to the average tune shift with current, but, more importantly, it also causes a mismatch and phase beating. We describe an attempt to determine the localized impedance around the SPS ring by fitting the measured betatron phase shift with current at all BPMs to the expected impedance response matrix.
|
|
|
||||||
WEPLT070 | Studies of Current Dependent Effects at ANKA | impedance, synchrotron, storage-ring, closed-orbit | 2011 | ||||||
|
The ANKA electron storage ring is operated at energies between 0.5 and 2.5 GeV. A major requirement for a synchrotron light source, such as ANKA, is to achieve a high beam current. A multitude of mostly impedance related effects depend on either bunch or total beam current. This paper gives an overview over the various beam studies performed at ANKA in this context, specifically the observation of current dependent detuning, the dermination of the bunch length change with current from a measurement of the ratio between coherent and incoherent synchrotron tune and an assessment of the effective longitudinal loss factor from the current dependent horizontal closed orbit distortion.
|
|
|
||||||
WEPLT090 | Nonlinear Evolution of the Beam in Phase Space at Elettra | resonance, beam-losses, coupling, dynamic-aperture | 2059 | ||||||
|
Phase space in the Elettra storage ring has been investigated. The beam is kicked and the coordinates of the bunch centroid are acquired for at least 1000 turns. A Hilbert transform has been used to deduce the evolution of beam phase space from position coordinates. Several nonlinear effects have been detected, such as the amplitude dependence of the betatron tune, the presence of high order and coupling resonances. Fixed points have been evidenced as well as the behaviour of the beam in their neighbourhood. Scans in lifetime versus tune confirm the limiting effect of the observed resonances on the region of regular motion.
|
|
|
||||||
WEPLT105 | Beam-Beam Effects Measured Using Gated Monitors at KEKB | luminosity, emittance, positron, electron | 2095 | ||||||
|
KEKB is a multi-bunch, high-current, electron/positron collider for B meson physics. The two beams collide at one interaction point (IP) with a finite horizontal crossing angle and with a bunch-space of 6 to 8 ns. The luminosity of KEKB is the best in the world. The collision is performed by carefully adjusting a horizontal orbit bump of the electron beam at IP, which results in a horizontal offset to obtain the best luminosity. In order to investigate the asymmetric beam-beam effects, beam parameters of collision and non-collision bunches were compared using beam monitors capable of selecting a specific bunch in a bunch train. The beam-beam kick and the beam-beam tune-shift were obtained by the gated beam-position monitor and by the gated tune monitor. It was found that the horizontal offset was negligibly small in the case of a wide bunch-space of 48 ns. This result suggests that the horizontal offset is related to wake fields including electron-cloud effects.
|
|
|
||||||
WEPLT106 | Growth and Suppression Time of an Ion-related Vertical Instability | octupole, factory, storage-ring, photon | 2098 | ||||||
|
In the KEK Photon Factory electron storage ring, a vertical instability has been observed in a multi-bunch operation mode. The instability can be suppressed by octupole magnetic field in routine operation. Since the instability depends on a vacuum condition in the ring, it seems that it is an ion-related phenomenon. In order to study this instability, we measured the growth and the suppression time of it with the pulse octupole magnet system, which can produce the octupole field with rise and fall time of around 1.2msec. We obtained the result that the instability was grown slowly compared with to suppress it, and the growth time depended on the fill pattern of the bunch train and the beam current per bunch.
|
|
|
||||||
WEPLT107 | Nonlinear field Effects in the JPARC Main Ring | resonance, sextupole, injection, space-charge | 2101 | ||||||
|
Main Ring (MR) of the Japanese Particle Accelerator Research Complex (JPARC) should provide acceleration of the high-intensity proton beam from the energy of 3GeV to 50 GeV. The expected beam intensity is 3.3·1014 ppp and the repetition rate is about 0.3 Hz. The imaginary transition lattice of the ring was adopted, which has the natural linear chromaticity about (-30) for both transverse phase planes. The expected momentum spread of the captured particles before the acceleration is less than 0.007. Two independent families of the chromatic sextupole magnets are use to eliminate the linear chromatic tune shift. This chromatic sextupole field nonlinearity will excite the normal 'octupole' resonances and will lead to the amplitude dependent tune shifts in both transverse phase planes. Additional sextupole magnets are planed to excite the third-order horizontal resonance, which will be used for the slow extraction. Incoherent tune shift of the low-energy proton beam is about (-0.16) so that some particles could cross nearest low-order resonances. Optimization of the 'bare' working point of MR at the injection energy has been performed to minimize the influence of the linear coupling and high-order coupling resonances. Excitation of the linear coupling resonance has been introduced by the realistic misalignment errors adopted for MR. The 'bare' working point during the slow extraction has been analyzed. The influence of the normal sextupole resonances on the large amplitude particle behavior at the scraper location has been studied including random sextupole field component of the MR bending magnets. Realistic distortion of the ideal ring super-periodicity by the injection kicker magnets has been included in the tracking procedure for the on- and off-momentum particles. Finally, correction schemes have been considered for most dangerous resonances around the optimized 'bare' working point. The space-charge effects of the proton beam have not been included in this study.
|
|
|
||||||
WEPLT114 | Field Measurements in the AGS Warm Snake | dipole, resonance, coupling, simulation | 2116 | ||||||
|
A new warm snake has been produced for avoiding the transverse coupling resonance in the Alternating Gradient Synchrotron (AGS) at Brookhaven National Laboratory (BNL). The warm snake is the world?s first normal conducting helical dipole partial snake which has a double pitch structure to allow spin rotation with no net beam offset or deflection with a single magnet. The warm snake is 2.6m long, and has a field of 1.5 Tesla for a 9 degrees spin rotation. The pitches, current density, and shims were optimized by using OPERA_3D / TOSCA. The magnetic field harmonics have been measured using a system of 51 mm long, 34 mm radius tangential coils. The axial variation of the dipole field angle agrees very well with the calculations, indicating no significant construction errors. However, the measured transfer function shows a discrepancy of 4% which may be caused by BH-curve differences, deformation of the iron and packing factor of the laminations. To correct the beam trajectory the operating current was adjusted and shims were installed on the end plates. These optimization studies, and comparison with measurements, will be shown.
|
|
|
||||||
WEPLT144 | New Characteristics of a Single-bunch Instability Observed in the APS Storage Ring | single-bunch, synchrotron, storage-ring, lattice | 2173 | ||||||
|
In the Advanced Photon Source storage ring, a transverse single-bunch instability has long been observed that appears unique to this ring. Many of its features have been previously reported. New results have recently been obtained using beam centroid history measurements and analysis. These preliminary results provide more detailed information regarding the characteristics of this instability and could provide insight into the physics mechanism.
|
|
|
||||||
WEPLT170 | Injection Schemes for Self Consistent Space Charge Distributions | injection, space-charge, closed-orbit, vacuum | 2227 | ||||||
|
This paper is based on recently found sets of self-consistent 2D and 3D time-dependent space charge distributions. A subset of these distributions can be injection-painted into an accumulator ring, such as Spallation Neutron Source Ring, to produce periodic space charge conditions. The periodic condition guarantees zero space-charge-induced halo growth and beam loss during injection. Practical aspects of such schemes are discussed, and simulations of a few specific cases are presented.
|
|
|
||||||
WEPLT181 | Measurement of Multipole Strengths from RHIC BPM Data | dipole, multipole, resonance, lattice | 2242 | ||||||
|
Recently resonance driving terms were successfully measured in the CERN SPS and the BNL RHIC from the Fourier spectrum of BPM data. Based on these measurements a new analysis has been derived to extract multipole strengths.In this paper we present experimental measurements of sextupolar and skew quadrupolar strengths carried out at RHIC. Also discussed is the possibility of a non-destructive measurement using an AC dipole.
|
|
|
||||||
THPKF032 | Cleaning of Parastic Bunches in the ESRF Booster Synchrotron for Time Structure Modes of Operation | booster, injection, acceleration, synchrotron | 2341 | ||||||
|
The ESRF injector booster accelerates electron bunches from 200 MeV to 6 GeV and inject them in a storage ring. It can accelerate a small number (1 to 5) of high charge bunches for the so called "time structure" filling mode operation of the SR. In this case we must avoid storing parasitic low charge bunches in the unused RF bucket of the SR. Until now this was achieved by a resonant knockout of these parasitic bunches on the beam stored in the SR. We have developed and implemented a system allowing the removal of these parasitic electrons during the acceleration in the booster, so that no extra cleaning is needed on the beam stored in the SR. This paper describes our setup and its key components, the tuning of the operating parameters of the system and presents the results achieved.
|
|
|
||||||
THPKF037 | Quasi-isochronus Operation at NewSUBARU | synchrotron, emittance, radiation, electron | 2356 | ||||||
|
Quasi-isochronus operation is one of the operation modes of NewSUBARU, a 1.5 GeV VUV storage ring. NewSUBARU has six invert bending magnets to control the momentum compaction factor. The aim of this research is to explore the extreme reduction of electron bunch length by reducing the linear momentum compaction factor. We experimentally reduced the momentum compaction factor from 0.0014 down to less than 10-5, keeping the beam in the ring. The second-order momentum compaction factor was adjusted to almost zero, while keeping the third-order momentum compaction factor positive. The ring was operated at 1.0 GeV. Using a streak camera, the shortest bunch length we observed was 4 ps FWHM. With such a low momentum compaction factor, we expect an energy spreading by betatron oscillation even at the extremely low beam current.
|
|
|
||||||
THPLT006 | A Comparison of COSY DA Maps with Analytic Formulae for Orbit Functions of a Non-scaling FFAG Accelerator | closed-orbit, electron, quadrupole, acceleration | 2469 | ||||||
|
Fixed Field Alternating Gradient (FFAG) magnetic lattices with fixed, possibly high, radio-frequency proposed for muon acceleration have unusual requirements: relative momentum swing dp/p of ± 30% and relative spread of revolution frequencies < 10(-3). It is not evident whether the existing accelerator optical design codes are sufficiently accurate for such a large momentum range. Analytic expressions for orbit displacements, tunes and path length have been derived for thick-element models of doublet, F0D0 and FDF triplet lattices; it is this paper's purpose to compare these with values computed by SYNCH and COSY, and truncated Taylor maps constructed by Lie algebra. The mutual agreement of results from independent sources will serve to validate them all. A mathematical necessity is that one at least of the magnets be of the combined-function type, and with entrance and exit faces disposed in a sector layout. It is sufficient to consider the triplet case because in the limit that the two F quadrupoles are combined, the cell reduces to the simpler F0D0. We use as our example a "nonscaling" FFAG ring proposed for accelerations of muons over the momentum range 10-20 GeV/c.
|
|
|
||||||
THPLT019 | Commissioning Results of the Multi Bunch Feedback System at SLS | feedback, diagnostics, storage-ring, kicker | 2508 | ||||||
|
Within the frame of the project for a multi bunch feedback system for the Swiss Light Source (SLS), a new family of 500 MS/s analog to digital and digital to analog conversion boards with an 8 bit resolution has been developed, containing on board MUX and DEMUX circuitry to reduce data rates to approximately 20 MS/s using up to ten Front Panel Data Port (FPDP) ports. Using six quad processor DSP boards, full bandwidth bunch by bunch feedbacks in the transverse and longitudinal planes are set up to provide bunch by bunch correction kicks with a 2 nsec resolution. We report on the hardware setup and properties as well as feedback performance in the SLS storage ring.
|
|
|
||||||
THPLT020 | The DSP-based Betatron Tune Feedback of the Ramped 1.5 GeV Electron Storage Ring BoDo | feedback, optics, power-supply, injection | 2511 | ||||||
|
The ramped storage ring BoDo is the full energy injector of the 1.5 GeV synchrotron light source DELTA. All ramped booster magnet power supplies, RF power and beam diagnostics of BoDo are handled by a distributed VME-based DSP (digital signal processor) multiprocessing system developed at DELTA. The VME DSP boards of this system are interconnected by DeltaNet, a novel reflective memory ring network. DeltaNet transmits the measurement data from each DSP board to all other boards in real-time via fibre optic links. The generic hardware and software architecture of the system allows the implementation of different kinds of global real-time feedbacks with correction rates in the range from some 100 Hz to some 10 kHz. This paper presents architecture and performance of a real-time betatron tune feedback that was implemented with the DSP system. The betatron tune is measured and corrected in both planes at a rate of typically 700 Hz for arbitrary beam optics and energy ramps of BoDo. In combination with the global Bodo orbit feedback, the tune feedback increases the performance of Bodo both as an injector and as a testbed for machine studies and newly developed accelerator components.
|
|
|
||||||
THPLT090 | The Operating of Digital Beam Position Monitor in NSRRC | closed-orbit, diagnostics, storage-ring, feedback | 2706 | ||||||
|
The digital beam position monitors are configured to operation system in the NSRRC now. This integration includes of multi-channel access, channel calibration, gain control, and parameter control to meet various operation condition, perform functionality and performance evaluation. The programmability nature of DBPM system is essential for multi-mode high precision beam position measurement. The system will support high performance beam position, turn-by-turn beam position, tune and other diagnostic measurements. Control system interface was implemented to support the operation of DBPM system. T various aspects will be discussed and presented in this report.
|
|
|
||||||
THPLT107 | VEPP-4M Optical Beam Profile Monitor with a One-turn Temporal Resolution | collider, pick-up, diagnostics, synchrotron | 2733 | ||||||
|
The transverse beam profile monitor based on Hamamatsu multi-anode photomultiplier with 16 anode strips is used at the VEPP-4M collider. The monitor is applied to study turn-to-turn dynamics of the transverse beam profile during 131 000 turns. The device provides a permanent measurement of synchrotron and betatron frequencies as well.
|
|
|
||||||
THPLT135 | Experience with the 1.7 GHz Schottky Pick-ups in the Tevatron | proton, pick-up, antiproton, emittance | 2777 | ||||||
|
During a 2003 shutdown, new high-frequency Schottky pick-ups were installed in the Tevatron. These devices operate at 1.7 GHz (harmonic ~36000 of the revolution frequency) and can in principle be used to measure tunes, chromaticities, momentum spread and transverse emittances of individual bunches. Only the transverse signal is used, as the longitudinal is dominated by coherent signal. The default mode of operation during a store is to sequentially acquire and analyze frequency data from different sets of bunches in the machine. This function is performed by an open access client written in Java/C++, running in the background. The resulting fit parameters are datalogged and can also be plotted in "real time" during the store. With an alternative setup, data from select bunches can be acquired continuously during the entire ramp (and squeeze), for analysis off-line. This paper describes the evolution, current status and performance of the acquisition and analysis software, and presents measurements with comparison to predictions and other measurement techniques. One example of such a measurement is the variation of beam-beam tune shift as a function of intensity and bunch position within a train.
|
|
|
||||||
THPLT150 | Results from Orbit and Optics Improvement by Evaluating the Nonlinear Beam Position Monitor Response in CESR | coupling, closed-orbit, optics, electron | 2807 | ||||||
|
In the Cornell Electron/positron Storage Ring (CESR), pretzel orbits with large horizontal oscillations are used to keep electron and positron beams out of collision except at the interaction point. Since a beam position monitor's (BPM's) response is only linear near the center of the beam pipe, the assumption of linearity does not allow for accurate orbit and phase measurements under colliding beam conditions. Using a numerical model of the BPMs' response to large offsets of the beam position, and an enhanced algorithm for real-time inversion of this nonlinear response function, we have extended our orbit and betatron phase measurements to beams with large pretzel amplitudes. Several measurements demonstrate the applicability, accuracy, and usefulness of this method.
|
|
|
||||||
THPLT151 | Evaluation of Beam Position Monitors in the Nonlinear Regime | closed-orbit, electron, positron, coupling | 2810 | ||||||
|
Here we present a new algorithm for processing BPM signals and extracting orbit and phase data for very large beam excursion where the BPM response function changes nonlinearly with the beam position. Using two dimensional models of each BPM geometry, we calculate the button response using numerical solution of Laplace's equation and Green's reciprocity theorem. The difference between the calculated signals and the measured signals is minimized in real time to calculate the beam position and measurement errors. Using the derivatives of the response functions, we model the effect of beam shaking, and from it, calculate the betatron phase.
|
|
|
||||||
THPLT160 | Measurements of Transverse Coupled-bunch Instabilities in PEP-II | feedback, damping, diagnostics, impedance | 2834 | ||||||
|
At the design currents the PEP-II High and Low Energy Rings operate above the coupled-bunch instability thresholds in horizontal and vertical planes. Both machines have used analog bunch-by-bunch feedback systems to stabilize the beams since commissioning. Here we present a measurement technique that uses the capabilities of the PEP-II programmable digital longitudinal feedback system to provide transient diagnostics in X or Y directions. This technique allows one to measure instability growth or damping rates as well as oscillation frequencies in both open-loop and closed-loop conditions. Based on these measurements the configuration of the relevant transverse feedback channel can be optimized. The technique will be illustrated with instability measurements and feedback optimization examples. Comparisons of the measured modal patterns and growth rates to the theoretical predictions will be presented.
|
|
|
||||||
THPLT162 | Diagnosis of Coupling and Beta Function Errors in the PEP-II B-Factory | coupling, lattice, storage-ring, resonance | 2840 | ||||||
|
The SLAC Control program has an automatic phase measuring system whereby the beta functions of the two storage rings are measured. This facility has recently been extended to measure coupling between the horizontal and vertical motion and to fit the measured values to their modes of propagation. This facility aids the diagnosis and correction of coupling and focusing errors.
|
|
|
||||||
THPLT165 | Synchrotron Light Interferometry at JEFFERSON Lab | synchrotron, instrumentation, monitoring, alignment | 2846 | ||||||
|
The hyper-nuclear physics program at JLAB requires an upper limit on the RMS momentum spread of dp/p<3e-5. The momentum spread is determined by measuring the beam width at a dispersive location (D~4m) in the transport line to the experimental halls. Ignoring the epsilon-beta contribution to the intrinsic beam size, this momentum spread corresponds to an upper bound on the beam width of σ_beam<120um. Typical techniques to measure and monitor the beam size are either invasive or do not have the resolution to measure such small beam sizes. Using interferometry of the synchrotron light produced in the dispersive bend, the resolution of the optical system can be made very small. The non-invasive nature of this measurement allows continuous monitoring of the momentum spread. Two synchrotron light interferometers have been built and installed at JLAB, one each in the Hall-A and Hall-C transport lines. The devices operate over a beam current range from 1uA to 100uA and have a spatial resolution of 10um. The structure of the interferometers, the experience gained during its installation, beam measurements and momentum spread stability are presented. The dependence of the measured momentum spread on beam current will be presented.
|
|
|