A   B   C   D   E   F   G   H   I   K   L   M   O   P   Q   R   S   T   U   V   W    

dumping

Paper Title Other Keywords Page
TPAP010 Reliability Analysis of the LHC Beam Dumping System diagnostics, extraction, kicker, collider 1201
 
  • R. Filippini, E. Carlier, L. Ducimetière, B. Goddard, J.A. Uythoven
    CERN, Geneva
  The design of the LHC Beam Dumping System is aimed at ensuring a safe beam extraction and deposition under all circumstances. The system adopts redundancy and continuous surveillance for most of its parts. Extensive diagnostics after each beam dumping action will be performed to reduce the risk of a faulty operation at the subsequent dump trigger. Calculations of the system’s safety and availability are presented, considering the detailed design of the trigger generation system and the power converters of the beam dumping kickers and septa magnets.  
 
TPAP011 Reliability Assessment of the LHC Machine Protection System beam-losses, diagnostics, collider, hadron 1257
 
  • R. Filippini, B. Dehning, G. Guaglio, F. Rodriguez-Mateos, R. Schmidt, B. Todd, J.A. Uythoven, A. Vergara-Fernández, M. Zerlauth
    CERN, Geneva
  A large number of complex systems will be involved in ensuring a safe LHC operation, such as beam dumping and collimation, beam loss and position detection, quench protection, power interlock controller and beam interlock system. The latter will monitor the status of all other systems and trigger the beam abort if necessary. While the overall system is expected to provide an extremely high level of protection, none of the involved components should unduly impede machine operation by creating physically unfounded dump requests or beam inhibit signals. This paper investigates the resulting trade-off between safety and availability and provides quantitative results for the most critical protection elements.  
 
TPAP013 The Performance of the New TCDQ System in the LHC Beam Dumping Region simulation, proton, secondary-beams, monitoring 1324
 
  • A. Presland, B. Goddard, W.J.M. Weterings
    CERN, Geneva
  The superconducting quadrupole magnet Q4 in IR6 and other downstream LHC machine elements risk destruction in the event of a beam dump that is not synchronised with the abort gap. In order to protect these elements, a single sided mobile graphite diluter block TCDQ, in combination with a two-sided secondary collimator TCS and an iron shield TCDQM, will be installed in front of Q4. This protection system should also intercept spurious particles in the beam abort gap to prevent quenches from occurring during regular beam aborts, and must also intercept the particles from the secondary halo during low beam lifetime without provoking quenches. The conceptual design of the TCDQ system is briefly presented, with the load conditions and performance criteria. The FLUKA energy deposition simulations are described, and the results discussed in the context of the expected performance levels for LHC operation.  
 
WPAE020 A Large Diameter Entrance Window for the LHC Beam Dump Line vacuum, proton, simulation, shielding 1698
 
  • A. Presland, B. Goddard, J.M. Jimenez, D.R. Ramos, R. Veness
    CERN, Geneva
  The graphite LHC beam dump block TDE has to absorb the full LHC beam intensity at 7 TeV. The TDE vessel will be filled with inert gas at atmospheric pressure, and requires a large diameter entrance window for vacuum separation from the beam dumping transfer line. The swept LHC beam must traverse this window without damage for regular operation of the beam dump dilution system. For dilution failures, the entrance window must survive most of the accident cases, and must not fail catastrophically in the event of damage. The conceptual design of the entrance window is presented, together with the load conditions and performance criteria. The FLUKA energy deposition simulations and ANSYS stress calculations are described, and the results discussed.