Distributed Matching Scheme and a Flexible Deterministic Matching Algorithm for Arbitrary Systems IPAC 2016, Busan, Korea

Yu-Chiu Chao May 9th, 2016

Exploring Alternative Approaches to Matching

*Performance Improvements through Distributed Matching
$>$ Envelope and Jitter Control Not Limited by Geographical Location
$>$ Avoiding Beam Blowup \& Optical Sensitivity Due to Drastic Matching
$>$ Improving Error Tolerance \& Dynamic Correction Capability
A New Approach to Matching Algorithm
$>$ Robustness and Determinism
$>$ Logic and Insight
$>$ Flexibility and Control
$>$ Solution Capability - Less Vulnerable to Optics/System Complexity

* Advantages through Operational Implementation
$>$ Pre-Computed Matching Solutions
$>$ Speed - Major Computation Done Offline
$>$ User Control and Options

Motivation for Distributed Matching

[^0]
(
.
\square
-

\qquad
\qquad

Motivation for Distributed Matching

Motivation for Distributed Matching

30° FODO

Lattice
Design $\beta_{\mathrm{X} / \mathbf{Y}}$
Mismatched

Motivation for Distributed Matching

Motivation for Distributed Matching

Motivation for Distributed Matching

Distributed Matching over 7.5 cells at source

Motivation for Distributed Matching

Distributed Matching over 7.5 cells at source
$\delta \mathrm{M}_{21}(1 / \mathrm{m})$

Motivation for Distributed Matching

Distributed Matching over 7.5 cells at source

Motivation for Distributed Matching

Distributed Matching over 7.5 cells at source

Motivation for Distributed Matching

30° FODO
 Lattice

Design $\beta_{\mathrm{X} / \mathrm{Y}}$
Mismatched
Local Matching

Distributed Matching over 7.5 cells at source
Local Matching with 1% setting Error

Motivation for Distributed Matching

30° FODO
 Lattice

Design $\beta_{\mathrm{X} / \mathbf{Y}}$
Mismatched
Local Matching

Distributed Matching over 7.5 cells at source
Local Matching with 1% setting Error
Distributed Matching over 2.5 cells at source

Motivation for Distributed Matching

30° FODO

Lattice
Design $\beta_{\mathrm{X} / \mathbf{Y}}$
Mismatched
Local Matching

Distributed Matching over 7.5 cells at source
Local Matching with 1% setting Error
Distributed Matching over 2.5 cells at source
Advantages of Distributed Matching Scheme:

Motivation for Distributed Matching

30° FODO

Lattice
Design $\beta_{\mathrm{X} / \mathbf{Y}}$
Mismatched
Local Matching

Distributed Matching over 7.5 cells at source
Local Matching with 1% setting Error
Distributed Matching over 2.5 cells at source
Advantages of Distributed Matching Scheme: Mismatch arrested on the sopt

Motivation for Distributed Matching

30° FODO

Lattice
Design $\beta_{\mathrm{X} / \mathbf{Y}}$
Mismatched
Local Matching

Distributed Matching over 7.5 cells at source
Local Matching with 1% setting Error
Distributed Matching over 2.5 cells at source
Advantages of Distributed Matching Scheme:
Mismatch arrested on the sopt

Blowup averted

Motivation for Distributed Matching

30° FODO

Lattice
Design $\beta_{\mathrm{X} / \mathbf{Y}}$
Mismatched
Local Matching

Distributed Matching over 7.5 cells at source
Local Matching with 1% setting Error
Distributed Matching over 2.5 cells at source
Advantages of Distributed Matching Scheme:
Mismatch arrested on the sopt

Blowup averted
Matching failure dynamically corrected

Motivation for Distributed Matching

30° FODO

Lattice
Design $\beta_{\mathrm{X} / \mathbf{Y}}$
Mismatched
Local Matching

Distributed Matching over 7.5 cells at source
Local Matching with 1% setting Error
Distributed Matching over 2.5 cells at source
Advantages of Distributed Matching Scheme: * Mismatch arrested on the sopt

Blowup averted
Matching failure dynamically corrected
Baseline optics minimally perturbed

Two Schemes of Accelerator Control Configuration

* Localized Control
$>$ Limited/Costly/Bulky monitor \& actuator
> Little cumulative/compounded error
$>$ Damage is mostly localized
$>$ Example: Dispersion, σ_{L}, Energy, $\sigma_{\mathrm{E}} \ldots .>$ Example: Transverse orbit Transverse Matching (Beam \&Transport) Fits the Distributed Model Better, But....

Traditionally It Acquired a Local Flavor in Design \& Operation.

* A legacy deserving revisit: Without adequate monitoring, competent global algorithm, and real time computing power, this was understandable.
* Not unlike global steering by correctors before these ingredients were in place. Aversion to Chaos largely responsible for traditional Local Matching Paradigm $\Rightarrow 100 \%$ matching within dedicated section; Other quads passively hold up transport.
$>$ Dedicated matching sections are required - Extra constraint on design \& operation
$>$ Long range cumulative error; Drastic correction; Local blowup, Solution difficulty.
$>$ No recourse to matching failure; No error tolerance; No dynamic correction.
$>$ And: Large beam envelope/jitter can sample nonlinearities in irreversible ways. The Message:
$>$ Primary role of quads is Envelope/Jitter containment, better actively than passively.
$>$ It's not about whether, but how to use all quads for matching in an intelligent way.

Optimization \Rightarrow Optimized Trade-Off $-\left(2^{\text {nd }}\right)$ Alternate View

* Distributed Matching \Rightarrow Partially Matched Solutions
\Rightarrow Degeneracy \Rightarrow Require Further Constraints to Produce Unique Answer
* Matching is never single-objective at the cost to all else (e.g. Quad Strength) \Rightarrow Needs Rigorous Framework for Trade-Off between Competing Objectives Lagrange Multiplier Formulation
Variables: $\quad k_{1}, k_{2}, \ldots k_{N}$
Objective 1: $\boldsymbol{F}\left(k_{1}, k_{2}, \ldots k_{N}\right)$
Objective 2: $\boldsymbol{H}\left(k_{1}, k_{2}, \ldots k_{N}\right)$

Optimization \Rightarrow Optimized Trade-Off $-\left(2^{\text {nd }}\right)$ Alternate View

* Distributed Matching \Rightarrow Partially Matched Solutions
\Rightarrow Degeneracy \Rightarrow Require Further Constraints to Produce Unique Answer
* Matching is never single-objective at the cost to all else (e.g. Quad Strength) \Rightarrow Needs Rigorous Framework for Trade-Off between Competing Objectives Lagrange Multiplier Formulation

Variables: $k_{1}, k_{2}, \ldots k_{N}$ Objective 1: $\boldsymbol{F}\left(k_{1}, k_{2}, \ldots k_{N}\right)$
Objective 2: $\boldsymbol{H}\left(k_{1}, k_{2}, \ldots k_{N}\right)$

Objective 1: $F=\Phi$
Generalized 4D mismatch factor

$$
\boldsymbol{F}=\Phi=\frac{1}{4} \operatorname{Tr}\left(\Sigma_{D}^{-1} \cdot M\left(k_{m}\right) \cdot \Sigma_{R} \cdot M^{T}\left(k_{m}\right)\right) \geq 1
$$

R: Actual
Objective 2: $\boldsymbol{H}=\Delta \mathbb{K}$: RMS Quad deviation off design

$$
\boldsymbol{H}=\Delta \mathrm{K}=\sum_{m=1}^{N_{Q}}\left(k_{m}^{R}-k_{m}^{D}\right)^{2}=\sum_{k=1}^{N_{Q}} \delta k_{m}^{2} \geq 0
$$

D: Design_{5}

RECIPE

Starting point $\left(\Delta \mathrm{K}=0, \Phi=\Phi_{0}\right)$:

$$
\begin{aligned}
\boldsymbol{\mu}=0 ; \quad \boldsymbol{k}_{\boldsymbol{i}}=\mathbf{0} \\
\left.\frac{d \boldsymbol{k}_{\boldsymbol{i}}}{d \mu}\right|_{\mu=0}=\left.\frac{1}{2} \frac{\partial F(\boldsymbol{k})}{\partial k_{\boldsymbol{i}}}\right|_{k_{m}=0}
\end{aligned}
$$

Evolution of $\boldsymbol{k}_{\boldsymbol{i}}(\lambda=1 / \mu)$:

$$
\frac{d \boldsymbol{k}}{d \boldsymbol{f}}\left|=\frac{1}{\lambda} \cdot \frac{\operatorname{Adj}(\boldsymbol{M}) \cdot \boldsymbol{R}}{\boldsymbol{R}^{T} \cdot \operatorname{Adj}(\boldsymbol{M}) \cdot \boldsymbol{R}}, \quad \frac{d \boldsymbol{k}}{d \boldsymbol{h}}\right|=\frac{\operatorname{Adj}(\boldsymbol{M}) \cdot \boldsymbol{R}}{\boldsymbol{R}^{T} \cdot \operatorname{Adj}(\boldsymbol{M}) \cdot \boldsymbol{R}} \quad \boldsymbol{R}^{T} \cdot \operatorname{Adj}(\boldsymbol{M}) \cdot \boldsymbol{R} \neq 0
$$

$$
\frac{d \boldsymbol{k}}{d \lambda}\left|=\boldsymbol{M}^{-1} \cdot \boldsymbol{R}, \quad \frac{d \boldsymbol{k}}{d \mu}\right|=\boldsymbol{N}^{-1} \cdot \boldsymbol{S} \quad \operatorname{Det}(\boldsymbol{M}) \neq 0
$$

$$
\boldsymbol{M}_{i j}=\frac{\partial^{2}(F(\boldsymbol{k})-\lambda \cdot H(\boldsymbol{k}))}{\partial k_{i} \partial k_{j}}, \quad \boldsymbol{R}_{\boldsymbol{i}}=\frac{\partial H(\boldsymbol{k})}{\partial k_{\boldsymbol{i}}}
$$

Evolution of Quad $\boldsymbol{k}_{\boldsymbol{i}}$

Evolution of $\lambda \& \mu=1 / \lambda$ vs Φ

RECIPE

Starting point $\left(\Delta \mathrm{K}=0, \Phi=\Phi_{0}\right)$:

$$
\begin{aligned}
\mu=0 ; \quad \boldsymbol{k}_{\boldsymbol{i}}=\mathbf{0} \\
\left.\frac{d \boldsymbol{k}_{\boldsymbol{i}}}{d \mu}\right|_{\mu=0}=\left.\frac{1}{2} \frac{\partial F(\boldsymbol{k})}{\partial k_{i}}\right|_{k_{m}=0}
\end{aligned}
$$

$$
\frac{d \boldsymbol{k}}{d \boldsymbol{f}}\left|=\frac{1}{\lambda} \cdot \frac{\operatorname{Adj}(\boldsymbol{M}) \cdot \boldsymbol{R}}{\boldsymbol{R}^{T} \cdot \operatorname{Adj}(\boldsymbol{M}) \cdot \boldsymbol{R}}, \frac{d \boldsymbol{k}}{d \boldsymbol{h}}\right|=\frac{\operatorname{Adj}(\boldsymbol{M}) \cdot \boldsymbol{R}}{\boldsymbol{R}^{T} \cdot \operatorname{Adj}(\boldsymbol{M}) \cdot \boldsymbol{R}} \quad \boldsymbol{R}^{T} \cdot \operatorname{Adj}(\boldsymbol{M}) \cdot \boldsymbol{R} \neq 0
$$

$$
\frac{d \boldsymbol{k}}{d \lambda}\left|=\boldsymbol{M}^{-1} \cdot \boldsymbol{R}, \quad \frac{d \boldsymbol{k}}{d \mu}\right|=\boldsymbol{N}^{-1} \cdot \boldsymbol{S} \quad \operatorname{Det}(\boldsymbol{M}) \neq 0
$$

$$
\boldsymbol{M}_{\boldsymbol{i j}}=\frac{\partial^{2}(F(\boldsymbol{k})-\lambda \cdot H(\boldsymbol{k}))}{\partial k_{i} \partial k_{j}}, \quad \boldsymbol{R}_{\boldsymbol{i}}=\frac{\partial H(\boldsymbol{k})}{\partial k_{\boldsymbol{i}}}
$$

Evolution of

Evolution
Quad \boldsymbol{k}_{i}

Evolution of $\lambda \& \mu=1 / \lambda$ vs Φ

* End Point (Optimally Matched): $\lambda=0$

Evolution of $\boldsymbol{k}_{\boldsymbol{i}}(\lambda=1 / \mu)$:

More Robust Formulation (Singularity Free)

* Tailored to a Runge-Kutta type process with only local derivatives defined.

Start/Stop	Integration Formula	Evolution of Competing Objectives
$0>\mu>-1$	$\frac{d \boldsymbol{k}}{d k}= \pm \widehat{\boldsymbol{Q}}, \quad \boldsymbol{Q}=\operatorname{Adj}(\boldsymbol{N}) \cdot \boldsymbol{S}$	$\frac{d f}{d k}= \pm \frac{\left(\boldsymbol{S}^{T} \cdot \operatorname{Adj}(\boldsymbol{N}) \cdot \boldsymbol{S}\right)}{\|\boldsymbol{Q}\|}= \pm \boldsymbol{S}^{T} \cdot \widehat{\boldsymbol{Q}}$
	$\frac{d \mu}{d k}= \pm \frac{\operatorname{Det}(\boldsymbol{N})}{\|\boldsymbol{Q}\|}$	$\frac{d h}{d k}= \pm \frac{\mu \cdot\left(\boldsymbol{S}^{T} \cdot \operatorname{Adj}(\boldsymbol{N}) \cdot \boldsymbol{S}\right)}{\|\boldsymbol{Q}\|}= \pm \mu \cdot \boldsymbol{S}^{T} \cdot \widehat{\boldsymbol{Q}}$

$$
\begin{array}{ll}
\boldsymbol{M}_{i j}=\frac{\partial^{2}(F(\boldsymbol{k})-\lambda \cdot H(\boldsymbol{k}))}{\partial k_{i} \partial k_{j}}, & \boldsymbol{R}_{\boldsymbol{i}}=\frac{\partial H(\boldsymbol{k})}{\partial k_{i}} \\
\boldsymbol{N}_{i j}=\frac{\partial^{2}(H(\boldsymbol{k})-\mu \cdot F(\boldsymbol{k}))}{\partial k_{i} \partial k_{j}}, & \boldsymbol{S}_{i}=\frac{\partial F(\boldsymbol{k})}{\partial k_{i}}
\end{array}
$$

with no adverse effects.

More Robust Formulation (Singularity Free)

* Tailored to a Runge-Kutta type process with only local derivatives defined.

Start/Stop	Integration Formula	Evolution of Competing Objectives
$0>\mu>-1$	$\begin{aligned} & \frac{d k}{d k}= \pm \widehat{Q}, \quad Q=\operatorname{Adj}(N) \cdot S \\ & \frac{d \mu}{d k}= \pm \frac{\operatorname{Det}(N)}{\|Q\|} \end{aligned}$	$\begin{aligned} & \frac{d f}{d k}= \pm \frac{\left(\boldsymbol{S}^{T} \cdot \operatorname{Adj}(\boldsymbol{N}) \cdot \boldsymbol{S}\right)}{\|\boldsymbol{Q}\|}= \pm S^{T} \cdot \widehat{\boldsymbol{Q}} \\ & \frac{d h}{d k}= \pm \frac{\mu \cdot\left(\boldsymbol{S}^{T} \cdot \operatorname{Adj}(\boldsymbol{N}) \cdot \boldsymbol{S}\right)}{\|\boldsymbol{Q}\|}= \pm \mu \cdot \boldsymbol{S}^{T} \cdot \hat{\mathbf{Q}} \end{aligned}$
$-1<\lambda<0$	$\begin{aligned} & \frac{d k}{d k}= \pm \widehat{P}, \quad P=\operatorname{Adj}(\boldsymbol{M}) \cdot R \\ & \frac{d \lambda}{d k}= \pm \frac{\operatorname{Det}(\boldsymbol{M})}{\|\boldsymbol{P}\|} \end{aligned}$	$\begin{aligned} & \frac{d f}{d k}= \pm \frac{\left.\lambda \cdot \boldsymbol{R}^{T} \cdot \operatorname{Adj}(\boldsymbol{M}) \cdot \boldsymbol{R}\right)}{\|\boldsymbol{P}\|}= \pm \lambda \cdot \boldsymbol{R}^{T} \cdot \widehat{\boldsymbol{P}} \\ & \frac{d h}{d k}= \pm \frac{\left(\boldsymbol{R}^{T} \cdot \operatorname{Adj}(\boldsymbol{M}) \cdot \boldsymbol{R}\right)}{\|\boldsymbol{P}\|}= \pm \boldsymbol{R}^{T} \cdot \widehat{\boldsymbol{P}} \end{aligned}$

$$
\begin{array}{ll}
M_{i j}=\frac{\partial^{2}(F(\boldsymbol{k})-\lambda \cdot H(\boldsymbol{k}))}{\partial k_{i} \partial k_{j}}, & R_{i}=\frac{\partial H(\boldsymbol{k})}{\partial k_{i}} \\
N_{i j}=\frac{\partial^{2}(H(\boldsymbol{k})-\mu \cdot F(\boldsymbol{k}))}{\partial k_{i} \partial k_{j}}, & s_{i}=\frac{\partial F(\boldsymbol{k})}{\partial k_{i}} \\
\hline
\end{array}
$$

Determinism - What Makes This Algorithm Unique

* Deterministic Start-of-Procedure
$>$ User defined starting $\boldsymbol{k}_{\boldsymbol{i}}$ (e.g. $\Delta \boldsymbol{k}_{\boldsymbol{i}}=0$, and $\boldsymbol{d} \boldsymbol{k}_{\boldsymbol{i}} / \boldsymbol{d} \boldsymbol{\mu}$ accordingly)
$>$ No "inspired guesses" for initial value
> No random number search
$>$ No case-by-case parameter tweaking to "guide" the solution
* Deterministic End-of-Procedure
A. If $\boldsymbol{\lambda}=\mathbf{0}$, Stop. (Best matching when $\Phi=1$ is not rigorously possible)
B. If $\boldsymbol{\lambda} \neq \mathbf{0}$, Don't stop. (Big gain by insisting on $\boldsymbol{\lambda}=0$ even when $\Phi \cong 1$)
$>$ Both are less trivial than appear
$>$ Conventional algorithm: Ambivalent about \mathbf{A}, and can stop short of \mathbf{B} and $\underline{\text { miss significant payoff. (Example to follow) }}$

A Solution is Guaranteed, Plus
$>$ Guaranteed Global optimum for all intermediate solutions
$>$ Entire range of intermediate optimal solutions between $\mu=0$ and $\lambda=0$

More Advantages

$>$ Works on any system, including XYcoupled and interspersed modules

$>$ Computational demand is a slow function of optics/system complexity

Try Solving $\nabla \Phi=0$ for 5 Quads

$>$ Systematic procedure to map out and isolate Global optimum (Pareto Front)
$>$ Complete range of options for optimal

Design vs Actual X Phase Space trade-off (Ideal for distributed matching)

ΔK vs Φ

Design vs Actual Y Phase

$$
=7254.6033
$$

More Advantages

$>$ Works on any system, including XYcoupled and interspersed modules

$>$ Computational demand is a slow function of optics/system complexity

Try Solving $\nabla \Phi=0$ for 5 Quads

$>$ Systematic procedure to map out and isolate Global optimum (Pareto Front)
$>$ Complete range of options for optimal

Quad K1-6 RMS $=0.019959500$
$\Delta \mathrm{K}$ vs Φ

More Advantages

$>$ Works on any system, including XYcoupled and interspersed modules

$>$ Computational demand is a slow function of optics/system complexity

Try Solving $\nabla \Phi=0$ for 5 Quads

$>$ Systematic procedure to map out and isolate Global optimum (Pareto Front)
$>$ Complete range of options for optimal

 trade-off (Ideal for distributed matching)

More Advantages

$>$ Works on any system, including XYcoupled and interspersed modules

$>$ Computational demand is a slow function of optics/system complexity

Try Solving $\nabla \Phi=0$ for 5 Quads

$>$ Systematic procedure to map out and isolate Global optimum (Pareto Front)
$>$ Complete range of options for optimal

More Advantages

$>$ Works on any system, including XYcoupled and interspersed modules

$>$ Computational demand is a slow function of optics/system complexity

Try Solving $\nabla \Phi=0$ for 5 Quads

$>$ Systematic procedure to map out and isolate Global optimum (Pareto Front)
$>$ Complete range of options for optimal

 Quad K1-6

More Advantages

$>$ Works on any system, including XYcoupled and interspersed modules

$>$ Computational demand is a slow function of optics/system complexity

Try Solving $\nabla \Phi=0$ for 5 Quads

$>$ Systematic procedure to map out and isolate Global optimum (Pareto Front)
$>$ Complete range of options for optimal

More Advantages

$>$ Works on any system, including XYcoupled and interspersed modules

$>$ Computational demand is a slow function of optics/system complexity

Try Solving $\nabla \Phi=0$ for 5 Quads

$>$ Systematic procedure to map out and isolate Global optimum (Pareto Front)
$>$ Complete range of options for optimal

 Quad K1-6

More Advantages

> Works on any system, including XYcoupled and interspersed modules

$>$ Computational demand is a slow function of optics/system complexity

Try Solving $\nabla \Phi=0$ for 5 Quads

$>$ Systematic procedure to map out and isolate Global optimum (Pareto Front)
$>$ Complete range of options for optimal

Quad K1-6 RMS $=0.18171344$

ΔK vs Φ

More Advantages

> Works on any system, including XYcoupled and interspersed modules

$>$ Computational demand is a slow function of optics/system complexity

Try Solving $\nabla \Phi=0$ for 5 Quads

$>$ Systematic procedure to map out and isolate Global optimum (Pareto Front)
$>$ Complete range of options for optimal
 trade-off (Ideal for distributed matching)

Points of diminished return identified by well-defined procedure $(\operatorname{Det}(M)=0)$

More Advantages

> Works on any system, including XYcoupled and interspersed modules

$>$ Computational demand is a slow function of optics/system complexity

Try Solving $\nabla \Phi=0$ for 5 Quads

$>$ Systematic procedure to map out and isolate Global optimum (Pareto Front)
$>$ Complete range of options for optimal

Quad K1-6
 well-defined procedure $(\operatorname{Det}(M)=0)$
$>$ Not dealing with a black box
$>$ Determinism, Robustness and Reproducibility are important for feedback applications

Each One A Serious Challenge to Conventional Methods trade-off (Ideal for distributed matching)
$>$ Points of diminished return identified by

Implementing Distributed Matching Profile and Transport

Implementing Distributed Matching Profile and Transport

* Subdivide line into matching sections

Implementing Distributed Matching Profile and Transport

* Subdivide line into matching sections

Implementing Distributed Matching Profile and Transport

* Subdivide line into matching sections

Implementing Distributed Matching Profile and Transport

* Subdivide line into matching sections $>$ Matching target for each section is Fixed

Implementing Distributed Matching Profile and Transport

* To Fix Beam Profile Mismatch
Φ_{1}

* Subdivide line into matching sections $>$ Matching target for each section is Fixed

Implementing Distributed Matching Profile and Transport

* Subdivide line into matching sections $>$ Matching target for each section is Fixed

Implementing Distributed Matching Profile and Transport

* To Fix Beam Profile Mismatch

Best Partial

* Subdivide line into matching sections $>$ Matching target for each section is Fixed
* To Fix Optics/Transport Error

$$
\begin{aligned}
& \beta_{D}^{A} \cdot X^{\prime 2}+2 \alpha^{A}{ }_{D} \cdot X \cdot X^{\prime}+\gamma_{D}^{A} \cdot X^{2} \\
& \neq \beta^{B}{ }_{D} \cdot X^{\prime 2}+2 \alpha^{B}{ }_{D} \cdot X \cdot X^{\prime}+\gamma_{D}^{B} \cdot X^{2}
\end{aligned}
$$

CS invariant

Implementing Distributed Matching Profile and Transport

* To Fix Beam Profile Mismatch

Best Partial

* Subdivide line into matching sections $>$ Matching target for each section is Fixed
* To Fix Optics/Transport Error

Match after error

Implementing Distributed Matching Profile and Transport

* To Fix Beam Profile Mismatch

Best Partial

* Subdivide line into matching sections $>$ Matching target for each section is Fixed
* To Fix Optics/Transport Error

$$
\begin{aligned}
& \beta_{D}^{A} \cdot X^{\prime 2}+2 \alpha_{D}^{A} \cdot X \cdot X^{\prime}+\gamma_{D}^{A} \cdot X^{2} \\
& \neq \beta^{B}{ }_{D} \cdot X^{\prime 2}+2 \alpha^{B}{ }_{D} \cdot X \cdot X^{\prime}+\gamma_{D}^{B} \cdot X^{2}
\end{aligned}
$$

- CS invariant

Implementing Distributed Matching Profile and Transport

* To Fix Beam Profile Mismatch

Best Partial

* Subdivide line into matching sections $>$ Matching target for each section is Fixed
* To Fix Optics/Transport Error

Split difference

Implementing Distributed Matching Profile and Transport

* To Fix Beam Profile Mismatch

Decide on tapered solution

$$
\sum^{D_{N}}
$$

* Subdivide line into matching sections $>$ Matching target for each section is Fixed
* To Fix Optics/Transport Error

Split difference
User has freedom on solution scenario, e.g. How to taper mismatch profile

Why Perform Matching on Beam Time? - (3rd) Alternate View

Matching targets are fixed \Rightarrow Pre-compute trade-off solutions Offline

* As functions of input mismatch and embedded modules (e.g. RF phase)
* During Online operation simply interpolate from Offline results.
$>$ Speed \& Predictability
Example (3-quad section 120° FODO):
* Construct interpolation table covering range:
$>$ Input Mismatch Amp. $\Phi_{\mathrm{X} / \mathrm{Y}}=1 \rightarrow 9$
$>$ Input Mismatch Angle $\Theta_{X / Y}=0 \rightarrow \pi$
* Launch beam with initial mismatch:

$$
\begin{aligned}
& \Phi_{\mathrm{X} / \mathrm{Y}}=9 \\
& \Theta_{\mathrm{X} / \mathrm{Y}}=0 \rightarrow \pi
\end{aligned}
$$

Evolution of beam through successive matching

Why Perform Matching on Beam Time? - (3rd) Alternate View

Matching targets are fixed \Rightarrow Pre-compute trade-off solutions Offline

* As functions of input mismatch and embedded modules (e.g. RF phase)
* During Online operation simply interpolate from Offline results.
$>$ Speed \& Predictability

Example (3-quad section 120° FODO):

* Construct interpolation table covering range:
$>$ Input Mismatch Amp. $\Phi_{\mathrm{X} / \mathrm{Y}}=1 \rightarrow 9$
$>$ Input Mismatch Angle $\Theta_{X / Y}=0 \rightarrow \pi$
* Launch beam with initial mismatch:

$$
\begin{aligned}
& \Phi_{\mathrm{X} / \mathrm{Y}}=9 \\
& \Theta_{\mathrm{X} / \mathrm{Y}}=0 \rightarrow \pi
\end{aligned}
$$

* Interpolate for partial matching in subsequent sections.

Normalized Design Beam Mismatched Beam $\Lambda=\sqrt{\Phi+\sqrt{\Phi^{2}-1}}$

Evolution of beam through successive matching

Section

Why Perform Matching on Beam Time? - (3rd) Alternate View

Matching targets are fixed \Rightarrow Pre-compute trade-off solutions Offline

* As functions of input mismatch and embedded modules (e.g. RF phase)
* During Online operation simply interpolate from Offline results.
$>$ Speed \& Predictability

Example (3-quad section 120° FODO):

* Construct interpolation table covering range:
$>$ Input Mismatch Amp. $\Phi_{\mathrm{X} / \mathrm{Y}}=1 \rightarrow 9$
$>$ Input Mismatch Angle $\Theta_{X / Y}=0 \rightarrow \pi$
* Launch beam with initial mismatch:

$$
\begin{aligned}
& \Phi_{\mathrm{X} / \mathrm{Y}}=9 \\
& \Theta_{\mathrm{X} / \mathrm{Y}}=0 \rightarrow \pi
\end{aligned}
$$

* Interpolate for partial matching in subsequent sections.

Normalized Design Beam Mismatched Beam $\Lambda=\sqrt{\Phi+\sqrt{\Phi^{2}-1}}$

Evolution of beam through successive matching

Why Perform Matching on Beam Time? - (3rd) Alternate View

Matching targets are fixed \Rightarrow Pre-compute trade-off solutions Offline

* As functions of input mismatch and embedded modules (e.g. RF phase)
* During Online operation simply interpolate from Offline results.
$>$ Speed \& Predictability

Example (3-quad section 120° FODO):

* Construct interpolation table covering range:
$>$ Input Mismatch Amp. $\Phi_{\mathrm{X} / \mathrm{Y}}=1 \rightarrow 9$
$>$ Input Mismatch Angle $\Theta_{X / Y}=0 \rightarrow \pi$
* Launch beam with initial mismatch:

$$
\begin{aligned}
& \Phi_{\mathrm{X} / \mathrm{Y}}=9 \\
& \Theta_{\mathrm{X} / \mathrm{Y}}=0 \rightarrow \pi
\end{aligned}
$$

* Interpolate for partial matching in subsequent sections.

Normalized Design Beam Mismatched Beam $\Lambda=\sqrt{\Phi+\sqrt{\Phi^{2}-1}}$

Evolution of beam through successive matching

Why Perform Matching on Beam Time? - (3rd) Alternate View

Matching targets are fixed \Rightarrow Pre-compute trade-off solutions Offline

* As functions of input mismatch and embedded modules (e.g. RF phase)
* During Online operation simply interpolate from Offline results.
$>$ Speed \& Predictability

Example (3-quad section 120° FODO):

* Construct interpolation table covering range:
$>$ Input Mismatch Amp. $\Phi_{\mathrm{X} / \mathrm{Y}}=1 \rightarrow 9$
$>$ Input Mismatch Angle $\Theta_{X / Y}=0 \rightarrow \pi$
* Launch beam with initial mismatch:

$$
\begin{aligned}
& \Phi_{\mathrm{X} / \mathrm{Y}}=9 \\
& \Theta_{\mathrm{X} / \mathrm{Y}}=0 \rightarrow \pi
\end{aligned}
$$

* Interpolate for partial matching in subsequent sections.

Normalized Design Beam Mismatched Beam $\Lambda=\sqrt{\Phi+\sqrt{\Phi^{2}-1}}$

Evolution of beam through successive matching

Section

Why Perform Matching on Beam Time? - (3rd) Alternate View

Matching targets are fixed \Rightarrow Pre-compute trade-off solutions Offline

* As functions of input mismatch and embedded modules (e.g. RF phase)
* During Online operation simply interpolate from Offline results.
$>$ Speed \& Predictability

Example (3-quad section 120° FODO):

* Construct interpolation table covering range:
$>$ Input Mismatch Amp. $\Phi_{\mathrm{X} / \mathrm{Y}}=1 \rightarrow 9$
$>$ Input Mismatch Angle $\Theta_{X / Y}=0 \rightarrow \pi$
* Launch beam with initial mismatch:

$$
\begin{aligned}
& \Phi_{\mathrm{X} / \mathrm{Y}}=9 \\
& \Theta_{\mathrm{X} / \mathrm{Y}}=0 \rightarrow \pi
\end{aligned}
$$

* Interpolate for partial matching in subsequent sections.

Normalized Design Beam Mismatched Beam $\Lambda=\sqrt{\Phi+\sqrt{\Phi^{2}-1}}$

Evolution of beam through successive matching

Section 5

Why Perform Matching on Beam Time? - (3rd) Alternate View

Matching targets are fixed \Rightarrow Pre-compute trade-off solutions Offline

* As functions of input mismatch and embedded modules (e.g. RF phase)
* During Online operation simply interpolate from Offline results.
$>$ Speed \& Predictability

Example (3-quad section 120° FODO):

* Construct interpolation table covering range:
$>$ Input Mismatch Amp. $\Phi_{\mathrm{X} / \mathrm{Y}}=1 \rightarrow 9$
$>$ Input Mismatch Angle $\Theta_{X / Y}=0 \rightarrow \pi$
* Launch beam with initial mismatch:

$$
\begin{aligned}
& \Phi_{\mathrm{X} / \mathrm{Y}}=9 \\
& \Theta_{\mathrm{X} / \mathrm{Y}}=0 \rightarrow \pi
\end{aligned}
$$

* Interpolate for partial matching in subsequent sections.

Normalized Design Beam Mismatched Beam $\Lambda=\sqrt{\Phi+\sqrt{\Phi^{2}-1}}$

Evolution of beam through successive matching

Why Perform Matching on Beam Time? - (3rd) Alternate View

Matching targets are fixed \Rightarrow Pre-compute trade-off solutions Offline

* As functions of input mismatch and embedded modules (e.g. RF phase)
* During Online operation simply interpolate from Offline results.
$>$ Speed \& Predictability

Example (3-quad section 120° FODO):

* Construct interpolation table covering range:
$>$ Input Mismatch Amp. $\Phi_{\mathrm{X} / \mathrm{Y}}=1 \rightarrow 9$
$>$ Input Mismatch Angle $\Theta_{X / Y}=0 \rightarrow \pi$
* Launch beam with initial mismatch:

$$
\begin{aligned}
& \Phi_{\mathrm{X} / \mathrm{Y}}=9 \\
& \Theta_{\mathrm{X} / \mathrm{Y}}=0 \rightarrow \pi
\end{aligned}
$$

* Interpolate for partial matching in subsequent sections.

Normalized Design Beam Mismatched Beam $\Lambda=\sqrt{\Phi+\sqrt{\Phi^{2}-1}}$

Evolution of beam through successive matching

Section

Why Perform Matching on Beam Time? - (3rd) Alternate View

* Matching targets are fixed \Rightarrow Pre-compute trade-off solutions Offline
* As functions of input mismatch and embedded modules (e.g. RF phase)
* During Online operation simply interpolate from Offline results.
$>$ Speed \& Predictability

Example (3-quad section 120° FODO):

* Construct interpolation table covering range:
$>$ Input Mismatch Amp. $\Phi_{\mathrm{X} / \mathrm{Y}}=1 \rightarrow 9$
$>$ Input Mismatch Angle $\Theta_{\mathrm{X} / \mathrm{Y}}=0 \rightarrow \pi$
* Launch beam with initial mismatch:

$$
\begin{aligned}
& \Phi_{\mathrm{X} / \mathrm{Y}}=9 \\
& \Theta_{\mathrm{X} / \mathrm{Y}}=0 \rightarrow \pi
\end{aligned}
$$

* Interpolate for partial matching in subsequent sections.

Normalized Design Beam Mismatched Beam $\Lambda=\sqrt{\Phi+\sqrt{\Phi^{2}-1}}$

Determinism in algorithm is crucial to generating Massive interpolation tables!

Evolution of beam through successive matching

Recap

* Possibility to Realize 3 Alternate Views to Matching
$>$ Distributed instead of Local
$>$ Optimizing Tradeoff Deterministically instead of Single objective
$>$ Offline Computation instead of Online
* Interlinked Concepts But Do Not Require Monolithic Implementation
$>$ Enabling component is stand-alone Matching Engine.
$>$ Distributed Scheme
> Interpolated Solution
* Application Beyond Matching
$>$ Works on any parameter with well-behaved analytic model
$>$ Determinism can be maintained even when starting point is not known a priori
\Rightarrow (Impose Artificial Constraint) Input / Idea of Application Welcome!

If $\lambda \neq 0$, Don’t Stop

* 30° FODO; 6 Quad Matching;

If $\lambda \neq 0$, Don’t Stop

* 30° FODO; 6 Quad Matching;

Φ	1.00013	1.0076
λ	-0.74	-2.42

If $\lambda \neq 0$, Don’t Stop

* 30° FODO; 6 Quad Matching;

Φ	1	1.00013	1.0076
λ	0	-0.74	-2.42

If $\lambda \neq 0$, Don’t Stop

* 30° FODO; 6 Quad Matching;

Φ	1	1.00013	1.0076
λ	0	-0.74	-2.42

Why Bother with 10^{-4} ?

If $\lambda \neq 0$, Don’t Stop

* 30° FODO; 6 Quad Matching;

Φ	1	1.00013	1.0076
λ	0	-0.74	-2.42

ΔK Gain of $>\mathbf{5 0 \%}$

 By insisting on $\lambda \rightarrow 0$

Φ	λ	$\Delta \mathrm{K}$
1.00013	-0.74	0.008
1.0076	-2.42	0.005
1	0	0.003

Entire Path \Rightarrow Local vs Global Optimum

* Local optimal condition is satisfied everywhere, but only some are "Global".
* Isolate global optima by short-circuiting inferior local optima.
$>$ Green curve is always monotonic $(\lambda<0)$ Akin to "Pareto Front" concept in multiobjective optimization

If $\lambda=0$, Stop

120° FODO; 4 Quad Matching Section;

$>$ This 4-Quad Mismatched Configuration Does Not Allow 100\% Matching (All Roots Are Complex).
> Conventional Algorithm Cannot Give Unequivocal Answer Like This.

4-Quad Matching with No Real Roots
Y. Chao PAC 2001

Application beyond Matching? - Restoring Determinism

* Algorithm should work on any other function with an analytical model.
* Determinism depends on "known" starting point. ($\nabla \boldsymbol{H}=0, \Delta \boldsymbol{k}_{\boldsymbol{m}}=0$ or $\boldsymbol{k}_{\boldsymbol{m}}=0$) * What if neither $\nabla F=0$ nor $\nabla G=0$ is known a priori? Determinism Lost?

Application beyond Matching? - Restoring Determinism

* Algorithm should work on any other function with an analytical model.
* Determinism depends on "known" starting point. ($\nabla \boldsymbol{H}=0, \Delta \boldsymbol{k}_{\boldsymbol{m}}=0$ or $\boldsymbol{k}_{\boldsymbol{m}}=0$)
* What if neither $\nabla F=0$ nor $\nabla \boldsymbol{G}=0$ is known a priori? Determinism Lost?
$>$ Note $\nabla F=0$ is a common terminus to trade-off with all other constraints.

Application beyond Matching? - Restoring Determinism

* Algorithm should work on any other function with an analytical model.
* Determinism depends on "known" starting point. ($\boldsymbol{\nabla} \boldsymbol{H}=0, \Delta \boldsymbol{k}_{m}=0$ or $\boldsymbol{k}_{\boldsymbol{m}}=0$)
*What if neither $\nabla F=0$ nor $\nabla \boldsymbol{G}=0$ is known a priori? Determinism Lost?
$>$ Note $\nabla F=0$ is a common terminus to trade-off with all other constraints.
$>$ Create Artificial Constraint H with Known starting point $\boldsymbol{\nabla H}=0$

Application beyond Matching? - Restoring Determinism

* Algorithm should work on any other function with an analytical model.
* Determinism depends on "known" starting point. ($\boldsymbol{\nabla} \boldsymbol{H}=0, \Delta \boldsymbol{k}_{m}=0$ or $\boldsymbol{k}_{\boldsymbol{m}}=0$)
*What if neither $\nabla F=0$ nor $\nabla \boldsymbol{G}=0$ is known a priori? Determinism Lost?
$>$ Note $\nabla F=0$ is a common terminus to trade-off with all other constraints.
$>$ Create Artificial Constraint H with Known starting point $\nabla H=0$
$>\nabla H=0 \rightarrow \nabla F=0 \rightarrow \nabla \boldsymbol{G}=0$
$>$ Determinism is restored!

Application beyond Matching? - Restoring Determinism

* Algorithm should work on any other function with an analytical model.
* Determinism depends on "known" starting point. ($\nabla \boldsymbol{H}=0, \Delta \boldsymbol{k}_{\boldsymbol{m}}=0$ or $\boldsymbol{k}_{\boldsymbol{m}}=0$) What if neither $\nabla F=0$ nor $\nabla \boldsymbol{G}=0$ is known a priori? Determinism Lost?
$>$ Note $\nabla F=0$ is a common terminus to trade-off with all other constraints.

$>\nabla H=0 \rightarrow \nabla F=0 \rightarrow \nabla G=0$
$>$ Determinism is restored!
Example of other possible objectives/constraints: (?)

$\Rightarrow \begin{aligned} & \text { Beam size at location inside } \\ & \text { matching section }\end{aligned}$
$>$ Total phase advance
$>$ Weighted mismatch Φ,
> Absolute quad strengths
$>$ Weighted quad strengths (well defined meaning)
$>$ Maximizing mismatch $\Phi(\lambda>0)$
$>$ Transfer matrix elements
> Special module parameter (e.g., residual dispersion)
$>$ Higher order effects
$>$ Geometric parameters (e.g. Length)
$>$ Quad strings
$>$ Optical functions (e.g., dispersion, chromaticity,)

Application beyond Matching? - Restoring Determinism

* Algorithm should work on any other function with an analytical model.
* Determinism depends on "known" starting point. ($\nabla \boldsymbol{H}=0, \Delta \boldsymbol{k}_{\boldsymbol{m}}=0$ or $\boldsymbol{k}_{\boldsymbol{m}}=0$)
* What if neither $\nabla F=0$ nor $\nabla \boldsymbol{G}=0$ is known a priori? Determinism Lost?
$>$ Note $\nabla F=0$ is a common terminus to trade-off with all
$>$ Create Artificial Constraint H with Known starting p
> $\nabla \boldsymbol{H}=0 \rightarrow \nabla F=0 \rightarrow \nabla \boldsymbol{G}=0$
$>$ Determinism is restored!
Example of other possible objectives/constraints: (?)

$>$ Beam size at location inside matching section

> Total phase advance
$>$ Weighted mismatch Φ,
> Absolute quad strengths
$>$ Weighted quad strengths (well defined meaning)
$>$ Maximizing mismatch $\Phi(\lambda>0)$
$>$ Transfer matrix elements
> Special module parameter (e.g., residual dispersion)
$>$ Higher order effects
$>$ Geometric parameters (e.g. Length)
$>$ Quad strings
$>$ Optical functions (e.g., dispersion, chromaticity,)

Summary \& Future Possibilities

* Possibility to Realize 3 Alternate Views to Matching
$>$ Distributed instead of Local
$>$ Deterministic Tradeoff Integration instead of Single objective optimization
$>$ Offline Computation instead of Online
* Interlinked Concepts - But Not a Monolithic Program to Implement
$>$ New Matching Engine is enabling component with unique advantages.

Stand-Alone Matching Engine

Summary \& Future Possibilities

* Possibility to Realize 3 Alternate Views to Matching
$>$ Distributed instead of Local
$>$ Deterministic Tradeoff Integration instead of Single objective optimization
$>$ Offline Computation instead of Online
Interlinked Concepts - But Not a Monolithic Program to Implement
$>$ New Matching Engine is enabling component with unique advantages.
$>$ Distributed Scheme

Summary \& Future Possibilities

* Possibility to Realize 3 Alternate Views to Matching
$>$ Distributed instead of Local
$>$ Deterministic Tradeoff Integration instead of Single objective optimization
$>$ Offline Computation instead of Online
* Interlinked Concepts - But Not a Monolithic Program to Implement
$>$ New Matching Engine is enabling component with unique advantages.
$>$ Distributed Scheme
> Interpolated Solution

- Speed
- Predictability
- Reproducibility
- All algorithmic advantages

Summary \& Future Possibilities

* Possibility to Realize 3 Alternate Views to Matching
$>$ Distributed instead of Local
$>$ Deterministic Tradeoff Integration instead of Single objective optimization
$>$ Offline Computation instead of Online
* Interlinked Concepts - But Not a Monolithic Program to Implement
$>$ New Matching Engine is enabling component with unique advantages.
$>$ Distributed Scheme
> Interpolated Solution

Summary \& Future Possibilities

* Possibility to Realize 3 Alternate Views to Matching
$>$ Distributed instead of Local
$>$ Deterministic Tradeoff Integration instead of Single objective optimization
$>$ Offline Computation instead of Online
Interlinked Concepts - But Not a Monolithic Program to Implement
$>$ New Matching Engine is enabling component with unique advantages.
$>$ Distributed Scheme
> Interpolated Solution
* Application Beyond Matching
$>$ Works on any parameter with well-behaved analytic model
$>$ Determinism can be maintained even when start point is not known a priori
\Rightarrow (Impose Artificial Constraint) Input / Idea of Application Welcome!

If $\lambda=0$, Stop

\square

If $\lambda=0$, Stop

* 120° FODO; 4 Quad Matching Section;

If $\lambda=0$, Stop

* 120° FODO; 4 Quad Matching Section;

$\lambda \operatorname{vs} \Phi$

λ vs ΔK

ΔK vs Φ

If $\lambda=0$, Stop

120° FODO; 4 Quad Matching Section;

$\lambda \mathrm{vs} \Delta \mathrm{K}$

ΔK vs Φ

If $\lambda=0$, Stop

120° FODO; 4 Quad Matching Section;

If $\lambda=0$, Stop

* 120° FODO; 4 Quad Matching Section;

If $\lambda=0$, Stop

120° FODO; 4 Quad Matching Section;

$>$ This 4-Quad Mismatched Configuration Does Not Allow 100\% Matching (All Roots Are Complex).

4-Quad Matching with No Real Roots
Y. Chao PAC 2001

If $\lambda=0$, Stop

120° FODO; 4 Quad Matching Section;

$>$ This 4-Quad Mismatched Configuration Does Not Allow 100\% Matching (All Roots Are Complex).
> Conventional Algorithm Cannot Give Unequivocal Answer Like This.

4-Quad Matching with No Real Roots
Y. Chao PAC 2001

[^0]:

