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Abstract
We describe how to optimize certain properties of the

particle beam with nonzero transverse-longitudinal coupling

terms in the beammatrix by the proper choice of the unclosed

lattice dispersions.

INTRODUCTION
Careful control of projected emittances is essential for

the modern linacs driving short wavelength free electron

lasers, and one of the main sources of the growth of projected

emittances is creation of transverse-longitudinal correlations

in the particle beam due to coherent synchrotron radiation

(CSR) effects within magnetic bunch compressors as well

as other wake fields along the accelerator. A number of ap-

proaches which could help to reduce such emittance growth

were developed including different optics tricks, prepara-

tion of the initial beam current profile at the bunch com-

pressor entrance, and etc. (see, for example, [1–6] and

references therein). Still, the beam considered downstream

of the compression system (or at the linac exit) could have

nonzero transverse-longitudinal coupling terms in the beam

matrix and therefore projected emittances could be further

reduced if these correlations will be removed. In general,

in order to make complete transverse-longitudinal decou-

pling, it is necessary to have the possibility to act on the

particles depending on their longitudinal positions within

the bunch (for example, with transverse deflecting cavity),

which means that the system designed for the complete de-

coupling could be too complicated and somewhat difficult

to operate in comparison with the benefit coming from the

achievable reduction of the projected emittances. So, in

this paper we consider a more simple and more practical

question: what one can do having at hand a magnetostatic

correction system? We show, in the framework of the lin-

ear motion model and with the self fields neglected, how to

choose lattice dispersions in order either simply to remove

part of the transverse-longitudinal beam correlations or di-

rectly to optimize chosen projected emittance. Due to space

limitation we consider particle motion only in the horizontal

and longitudinal degrees of freedom, and the complete 3D

treatment and further discussions can be found in [7].

VARIABLES AND NOTATIONS
We consider the single particle linear dynamics in the

horizontal and longitudinal degrees of freedom and ignore

the motion in the vertical degree of freedom, which (on the

linear level) is assumed to be completely decoupled from the
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two others. We restrict our consideration to the beam mo-

tion through the magnetostatic systems, take the path length

along the reference orbit τ to be the independent variable,
and use a set of symplectic variables z = (x, px, σ, ε)� as
particle coordinates. In this set x measures the horizontal
displacement from the ideal orbit, px is the horizontal canon-
ical momentum scaled with the constant kinetic momentum

of the reference particle p0, and the variables σ and ε which
describe the longitudinal dynamics are

σ = c β0 (t0 − t), ε = (γ − γ0) / (β20 γ0), (1)

where γ0, β0 and t0 = t0(τ) are the Lorentz factor of the
reference particle, its velocity in terms of the speed of light

c and its arrival time at a certain position τ, respectively.
Let M be an m × m square matrix. Then |M | de-

note the determinant of M. Let ω be a nonempty subset

of {1, 2, . . . ,m} with its elements listed in increasing order.
Then M {ω} denote the principal submatrix of M whose en-

tries are in the intersection of those rows and columns of M
specified by ω.

Transfer Matrix of a Magnetostatic System
From energy conservation, symplecticity and absence of

coupling with the vertical motion it follows that the general

horizontal-longitudinal transport matrix of a magnetostatic

system has the form

R =
������

r11 r12 0 r16
r21 r22 0 r26
r51 r52 1 r56
0 0 0 1

������
, (2)

where the elements r16, r26 and the elements r51, r52, r56 are
the transverse and longitudinal lattice dispersions, respec-

tively. The special form (2) of the matrix R allows to write

its symplecticity conditions as follows

(R{1, 2})� J2 R{1, 2} = J2, (3a)

(
r16
r26

)
= R{1, 2} J2

(
r51
r52

)
, (3b)

where J2 is the 2 × 2 symplectic unit matrix.
Beam Matrix
As usual, we describe the linear properties of a particle

beam by a symmetric matrix (beam matrix) of the second-

order central beam moments

Σ =
〈
(z − 〈z〉) (z − 〈z〉)�

〉
, (4)

where the brackets 〈 · 〉 denote an average over a particle
distribution. We restrict our considerations to the case when
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the matrix Σ is positive definite and for simplification of

notations assume that the beam is proper centered and
〈
z
〉
=

0. With these assumptions the beam matrix takes on the

form

Σ =

������
〈x2〉 〈xpx〉 〈xσ〉 〈xε〉
〈xpx〉 〈p2x〉 〈pxσ〉 〈pxε〉
〈xσ〉 〈pxσ〉 〈σ2〉 〈σε〉
〈xε〉 〈pxε〉 〈σε〉 〈ε2〉

������
, (5)

where 〈xε〉, 〈pxε〉 and 〈xσ〉, 〈pxσ〉 are the beam dispersions

and the beam tilts, respectively.

The matrix Σ has ten different entries which can be var-

ied independently within the positive definiteness condition.

Obviously, not all of them (or their combinations) are equally

interesting for any particular accelerator physics application,

and in this paper, besides beam dispersions and tilts, we con-

sider only horizontal and longitudinal projected emittances

εx = |Σ {1, 2}|1/2 , εσ = |Σ {3, 4}|1/2 . (6)

Let R be the matrix which propagates particles from the

state τ = τ1 to the state τ = τ2, i.e let

z(τ2) = R z(τ1). (7)

Then from (4) and (7) it follows that the matrix Σ evolves

between these two states according to the congruence

Σ(τ2) = R Σ(τ1) R�. (8)

To further simplify notations, in the following we will write

all propagation rules using the symbol ’:=’, i.e. in the form

Σ := R Σ R�, (9)

where all quantities on the left and right hand sides are

assumed to be evaluated for τ = τ2 and τ = τ1, respectively.

PROPAGATION AND ZEROING OF BEAM
DISPERSIONS AND BEAM TILTS

Propagation of horizontal to longitudinal coupling terms

in accordance with the transport rule (9) produces the fol-

lowing changes in the beam dispersions

( 〈xε〉
〈pxε〉

)
:= R {1, 2}

[( 〈xε〉
〈pxε〉

)
+ 〈ε2〉J2

(
r51
r52

)]
(10)

and the following changes in the beam tilts

( 〈xσ〉
〈pxσ〉

)
:= R {1, 2}

[( 〈xσ〉
〈pxσ〉

)
+ r56

( 〈xε〉
〈pxε〉

)

+ (Σ {1, 2} + λ J2)
(

r51
r52

)]
, (11)

where the parameter λ is defined by the expression

λ =

( 〈xε〉
〈pxε〉

)� (
r51
r52

)
+ 〈σε〉 + r56〈ε2〉. (12)

Zeroing of Beam Dispersions
The formula (10) tells us that there exists a unique solution

for the lattice dispersions which zeros the beam dispersions

and this solution can be expressed as follows:

r51 =
〈pxε〉
〈ε2〉 , r52 = −〈xε〉〈ε2〉 . (13)

Zeroing of Beam Tilts
According to the propagation rule (11) the beam tilts can

be zeroed at the correction system exit by an appropriate

choice of the lattice dispersions if and only if the equations

(Σ {1, 2} + λJ2)
(

r51
r52

)
= −

( 〈xσ〉
〈pxσ〉

)
− r56

( 〈xε〉
〈pxε〉

)
(14)

have a real solution with respect to the variables r51, r52 and
r56. The system (14) is nonlinear, but, as we prove below,

it always has at least one real solution for every fixed real

value of the r56 coefficient, which therefore can be treated as
a parameter. To show this, let us assume that λ in (14) is not
simply a notation introduced for brevity, but an additional

real-valued variable, and let us consider an extended system

consisting of equations (14) and (12). In order to apply the

method of successive elimination of variables to the system

obtained, let us observe that

|Σ {1, 2} + λJ2 | = λ2 + |Σ {1, 2}| > 0, (15)

and therefore the matrix Σ {1, 2}+λJ2 is invertible. It means
that for every real value of λ equations (14) can be solved
with respect to the variables r51 and r52, and the solution
is unique. Substituting this solution into equation (12) and

multiplying both sides of the result by |Σ {1, 2} + λJ2 | we
obtain the polynomial equation of the third degree with

respect to the single variable λ, and because the order of
this equation is odd, it always has at least one real root.

So we proved that zeroing of the beam tilts by an appro-

priate choice of the lattice dispersions is always possible.

At least one solution can be found for an arbitrary value of

r56 coefficient and, for the fixed r56, the number of different
solutions can vary from one to three, and the corresponding

numerical example can be found in [7].

Conditions for Complete Decoupling
The necessary and sufficient conditions for the complete

decoupling can be obtained by the requirement that the solu-

tion for the lattice dispersions (13) which removes the beam

dispersions also zeros the beam tilts, and substituting (13)

into equations (14) and (12) we obtain( 〈xσ〉
〈pxσ〉

)
=
〈σε〉 I2 − Σ {1, 2} J2

〈ε2〉
( 〈xε〉
〈pxε〉

)
, (16)

where I2 is the 2 × 2 identity matrix.
We would note that the question of the physical interpre-

tation of the relations (16) is rather complicated, and further

discussions can be found in [7].
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PROPAGATION AND OPTIMIZATION OF
PROJECTED EMITTANCES

To obtain convenient representation for the emittance

transport problem, let us introduce a 2× 2 symmetric matrix

A = 〈ε2〉 Σ {1, 2} −
( 〈xε〉
〈pxε〉

) ( 〈xε〉
〈pxε〉

)�
(17)

and associate with this matrix quadratic form

ΨA(u1, u2) = (u1, u2) · A · (u1, u2)�. (18)

Because the matrix Σ is positive definite, all its leading

principal minors are positive and therefore

|A {1}| = |Σ {1, 4}| > 0, (19)

|A {1, 2}| = |Σ {4}| |Σ {1, 2, 4}| > 0, (20)

which means that the matrix A and the quadratic form ΨA

are positive definite according to the Sylvester criterion.

With the help of the quadratic form ΨA the evolution of

the projected emittances can be expressed in very compact

and physically meaningful form as follows:

ε2x := ε
2
x + ΨA(rx51 − r51, rx52 − r52) − ΨA(rx51, rx52), (21)

where

rx51 =
〈pxε〉
〈ε2〉 , rx52 = −

〈xε〉
〈ε2〉 . (22)

ε2σ := ε2σ + ΨA(rσ51 − r51, rσ52 − r52) − ΨA(rσ51, r
σ
52), (23)

where

(
rσ
51

rσ
52

)
= A−1

[
〈σε〉

( 〈xε〉
〈pxε〉

)
− 〈ε2〉

( 〈xσ〉
〈pxσ〉

)]
. (24)

One sees that while the beam tilts and the beam energy

chirp 〈σε〉 can influence the evolution of the longitudinal
emittance through rσ

51
and rσ

52
, they do not enter the formula

for the evolution of the horizontal emittance at all.

Optimization of Projected Emittances
With elegant formulas (21) and (23), the problem of the

minimization of projected emittances by an appropriate

choice of the lattice dispersions becomes fairly simple and

straightforward, and has the same geometry for the both emit-

tances. So, due to space limitation, we consider in details

only optimization of the horizontal emittance.

The formula (21) tells us that the change in the horizontal

emittance after the system passage is the same for all lattice

dispersions r51 and r52 belonging to the same level set
ΨA(rx51 − r51, rx52 − r52) = const ≥ 0. (25)

Because quadratic form ΨA is positive definite, its level sets

for const > 0 are ellipses all centered at the same point
r51 = rx51, r52 = rx52 (26)

and contracting to this point as const → 0. The level set

ΨA(rx51 − r51, rx52 − r52) = ΨA(rx51, r
x
52) (27)

plays a special role. It separates lattice dispersions which

lead to the emittance increase from those which provide

emittance reduction or preservation. The level surface (27)

is an ellipse if at least one of the beam dispersions is nonzero,

and it is a point coinciding with the common center (26) of

all ellipses (25) otherwise. In any case, there exists unique

optimal choice for the lattice dispersions which is given by

the equations (26) and which provides the largest possible

reduction of the horizontal emittance. Due to (13) this opti-

mal solution simultaneously zeros the beam dispersions and

also turns (21) into equation

ε2x := ε
2
x −

1

〈ε2〉 · I
x
cs (〈xε〉, 〈pxε〉), (28)

where

Ixcs (u1, u2) = 〈p2x〉 u21 − 2 〈xpx〉 u1u2 + 〈x2〉 u22 (29)

is the nonnormalized Courant-Snyder quadratic form.

By analogy, the largest possible reduction of the longitu-

dinal projected emittance is reached for

r51 = rσ51, r52 = rσ52, (30)

and (without big surprise) conditions for the simultaneous

minimization of both projected emittances are again equa-

tions (16), which were derived as conditions for the complete

horizontal-longitudinal decoupling.

Let us finish this section with the remark that the choice

(30) for the lattice dispersions makes the vectors of beam

dispersions and tilts linearly dependent (parallel) at the cor-

rection system exit.

SUMMARY
We have shown that if in the beam matrix there are cor-

relations between energy of particles and their horizontal

positions and momenta (beam dispersions), then the hori-

zontal projected emittance always can be reduced by letting

the beam pass through the magnetostatic correction system

with the specially chosen nonzero lattice dispersions. The

maximum emittance reduction occurs when the beam dis-

persions are zeroed, and the values of the lattice dispersions

required for that are completely determined by the values of

the beam dispersions and the beam rms energy spread, and

are independent from any other second-order central beam

moments.

We also have shown what can be done for optimization of

the longitudinal projected emittance and found conditions

on the beam matrix which guarantee that both projected

emittances can be minimized simultaneously.

Besides that, we have proven that one can also use lattice

dispersions to remove linear correlations between longitu-

dinal positions of particles and their transverse coordinates

(beam tilts), but in this situation solution for the lattice dis-

persions is nonunique and reduction of none of projected

emittances is guaranteed.

We would finish with the note that the optimization of the

beam properties by the proper choice of lattice dispersions

is a potential source of the beam transverse jitter due to

the beam energy jitter, and one has always to look for an

appropriate compromise.
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