Review of Linear Optics Measurements and Corrections in Accelerators

May 9, 2016, BEXCO, Busan Korea

R. Tomás, M. Aiba, A. Franchi and U. Iriso

E.D. Courant and H.S. Snyder 1957

Theory of the Alternating-Gradient Synchrotron:

$$\left(\frac{\Delta\beta}{\beta}\right)_{\rm max} = 4.0 \left(\frac{\Delta k}{k}\right)_{\rm rms}$$

"Thus if the variation in k from magnet to magnet were 1% (...) we would have a β -beating of 4%. Any particular machine (...) would be unlikely to be worse by more than factor of 2."

 \rightarrow Expected $\beta\text{-beating}$ below 8% for any machine

120% in LHC, commissioning 2016

\approx **400%** in PEP-II, commissioning 2005

Even $\Delta\beta/\beta \approx 700\%$ was reached when LER tune was pushed closer to the half integer

Techniques for optics measurement & correction

K-modulation

- 🛨 Turn-by-turn
- ★ Closed orbit (ORM)
- ★ Passive corrections

ISR 1975: K-modulation

 $\overline{\beta} \approx \frac{1}{3} \left(\beta_1 + \beta_2 + \sqrt{\beta_1 \beta_2 - L^2} \right) \approx \pm \frac{4\pi}{L} \frac{\Delta Q}{\Delta k}$

Techniques for optics measurement & correction

- ★ Turn-by-turn
- ★ Closed orbit (ORM)
- ★ Passive corrections

AGS 1975: Coupling correction

E.C. Raka, PAC 1975: turn-by-turn at a single location

ISR 1983: β and ϕ from turn-by-turn data

 $x(N) = \sqrt{\beta \epsilon} \cos(2\pi Q N + \phi)$

LEAR 1988: ϕ from turn-by-turn data

Calculated by COMFORT

16.0

191.2

118.3

36.3

(degrees)

Pick-ups

UEH13-UEH14
UEH14-UEH23
UEH21 – UEH22
UEH22 – UEH23

Measured phase advance (degrees) 15.4 192.1 120.7

34.1

s (m)

Cornell e^+/e^- Storage Ring (CESR) 2000

D. Sagan et al, PRSTAB **3** 092801. Using LEP method for β functions. Best optics correction in lepton colliders

Consolidation of the new discipline (2003)

N-BPM method, LHC 2015

TABLE III. Systematic error of the measured β -function at arc BPMs for using different BPM combinations. The phase advance between consecutive BPMs is approximately $\pi/4$.

BPM combination	Systematic error (%)
\blacktriangle : probed, \blacktriangle : used, \blacktriangle : unused	
	0.3
	0.4
	1.0
	7.1
	1.1
	1.4
	1.7
	1.8
	7.9
	22.3
	1.3
	1.9
	6.1
	1.0
	3.0
	4.5
	5.2
	1.6

Extension of the LEP 3-BPM method to any number of BPMs. **Great improvement on** β **measurement** (from ϕ). Good knowledge of lattice errors fundamental.

A. Langner & R. Tomas PRSTAB 18, 031002 (2015)

A. Franchi, arXiv:1603.00281v2:

 \bigstar β from $\phi,$ extended 3-BPM equation :

$$\beta_1^{(meas)} = \beta_1^{(mod)} \frac{\cot \Delta \phi_{12}^{(meas)} - \cot \Delta \phi_{13}^{(meas)}}{\cot \Delta \phi_{12}^{(mod)} - \cot \Delta \phi_{13}^{(mod)} + (\bar{h}_{12} - \bar{h}_{13})}$$

\star Effects of non-linearities on the β , ϕ and coupling measurements

SPS BPM signals in 2000

BPM issues required bad BPM detection techniques. The **RMS** in a FFT window is a good indicator.

SLC: Cleaning with SVD, 1999

 $B_{t-b-t} = USV^T$ bpm matrix

Bad BPMs easily identified as uncorrelated signals.

Noise removed by cutting low singular values

J. Irwin et al., Phys. Rev. Letters 82, 8

PEP-II, from ϕ to virtual model to β

Using SVD modes Y. Yan et al, SLAC-PUB-11925 2006

- ★ AC dipoles were proposed to avoid spin resonances and do optics meas: M. Bai et al, Phys. Rev. Lett. 80, 4673 (1998).
- Major breakthrough for protons: Excite betatron oscillations (forced) without emittance blow-up
- ★ Used in AGS, RHIC, SPS, Tevatron & LHC
- \bigstar LHC has $\approx\!20$ optics within the magnetic cycle
- ★ The magnetic cycle takes about 2.5h
- ★ LHC optics commissioned thanks to AC dipole

RHIC: Using amplitude info from BPMs

Successful corrections of β from amplitude using ICA (SVD). X. Shen et al, PRSTAB **16**, 111001 (2013)

Calibrating BPMs by switching off quads

Techniques for optics measurement & correction

- ★ Turn-by-turn
- Closed orbit (ORM)
- ★ Passive corrections

β and ϕ from closed orbit data (1987)

$$x(s) = \sqrt{\beta(s)\beta_0} \frac{\theta}{2\sin(\pi Q)} \cos(|\phi(s) - \phi_0| - \pi Q)$$

GLOBAL BETA MEASUREMENT FROM TWO PERTURBED CLOSED ORBITS

PAC 1987 M. Harrison, Fermilab^{*}, Batavia, Illinois S. Peggs, SSC-CDG^{*}, Berkeley, California

The conventional 'cusp' beta measurement technique assumes that the BPM is close enough to the corrector to declare that their β , ϕ values are identical, leaving only one unknown, β , on the right hand side. Disadvantages of this method are that one closed orbit observation is needed to measure β at only one BPM, and that the BPM may be distant from the corrector. (In the realistic model of the Tevatron used below, each corrector is 2.5 metres away

Orbit Response Matrix (ORM), PAC 1993

W.J. Corbett, M.J. Lee and V. Ziemann **fit** a model to reproduce the measured C^{ij} in SPEAR, obtaning: <1% quad errors and <10% orbit corrector errors.

NSLS X-Ray ring, 1996: LOCO

J. Safranek, NIM-A 388:

K-modulation measurements in agreement with the model fitted to reproduce C^{ij} using the code LOCO.

SOLEIL, LOCO, 2008

Iterating LOCO in SLS, 2013

LOCO fitting was successful ($\Delta C_{ij} \sim$ Measurement noise) Lack of convergence ($\Delta C_{ii} >> \Delta C_{ii}$), however, indicated existence of systematics

M. Aiba, PRST-AB 2013

Local Orbit Response Matrix (LORM)

LORM is an ORM but keeping orbit unchanged out of selected region \rightarrow Revealed systematic errors

ESRF optics stability in time (ORM)

1% peak β -beating develops in 3.5h

ALBA: LOCO Vs N-BPM (turn-by-turn)

	A. Langner et al, I	PAC 2015	
	Method vs. nominal model	RMS β-beating (%)	
		horizontal	vertical
ALBA	N-BPM (phase)	1.5	2.2
	From amplitude	2.0	2.7
	LOCO	1.1	1.6

Techniques are consistent at 1% level, but: is LOCO underestimating $\Delta\beta/\beta$? is β from amp overestimating it? (due to BPM gain?)

Similar studies in ESRF and NSLS-II: L. Malina et al., THPMB045 X. Huang et al., IPAC 2015

Techniques for optics measurement & correction

- ★ Turn-by-turn
- ★ Closed orbit (ORM)
- **+** Passive corrections

F. Bulos et al., SLAC-Pub-5488 (1991): "For future linear colliders (...) with demanding tolerances (...) it becomes increasingly important to use the beam as a diagnostic tool."

Few optimization algorithms in operation:

- **Simplex**: KEKB injector linac, KEKB and RHIC luminosities
- **Scan of orthogonal knobs**: SLC, FFTB and ATF2 beam sizes, SPEAR3 and BEPCII lumi
- **Random walk**: SLS emittance

Three world records

The LHC High Luminosity upgrade

Peak β of 20 km! (today 6 km)

β -beating in HL-LHC before correction

β -beating in HL-LHC after corrections

LHC few weeks ago

Space charge simulations with measured optics in J-PARC, K. Ohmi et al., IPAC 2013

K. Ohmi et al.: "Estimation of errors of accelerator elements is inevitable to study beam loss."

Summary & Outlook

- **\star** The 1-2% β -beating level has been conquered in light sources and large colliders
- **\star** Can we measure β functions with an accuracy better than 1%?
- Could optics correction be as fast as orbit correction?
- The challenge lies ahead for HL-LHC, SuperKEKB, MAX IV, ESRF upgrade, etc.
- Should light sources use long and weak AC dipole excitations to avoid decoherence and errors from non-linearities?