7th IPAC, May 8-13, 2016, Busan, Korea

ER@CEBAF

A High-Energy, Multiple-Pass, Energy Recovery Experiment at CEBAF

On behalf of the JLab-BNL ER@CEBAF collaboration :

I. Ben-Zvi, Y. Hao, P. Korysko, C. Liu, F. Méot, M. Minty, V. Ptitsyn, G. Robert-Demolaize, T. Roser, P. Thieberger, N. Tsoupas, *BNL, Upton, NY, USA* M. Bevins, A. Bogacz, D. Douglas, C. Dubbe, T. Michalski, F. Pilat, Y. Roblin, T. Satogata, M. Spata, C. Tennant, M. Tiefenback, *JLab, Newport News, VA, USA*

François Méot, Brookhaven National Laboratory

Contents

1	CONTEXT OF THIS PROJECT1.1eRHIC Electron-Ion Collider1.2Objective of ER@CEBAF	3 3 4			
2	CEBAF 12 GeV RLA	5			
3	ENERGY RECOVERY AT JLAB				
4	ER@CEBAF	8			
	4.1 Hardware modif cations to CEBAF	9			
	4.2 Dedicated optics	11			
	4.3 Parameter list	14			
	4.4 Measurements foreseen	15			

CONTEXT OF THIS PROJECT

WEPMW027: "The ERL-based Design of Electron-Hadron-Collider eRHIC" WEPMW044: "Start-to-End Simulation of eRHIC ERL"

- 1.1 eRHIC Electron-Ion Collider
- EIC is next high priority large facility in the 2015 DOE NP Long Range Plan
- BNL develops a linac-ring scheme
- based on the existing RHIC collider,
- and on a 20 GeV energy recovery linac.

eRHIC EIC - in short				
Luminosity [/cm ² /s]	$10^{32} - 10^{34}$			
Center-of-mass energy [GeV]	20 to 140			
Species	e	р	³ He	A
Energy, max. [GeV, GeV/u]	20	250	167	100
Beam current, max. [mA] 50		400	20	00
Polarization [%]	80	70	70	-

Advantages of ERL method :

- high brightness e-bunches, undergo single collision, then ER'ed,
- high beam power with reduced RF drive power,

20 MeV injectovet

- beam current on lower side, thus
- SR power loss as well,
- low energy, low power beam dump,
- wall-plug eff ciency (a necessity, given e-beams of 100s of MW).

1.2 Objective of ER@CEBAF : EIC R&D

- We want to do big, pioneering science : **multi-GeV, multiple-pass energy recovery**
- Goal : perform a practical study of bunch phase space preservation
- Which in passing also means commissioning and operation of a large-scale superconducting recirculating linac in energy recovery mode

Further :

• Evaluate the limitations and ultimate performance, anticipate on diff culties in relation with eRHIC ERL R&D

• Anticipate on eRHIC ERL operation : provide guidance, learn, form people

2 CEBAF 12 GeV RLA

Parameters	CEBAF	eRHIC			
Energy [GeV]	12	3.3 - 20			
Beam current [mA]	\lesssim 0.1	26 - 50			
Beam power [MW]	1 (<i>a</i>)	up to 400			
SR loss [MW]	0.008	2.5 ^(a)			
Numb. of linacs	2	1			
Linac energy [GeV]	1.09	1.67			
Linac passes	≤11	≤12			
Bunch :					
Bunch freq. [MHz]	31-1497	9.4			
ppb, max. [10 ¹⁰]	10^{-4}	1.7 - 3.3			
rms $\epsilon_{x,y,\text{norm.}}$ [$\pi\mu$ m]	3	10 - 70			
rms length [mm]	0.09-0.15	3			
rms $\Delta E/E$	$< 10^{-4}$	$< 10^{-3}$			
Linac :					
Length [m]	250	176			
RF freq. [MHz]	1497	647			
Numb. of cavities/linac	200	80			
Cavity type	5- & 7-cell	5-cell			
Gradient [MV/m]	7 - 20	18			
(a) Practical constraint					

- **3 ENERGY RECOVERY AT JLAB**
- CEBAF is the only installation that allows multiple-pass, multi-GeV ER.

• Other installations are limited	Operated ERLs, in short :					
	Facilities	CEBAF	JLab	FEL	BINP	KEK
- in energy		-ER	IR+	UV		
- or in the number of passes	Linac E [MeV]	1000	165	135	10	17
	Numb. passes	1	1	1	4	1
	ER'ed curr. [mA]	0.08	9	2.5	30	0.1

- JLab has a long expertise in design, commissioning, operation of multiple ERLs:
- CEBAF Front-End Test (1992, 42.8 MeV, 31 μ A CW beam, 100% ER'ed)
- **CEBAF-ER experiment** (2003, 1 GeV, 80 µA, CW)
- JLab FEL, since 1997 : IR Demo, IR Upgrade, UV FEL, Darklight

CEBAF-ER experiment, 2003

• It demonstrated 1-pass up/1-pass down, 1 GeV energy recovery, CW beam,

• Measurements included (at injector, arcs, dump) transverse emittances, momentum spread, halo. Included RF system response to ER.

[Details : C. Tennant, Studies of ERLs at Jefferson Laboratory, PhD Dissertation, JLab, 2006.]

- HIGH ENERGY : up to 7+ GeV
- MULTIPLE-PASS : 1 up + 1 down, 3 up + 3 down, 5 up + 5 down

• Experiments can start with 1-pass up/1-pass down (similar to 2003 CEBAF-ER), to test procedures, equipments, diagnostics, verify beam, etc.

• Then increase number of turns, up to 5 up/5 down, at low energy enough that SR does not harm (400 \sim 500 MV/linac)

• Then push energy to 7+ GeV

Limitation momentum acceptance in Arc 1, $\frac{\Delta p}{p} \approx 2 - 3 \times 10^{-3}$ (beam up and beam down have different energies due to SR loss)

- 4.1 Hardware modif cations to CEBAF
- (1/2) Phase chicane at entrance of Arc 10 ($\delta l = \lambda/2$
- Design complete

12 GeV

beam

D

East

• Chicane and dump are both transparent to CEBAF Nuclear Physics program.

Leaving them in place will allow more, long-term, ER R&D

4.2 **Dedicated optics**

- (1/3) Linacs
- Constraints :
 - limiting beta functions as energy increases
 - and along each linac pass (minimize $< \beta/E >_{\text{linac}}$)

A. Bogacz - JLab

• Optimal : 60° FODO-like

• (2/3) Spreaders/recombiners

- They ensure match between linacs and arcs.

- Arc sextupoles are not used in normal operation. They can be included for ER experiment if necessary (e.g., 2nd order path length, chromatic aberrations)

• (3/3) Longitudinal optics

D. Douglas JLab

- ISR will degrade the beam energy spread and cause energy loss;
 - this must be allowed for by the longitudinal match

- phases and momentum compactions must be adjusted to insure that the beam stays within the machine momentum aperture during recovery:

- energies must be matched during transport through corresponding recirculation arcs

- energy spread must be compressed

• CEBAF transport system provides phase (path length) and compaction (M_56 trim) knobs providing appropriate controls

4.3 Parameter list

MACHINE/LATTICE

f_{RF}	1497	MHz	Standard CEBAF RF frequency		
λ_{RF}	20	cm	Standard CEBAF RF wavelength		
E_{linac}	700	MeV	Energy gain per linac pass		
E_{inj}	79	MeV	$= E_{linac} \times 123/1090$		
N passes	1, 3, 5		Number of { accelerated decelerated passes		
ϕ FODO, linacs	60	deg	Phase advance per cell		
M_{56} (Arc A)	80-90	cm	M56 compression of Arc A		
M_{56} (other arcs)	0	cm	M56 compression of other arcs		
Extraction angle	8	deg	Angle to dump line $^{(3)}$		
Dump power	20	kW	Max. ER'ed beam power		
$\Delta \phi ~ {f MOmod}^4$	0.25	deg	Pathlength control tolerance		

1. Master Oscillator modulation feedback that provides pathlength/phase control for main RF. 0.1 degree with new electronics.

BEAM	

$f_{ m beam}, {f CW}$	31 - 499	MHz	CW bunch repetition frequency
$f_{ m beam}$, tune $^{(1)}$	7.485	MHz	Tune bunch repetition frequency
$I_{ m beam}$, max. CW	100	$\mu \mathbf{A}$	Maximum CW beam current
$q_{ m bunch}$, max. CW	0.2	рC	Bunch charge at 100 $\mu {f A}$ CW
σ_l	90 - 150	$\mu \mathbf{m}$	Bunch length (high energy)
σ_t	300 - 500	fs	
$\epsilon_{x,y}$ geom., inj.	$\sim 10^{-8}$	m	Transverse rms , at injection
dp/p _{inj}	??		Energy spread at injector
$\epsilon_{x,y}$ geom., extr.	$\mathcal{O}(10^{-8})$	m	ER'ed bunch, 5 pass up/down
dp/p _{extr}	??	$10^{-??}$	Energy spread at extraction

1. Tune mode beam: {250 μ s macro-pulse f lled, 100 μ s off, 4 μ s macro-pulse f lled, then off} repeating at 60 Hz (16.67 ms). 4 μ s trailing pulse used for linac BPM orbits and linac arrival time cavities.

4.4 Measurements foreseen

• The ultimate goal of the measurements is, characterizing the bunch at all steps in the ER process all the way from injection to dump line : similar to 2003's CEBAF-ER, in many more locations

• In particular, transverse emittances can be characterized at all energies (up, down) by extraction to Halls' line, using RF separators

- Will study RF system response to ER regime
- A host of open topics :

- Increase beam current beyond 0.1 mA. How far / what limitations ?

- 6D tomography at the dump

•••

- Beyond EIC ER R&D, additional possibilities of experiments are contemplated :
 - BBU
 - halo
 - polarization transport to 12 GeV (SR effects, RF compensation)
 - multiple-beam diagnostics instrumentation

ERL LANDSCAPE

Red markers : previous demonstrations of ER

Green markers : ERLs in operation (2014) [C. Tennant, Energy Recovery Linacs, *in* "Challenges and Goals for Accelerators in the XXI Century", World scientif c]

