
CHARGED PARTICLE TRANSPORT, GAUSSIAN OPTICS, ERROR
PROPAGATION: IT’S ALL THE SAME
V. Ziemann, Uppsala University, Uppsala, Sweden

Abstract
We derive a correspondence between the parameters used

in Gaussian light beam propagationwith wavelength λ, beam
size w, and wavefront curvature ρ with the description in
terms of emittance and Twiss parameters commonly used in

charged particle optics. Furthermore, we discuss the analogy

of transporting beams to the propagation of measurement

uncertainties.

INTRODUCTION
When teaching charged particle optics [1–3] for accelera-

tors we found that pointing out the correspondence between

particle optics and the propagation of measurement uncer-

tainties [4] helped the students to better understand the basic

concepts. When, at another time, working on experiments

where charged particle beams interact with lasers [5, 6] we

found that the concepts used in Gaussian optics [7–9] are

very similar but use a different framework of ideas. The

unifying concept among light and charged particle optics as

well as error propagation is the transport of individual enti-

ties: light rays and measurement values; and the transport of

intervals of the same entities: beam widths and error bars,

respectively. In this report I elaborate the correspondence

between the three fields and provide methods to translate

one into the others.

OPTICS
In optics the propagation of paraxial rays is described

using the so-called ABCDmethod [7], where the coefficients

A, B,C, D are matrix elements in the transfer matrix that

propagates rays specified by the radial offset r and angle
r ′ with respect to the optical axis. The ray at the second
position (r2, r ′2) is given in terms of of those at the first
position (r1, r ′1) by

(
r2
r ′
2

)
=

(
A B
C D

) (
r1
r ′
1

)
= R

(
r1
r ′
1

)
. (1)

which defines the transfer matrix R and specifies the behavior
of individual rays.

An ensemble of rays emanating from a diffraction limited

source in this context is described by the wave front radius

of curvature ρ and the width w of the Gaussian distribution

in the coordinates r . Note that w and ρ describe properties
of an ensemble of many rays, and not individual rays. Using

the convention conventionally used in Gaussian optics [8]

we describe the radial intensity distribution I (r) by

I (r) = I0 e−2r
2/w2

= I0 e−r
2/2σ2

(2)

where the second equality defines the conventional rms beam

size σ.We thus deduce that width of the intensity distribu-
tion of a optical ensemble of rays or beam, w, is twice the
rms beam size radius σ

w = 2σ . (3)

The variation of the beam width w and the wavefront curva-

ture ρ through a beam line described by the transfer matrix

specified through A, B,C, D is given by [7]

q2 =
Aq1 + B
Cq1 + D

(4)

where q1 is an abstract quantity, given in terms of width w1

and wavefront curvature ρ1 through

1

q1
=

1

ρ1
− iλ
πw2

1

. (5)

Here the subscript labels the location and λ is the wavelength
of the radiation. Note that the wavefront curvature ρ1 is
given by the real part of 1/q1 and the beam width w1 by the

imaginary part. Historically, q is defined in this way because
it propagates in a simple way, Eq. (4), and the matrices

describing consecutive optical elements are described by

normal matrix products of the respective ABCD matrices.

We can also extract the physical quantities w and ρ from q
by introducing the real and imaginary part of q by q = u+ iv
and solve for w and ρ

ρ =
u2 + v2

u
and w2 =

λ

π

u2 + v2

v
. (6)

These expressions can be used to extract the curvature ρ and
width w from q.

CHARGED PARTICLE TRANSPORT
The propagation of individual rays of charged particles

is described in the same way as paraxial optical rays in

Eq. (1). The ensemble of rays – the beam – is described by

the matrix of the second moments of the ensemble [3]. It is

conventionally called the sigma- or beam-matrix

(
σxx σxx′

σxx′ σx′x′

)
= ε

(
β −α
−α γ

)
(7)

with γ = (1 + α2)/β. The definition of γ ensures that the
determinant of the matrix with β and α has unit determinant.
Note also that the beam size σ is related to the emittance
and beta function through the relation

σ2 = σxx = ε β . (8)
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The previous equation only considers one transverse plane,

here the horizontal direction. In general there is a second

similar equation for the other plane.

The sigma matrix is propagated through the section of

beam line from position labeled 1 to position 2 is described

by the matrix R with coefficients A, B,C, D by the following

expression [1]

(
σ(2)
xx σ(2)

xx′
σ(2)
xx′ σ

(2)
x′x′

)
= R

(
σ(1)
xx σ(1)

xx′
σ(1)
xx′ σ

(1)
x′x′

)
RT (9)

which follows from writing the the moments at the second

location in terms of those of the first location.

We now proceed to find a correspondence between ε, β, α
and the parameters defining the propagation in light optical

systems λ,w, ρ.

CLOSE TO A FOCUS
We first explore the correspondence of the two ways of

describing the ensemble of rays near a focus or beam waist.

The focus is characterized by a flat wavefront, which implies

that the curvature of the wavefront is infinite ρ = ∞ and we

thus have

q1 = −
πw2

1

iλ
(10)

at the waist. The beam parameters a distance L away from

the waist can be calculated by transporting with the transfer

matrix of a drift space

Rd =

(
A B
C D

)
=

(
1 L
0 1

)
. (11)

To find q2 at the position a distance L away we insert q1 from
eq. 10 into Eq. (4) and use the matrix coefficients from Rd .
After a little algebra we find

q2 = L + i
πw2

1

λ
(12)

and the beam width at location 2 can be determined by using

Eq. (6) with the result w2
2
= w2

1
+ (λ2/π2)(L2/w2

1
) or, in

terms of the rms beam size σ

σ22 = σ
2
1 +

(
λ

4π

)2 L2

σ2
1

. (13)

If we now express the rms width σ through the emittance ε
and beta function β by virtue of Eq. (8) we find

β22 = β
2
1 +

(
λ

4πε

)2 L2

β2
1

. (14)

A similar relation can also be deduced by applying the con-

ventional transfer matrix propagation method in Eq. (9) to a

sigma matrix shown in Eq. (7) at the waist which has α = 0.
In that case we find

β22 = β
2
1 +

L2

β2
1

. (15)

Comparing with Eq. (14) we find that the expression λ/4πε
must be unity. This indicates that one part of the sought

correspondence is that the ’equivalent emittance’ ε of a
diffraction limited light beam is given by

ε =
λ

4π
. (16)

In passing, we note that M2, the quantity used to characterize
the deviation from a diffraction limited beam in light optics

is simply the ’equivalent emittance’ in units of the emittance

of a diffraction limited light beam.

It is instructive to use Eq. (16) to simplify the definition

of q in Eq. (5) by substituting first σ for w and then using

Eq. (8) to obtain
1

q
=
1

ρ
− i
β
. (17)

We see that the imaginary part of q is directly related to the
beta function in a simple way.

GENERAL BEAMS
We start from a general initial beam described by the

second part of eq. 7 and use Eq. (9) with the transfer matrix

R expressed in terms of A, B,C, D. Explicitely performing
the matrix multiplications we find

ε2 β2 = ε1 �
�

A2 β1 − 2ABα1 + B2
1 + α2

1

β1
�
�

(18)

ε2α2 = ε1 �
�

AC β1 − (BC + AD)α1 + BD
1 + α2

1

β1
�
�
.

Now we can also do the same calculation using the optical

q parameters. We start by considering the q parameter at
location 1

q1 =
β1ρ1
β1 − iρ1

(19)

which follows directly from Eq. (17). At location 2 the same

relation applies with subscript 1 replaced by 2. We can thus

write

1

q2
=

1

ρ2
− i
β2
=

Cq1 + D
Aq1 + B

=
C β1ρ1 + D β1 − iDρ1
Aβ1ρ1 + B β1 − iBρ1

(20)

where we used Eq. (19) to express q1 in terms of β1 and ρ1.
The real and imaginary parts of the last expression can be

obtained by some lengthy algebra. For the imaginary part

that is related to the beta function we find

−β2 =
A2 β2

1
ρ2
1
+ 2AB β2

1
ρ1 + B2(β2

1
+ ρ2

1
)

(−AD + BC) β1ρ21
(21)

Canceling some terms and a little reordering yields

β2 =
1

AD − BC

⎡⎢⎢⎢⎢⎣
A2 β1 + 2AB

β1
ρ1
+ B2 �

�

1

β1
+
β1

ρ2
1

�
�

⎤⎥⎥⎥⎥⎦
(22)
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This equation we can now compare with Eq. (18) and imme-

diately see the correspondence

ε2
ε1
=
λ2
λ1
=

1

AD − BC
and α1 = − β1

ρ1
. (23)

Now a little discussion is in order. The term AD − BC is

actually the determinant of the transfer matrix that is usu-

ally unity in beam transport systems and it follows that the

emittances are conserved quantities in such systems. In

optical systems the transfer matrices that describe the tran-

sition from a medium with one refractive index to another

has non-unity determinant. This reflects the fact that the

wavelength λ in the two media is different and related by
the ratio of the refractive index, a fact that is reflected in

the first of Eqs. (23). In beam optical systems a non-unity

determinant of a transfer matrix corresponds to damping or

anti-damping and that affects the emittance, which is also

reflected in Eq. (23). The second equation relates the Twiss

parameter α to the wavefront curvature ρ.
We can conclude that there is an equivalence of the de-

scription of Gaussian wavefront propagation and the trans-

port method used in charged particle beam propagation. The

correspondence is summarized by

ε =
λ

4π
, β =

πw2

λ
= zR, α = − β

ρ
= −πw

2

λρ
(24)

which can be used to translate optical parameter λ,w, ρ to
charged particle optical ε, β, α. Note that the right hand side
of the middle equation for β is the common definition of
the Rayleigh length zR used in optics and which turns out to
be the same as the beta function β used in charged particle
optics. Inverting the relations we have

λ = 4πε, w = 2
√
ε β, ρ = − β

α
. (25)

Using these relations it is easy to translate between the two

descriptions of optical system in terms of q or sigma matri-
ces. The descriptions are equivalent.

The equivalence implies also that the limitations of the

concepts are equal. Both are paraxial approximation gov-

erned by linear (matrix) equations. Non-linearities in

charged particle beams appear as non-Gaussian beams,

whereas the light optics they appear as higher order modes

in terms of Hermite of Laguerre polynomials.

ERROR PROPAGATION
The measurement uncertainties (or ‘error bars’) for a num-

ber of measured values Xi are conventionally assembled in a

covariance matrixC(X ), whose diagonal componentC(X )ii
denote the square of the uncertainty for the corresponding

value Xi and the off-diagonal elements C(X )i j with i � j
denote the correlations among the values Xi and X j . It is
well-known that the covariance matrix C(Y ) of a set of new
variablesYk , expressed through the original values byYk (Xl),
is given by [4]

C(Y ) = JC(X )Jt (26)

where J (Y, X )i j = ∂Yi/∂X j is the Jacobi matrix for the

transformation of the variables X to Y and Jt denotes the
transpose of the matrix J .

In the case that we have a linear change of variables Y =
RX where Y and X are vectors and R the matrix that effects

the linear transformation, then R is the Jacobi matrix and

Eq. (26) directly corresponds to Eq. (9). The sigma matrix

in beam physics thus corresponds to the covariance matrix

featuring in the description of measurement errors and the

transfer matrices (or ABCD matrices in optics) corresponds

to the Jacobi matrix that propagate the variables of phase

space at one location in the beam line to those at another.

One might push the analogy even further. The centroid of

a charged particle beam corresponds to a measured variable

and the beam optical sigma matrix to the correlation matrix

of measurement uncertainties. Moreover, the diagonal ele-

ments of the correlation matrix correspond to beam sizes

or divergencies of the particle or laser beams and the off-

diagonal elements to the inverse of the wave front curvature

R or the Twiss parameter α, respectively. Propagating the
beam to a new location in the beam line with the help of a

transfer matrix R is equivalent of propagating the covariance

matrix with the Jacobi matrix, which in itself corresponds

to the transfer matrix.

CONCLUSIONS

We finally summarize the correspondences of three cases

in Table 1.

Table 1: Particle, Light and Error Propagation Correspon-

dence

Particle Optics Light Optics Error
Propagation

Transfer matrix R ABCD−matrix Jacobi

matrix

Beam matrix σ - Covariance

matrix

Beam size σ Width w Error bar

Twiss β Rayleigh length zR -

Twiss α Curvature 1/ρ correlation

Emittance ε λ/4π -

Not all concepts appear in all combinations, but being

aware of the correspondences will help understand the un-

derlying mechanisms and also aid communication among

colleagues in different fields.
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