Beam Commissioning of SuperKEKB

Y. Funakoshi for SuperKEKB Commissioning Group Accelerator Laboratory, KEK 2016.05.10@IPAC2016

SuperKEKB

Upgrade project of KEKB B-factory

Search for new physics beyond the standard model at B-meson regime

≻ e⁻ - e⁺ two-ring collider consisting of

- Injector (Linac): L ~600 m
- Damping ring (e⁺): C ~100 m
- Main ring (MR): C ~ 3016 m
 - HER: 7 GeV e⁻, 2.6 A
 - LER: 4 GeV e+, 3.6 A
- Belle-II detector

Design luminosity

80 x 10³⁴ cm⁻²s⁻¹
(~40 times of KEKB)

SuperKEKB master schedule

SuperKEKB Commissioning Phases

2016 Feb. ~ June

Phase 1 w/o QCS and Belle II

basic machine tuning vacuum scrubbing Optics tuning BKG study 2017 Oct. ~ 2018 Mar.

Phase 2 w/QCS and Belle II w/o Vertex detector

BKG study Luminosity tuning Target luminosity: 1 x 10³⁴ cm⁻² s⁻¹ 2018 Oct. ~

Phase 3 w/ full Belle II

Physics Run Luminosity tuning

Mission of Phase 1 operation (Feb. 2016 ~ June 2016)

- Startup of each hardware system
- Establish beam operation software tools
- Preparation for installation of Belle-II detector
 - Enough vacuum scrubbing
 - Request from Belle-II group: ~1 month vacuum scrubbing with beam current of 05~1A (360~720Ah).
 - Beam background study with test detector (named Beast)
- Optics study w/o IR (no detector solenoid)
 - Low emittance tuning
- Other machine studies

Machine parameters in Phase 1

April 4, 2016	LER	HER	unit	
E	4.000	7.007	GeV	
-	250.0	200.0	mA	
Number of bunches	1,576	953		
Bunch Current	0.16	0.21	mA	
Circumference	3,016.315		m	
ε _x /ε _y	1.8/-	4.6/-	nm/pm	zero current
Coupling	-	-		includes beam-beam
Crossing angle	83		mrad	
α _p	2.45×10 ⁻⁴	4.44×10 ⁻⁴		
σδ	7.7×10 ⁻⁴	6.3x10 ⁻⁴		zero current
Vc	7.9	9.4	MV	
σ _z	5	6.2	mm	zero current
Vs	-0.0196	-0.0216		
v_x/v_y	44.59/46.63	45.57/43.61		measurement
Uo	1.87	2.43	MeV	
$\tau_{x,y}/\tau_s$	43/22	58/29	msec	
	wigglers ON	wigglers ON		

History of Phase 1 operation

History of vacuum scrubbing Y. Suetsugu

> The beam currents and average pressures (2016/4/30)

Request from Belle-II group: ~1 month vacuum scrubbing with beam current of 05~1A.

Guideline for vacuum scrubbing and achievementas of May 8th

Problem (vacuum)

> Non-linear pressure rise against beam current in LER

- The pressures at whole LER ring showed the nonlinear behavior against the beam current.
- The behavior is quite similar to that of electron currents measured at aluminum parts without TiN coating.
- We have aluminum bellows chambers along the ring without TiN coating. The bellows chamber has a length of 0.2 m and located every 3 m on average.
- Counter-measure
 - Installation of solenoid magnets at the bellows.
 - A preliminary test showed that this method should work.

More details are discussed in the talk by Y. Suetsugu (TUOCB01).

Startup of SuperKEKB (3 months)

- Much faster startup than KEKB
 - KEKB beam currents achieved after first 3 months
 - LER: ~300mA, HER: ~200mA
 - SuperKEKB beam currents achieved after first 3 months
 - LER: ~650mA, HER: ~590mA
- Compared with KEKB...
 - Each hardware component has been upgraded with experiences at KEK and has worked fine (RF, Magent, Vacuum...)
 - The bunch-by-bunch feedback system has more effectively suppressed instabilities.
 - Operational tools (such as closed orbit correction system) has worked fine based on experiences at KEKB.
 - Less machine troubles than KEKB so far

Optics corrections

- Base measurements for hardware system check
 - BPMs
 - BPM check with beams (orbit bumps) -> We found misconnection or mis-cabling of BPM cables with ~>20 BPMs.
 - Gain calibrations of BPMs have been done with beams.
 - Quad-BPM measurements (to measure difference between field center of quadrupole magnets and the center of nearby BPM) have been almost finished.
 - Steering magnet
 - Check with beams (orbit bumps) -> We found an error with the excitation curve of steering magnets.
 - Closed orbit correction system
 - Closed orbit correction is a basis of optics correction. A reliable closed orbit correction system has been established based on the above measurements and modifications.

Beam based BPM offset measurement

Method of optics correction

- At SuperKEKB, we follow the method successfully used at KEKB.
- Optics corrections on X-Y coupling, dispersions and beta-beat are done iteratively.
- Since there are not enough single path BPMs, we rely on conventional BPMs.
- For the measurements of X-Y coupling and betabeta, orbit responses are measured with single kicks by steering magnets.
- For the measurement of dispersion, we use a usual RF phase frequency change.

Iteration

2008_06_19_19_06_29fop Fill-Length Optimization 2008_06_19_19_06_32luh Beam Collision Panel 2008_06_19_19_09_12XY_Coupling MeasOptHER 2008_06_19_19_12_59Dispersion MeasOptHER 2008_06_19_19_18_27XY_Coupling MeasOptHER 2008_06_19_19_21_34Dispersion MeasOptHER 2008_06_19_19_22_29Dispersion MeasOptHER 2008_06_19_19_23_29Dispersion MeasOptHER 2008_06_19_19_31_36Global_Beta MeasOptHER 2008_06_19_19_38_29Global_Beta MeasOptHER 2008_06_19_20_16_46_amsad8 amsad8 screen capture 2008_06_19_20_34_16_amsad8 amsad8 screen capture

*A loop of coupling, dispersion, β corrections takes **30-60 minutes** per ring to converge. (1 correction takes 3.5 to 7 minutes)

* We do not have to solve the entire problem at once by a single big matrix.

* Although these corrections are not independent, their cross-talks are smaller than the diagonal parts, so the iteration converges quickly.

XY-Coupling Correction

H. Sugimoto

Measurement:

Vertical leakage orbit induced by

independent 6 steering kicks.

- Correction with the additional skewQ coils.
- The vertical leakage orbit is effectively reduced.

Leakage Field from Lambertson Septum

- A Lambertson septum is used to deliver aborted beam to a beam dump.
- This magnet creates unexpected leakage field to stored beam line.

Add Skew Correctors

- All focusing (SF) and defocusing (SD) sextupole magnet have skewQ coil.
- As for Phase 1, Power supplies (PS) for skewQ are prepared only for SD magnets.
- We activate skewQ coils of one SF pair near the septum by using standby PS.

Activate those two skewQ coils installed in SF magnets.

LER Vertical Dispersion Before Correction

LER Vertical Dispersion After Correction

- This peak is not correctable due to hardware limit of SkewQ corrector strength.

- We have a plan to enforce SkewQ correctors.

Present status of optics corrections

ltems	LER	HER	KEKB typical value (LER)	Unit
X-Y coupling average of rms (Δy_{1-6})	23.6	7.7		μm
H. Dispersion rms ($\Delta \eta_{\star}$)	14.8	16.1	10	mm
V. Dispersion rms ($\Delta \eta_y$)	9.5	4.8	8	mm
Beta-x rms ($\Delta\beta_x/\beta_x$)	4.9	4.3	6	%
Beta-y rms ($\Delta\beta_y/\beta_y$)	5.3	3.7	6	%

A simulation shows that LER X-Y coupling (average) and vertical dispersion (rms) can be decreased down to 18.0 μ m and 4.1mm, respectively by using more skew-Q correctors near the Lambertson septum. We will install shortly skew-Q correctors made of permanent magnets.

More details will be discussed in the poster by Y. Ohnishi et al. (THPOR007).

Beam size measurement by using X-ray monitor

Work for calibration of X-ray monitor beam size monitor is on the way.

Beam current dependence of LER vertical beam size

We observed beam current dependent vertical size blowup in LER (positron ring). This blowup is not a single bunch effect and is possibly caused by the electron cloud effect. We plan to do more detailed study on this issue.

Injector Status

Layout of electron gun (Thermionic DC gun and photo-cathode RF gun)

Commissioning more details

- Ring circumference
 - LER: C_{Measurement} C_{Design} ~2.0mm (Cir: 3016m)
 - $C_{LER} C_{HER} \sim 0.2 \text{ mm}$ (LER chicane can adjust +/- 3 mm)
 - Magnet group has done a good job in the alignment work.
- Beast study (scheduled in mid. of May)
 - Compare experimental data with simulations
 - Study items
 - Vacuum bump
 - Touschek background (change vertical beam size)
 - Background associated with beam injection
 - Collimators

Various measurements (fast charged particle, high-energy photons, thermal/MeV neutron, dosimetry, etc..) to validate beam loss simulation

Machine study to be done in May and June (>30 shifts)

- More optics study
- X-ray monitor calibration
- LER beam size blowup
- Longitudinal/transverse bunch-by-bunch feedback system
- Beast background study
- Impedance measurement
- Rotational sextupole magnet
- Dithering coils
- Beam transport line study
- Linac study (RF gun etc.)

Summary

- After 5 year's upgrade work from KEKB, Phase 1 operation of SuperKEKB (w/o Belle-II detector and IR) started in Feb. 2016 and on the way.
- The startup of SuperKEKB operation is relatively smooth thanks to experiences at KEKB.
- In preparation for installation of Belle-II detector in Phase 2, vacuum scrubbing is being done and beam background study is scheduled with Beast detector.
- The optics correction study is going on energetically.
- There is some room for improvement in the low emittance tuning.
- The calibration of X-ray monitor is an important tuning item.
- We observed the vertical beam size blowup in LER. We need further study.
- Injector has worked stably. For Phase 2 and 3 operation, we will need more improvements.
- In the remaining period in Phase 1 (May and June), we will do more machine studies on various items (> 30 shifts).