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Abstract 
This paper introduces the most recent achievements in 

the control of nonlinear dynamics in electron synchrotron 
light sources, with special attention to diffraction limited 
storage rings. Guidelines for the design and optimization 
of the magnetic lattice are reviewed and discussed. 

INTRODUCTION 
The last five years have witnessed a renaissance of 

storage ring based light sources, driven by the 
requirement of an ever decreasing electron beam 
emittance. Despite the concept of diffraction limited 
lattice based on Multi Bend Achromats (MBA) was 
already known since the seminal work of D. Einfeld in 
1993 [1, 2], it was not until the funding on MAX IV in 
2009 [3] that the light source community has significantly 
re-engaged with the concept of MBA and a more decisive 
reduction of the emittance. 

An important cause underpinning this renaissance has 
been the growing confidence in the design and 
optimisation of very aggressive ultra-low emittance ring 
lattices. In this paper we present the main strategies for 
the design of such lattices, the theory and the tools used 
for their optimisation. We then provide a number of 
examples taken from the existing project highlighting the 
main trends in the field. 

ULTRA-LOW EMITTANCE LATTICES 
The equilibrium emittance in a storage ring is given by 
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where Cq = 3.84⋅10–13 m, γ is the relativistic factor of the 
electrons, Jx is the horizontal damping partition number, 

H(s) the dispersion invariant, ρ(s) the bending radius of 
the dipole magnet. The second formula is valid in the 
limit of small bending angles θ and Nb is the number of 
bendings in the ring. For a synchrotron light source to be 
diffraction limited, the electron beam emittance εx should 
be lower than the photon beam emittance λ/4π. Therefore 
diffraction limited light sources in the hard X-rays (12 
keV) require emittances in the 10 pm range. Formula (1) 
provides the basic guidance for the design of low 
emittance lattices showing clearly the benefits of using a 

large number Nb of bending magnets. It also provides 
theoretical minimum emittance conditions for the 

contribution of a single dipole in a cell or for a single 
dipole in a cell matched to achromatic conditions [4]. 
These two conditions form the building blocks for the 
construction of a large variety of lattices proposed for 
(quasi-)diffraction limited ring and upgrade of existing 
machines as reported in Table 1.  

 
Table 1: (Quasi-)Diffraction Limited Rings and Upgrade 
Proposals, Main Parameters 

   En. 
(GeV) 

C 
(m) 

εx 
(pm) 

Natural 
ξh, ξv 

MAX IV 3 528 330 -50;-50 
ESRF-EBS 6 844 133 -97;-84 
SIRIUS 3 518 280 -113;-80 
APS-U 6 1104 65 -138;-108 
ALS-II 2 197 50/50 -65;-68 
Diamond II 3 562 120 -129;-94 
Elettra U 2 260 280 -79;-47 
SPRring-II 6 1320 150 -155;-142 
SLS-II 2.4 288 132 -69;-34 

ANALYTICAL TOOLS 
The characterisation of the nonlinear beam dynamics in 

storage rings is historically based on the analysis of the 
Hamiltonian motion [5] or nonlinear one turn map 
formalism [6, 7]. The limitation on the dynamic aperture 
(DA) and momentum aperture (MA) comes from the 
presence of nonlinearities in the ring that excite nonlinear 
resonance driving terms. 

Starting from the Hamiltonian of the betatron motion 
the effect of the nonlinear magnetic field is usually 
analysed by deriving analytic expressions for the 
resonance driving terms. The general form for the driving 
terms can be written as [8] 
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where j, k, l, m, p are non-negative integers, Vmn(s) 
describes the azimuthal distribution of the gradient of the 
multipole generating a potential with power xmyn, e.g. for 
a normal sextupole b3 we have the terms b3(s)(x3 – 3xy2). 
The resonance driving term hjklmp(s) excites the resonance 
(m, n) where m = j – k, and n = l – m. The order of the 
resonance is N = |m|+|n| = j+k+l+m. Notice that h11001 and 
h00111 drive the horizontal and vertical chromaticities 
respectively. The driving terms are s-dependent complex 
coefficients which depend on powers of the optics 
functions and the phase advance around the ring. Each 
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magnet type will contribute to specific resonance driving 
terms and the formula for the hjklmp(s) allow us to get an 
insight as to what elements are building up large resonant 
driving terms and to devise strategies to compensate 
them. Usually the compensation works in first order of 
perturbation theory and should be checked with numerical 
tracking. A closer analysis of the expression for the 
driving terms reveals that sextupoles excite resonance of 
order 3, 1 in first order with the sextupole gradient, 
octupoles excite resonance of order 4, 2, and 0 (i.e. 
amplitude dependent tuneshift) in first order with the 
octupole gradient and so on. The formula is sufficient to 
show that in a cell with thin lens sextupoles, located at 
position with same β functions, the contribution of two 
sextupoles to all driving terms cancel if the phase advance 
between the two sextupoles is  

 
Δµx = (2nx + 1)π; Δµy = nyπ  (2) 

 
If we want to cancel simultaneously also the contribution 
of skew sextupoles the phase advance should be 
 

Δµx = (2nx + 1)π; Δµy = (2ny + 1)π  (3) 
 

Higher order driving terms generated by sextupoles are 
linear combinations of products of first order driving 
terms, hence a perfect cancellation of first order driving 
term will entail a cancellation to all orders. However, it is 
often the case that the geometric constraints on the 
available layout prevent achieving the correct phase 
advance for cancellation. In such cases one can use 
interleaved sextupole families [9], but it is clear that the 
phase advance between a pair of sextupoles is generally 
disturbed by the interleaved sextupoles which introduce 
an amplitude dependent phase advance and spoil the 
cancellation. Furthermore, it should be noticed that this 
cancellation is based on a thin lens model for the 
multipolar errors and it breaks down for thick elements. 
The cancellation also breaks down when we consider the 
off-momentum dynamics, as the momentum dependent 
phase advance may be shifted and fail to satisfy the 
conditions for cancellation. 

Another strategy often used to compensate specific 
resonance driving terms is to seek their cancellation with 
N repeated identical cells whose total phase advance, after 
N cells, is set to a multiple integer of 2π. In this way the 
compensation of the sextupoles is not obtained within the 
cell as done with (2) or (3) but by summing up N 
contributions to the driving terms, one per cell, so that the 
total sum is eventually zero. The driving terms are 
therefore cancelled at the end of the N cells.  

The most general approach to correct the driving terms 
is to build a Jacobian matrix relating the driving terms we 
want to minimise to the sextupole families available and 
invert it with the Singular Value Decomposition (SVD) 
approach [8]. If the Jacobian matrix is square and well 
behaved the inversion is possible and the correction is 
trivial. If however the matrix is degenerate or non-square, 
the matrix inversion is difficult because of the presence of 

small singular values in the SVD decomposition and the 
correction might require very strong sextupoles. This 
degeneracy is usually an indication that the sextupole 
families do not sample the phase advance in a sufficiently 
dense way. The extension of this concept to octupoles and 
decapoles and the corresponding resonance driving terms 
is reported in [10]. In all cases the robustness of the 
compensation scheme has to be validated by considering 
the effects of magnet misalignment and field errors. 

NUMERICAL TOOLS 
A complementary approach to the optimisation of the 

linear and nonlinear beam dynamics is given by the use of 
numerical tools for the direct optimisation of the DA and 
the MA of the ring, responsible for the injection 
efficiency and the Touschek lifetime. The field has 
benefitted enormously from the increased computation 
capabilities provided by relatively large computer 
clusters. On the one hand, parallelised algorithms or 
distributed applications allow the efficient exploration of 
vast portions of multi-dimensional parameter spaces. On 
the other hand, the direct optimisation of the DA and MA, 
if not directly the injection efficiency and the Touschek 
lifetime, can now be used with reasonable machine time 
runs. These calculations are often done with full 6D 
tracking using realistic machine model including 
magnetic systematic and random errors, fringe fields, 
element misalignments, operating chromaticities, 
engineering apertures and insertion devices (IDs). This 
combination of high throughput and accurate computation 
of the beam dynamics has been a major step forward in 
the optimisation of the ultralow emittance rings.  

Several methods have been proposed to explore the 
parameters space and to define the objectives of the 
optimisation. Systematic scan of quadrupoles and 
sextupoles (e.g. GLASS [11]) are feasible in rings with a 
limited number of magnet families. These become 
quickly impractical when the parameters space has five of 
more dimension. Genetic algorithms have instead proved 
to be very effective in sampling the parameter space and 
providing good solution for the nonlinear dynamics. The 
use of Multi-Objective Genetic Algorithms (MOGA) to 
the optimisation of storage ring light sources was 
pioneered by M. Borland, successfully improving the 
lifetime of APS using sextupoles [12, 13]. MOGA 
searches can be parallelised, they are numerically robust, 
not involving derivatives, and capable of finding global 
minima, giving the best trade-off between conflicting 
objectives in the so-called Pareto front. They are now 
commonly used to optimise both the linear and the 
nonlinear optics of ultra-low emittance rings. 

The application of MOGA has taken different flavours: 
the objectives chosen were initially proxy for DA and 
MA, like tuneshift with amplitude, driving terms which 
could be computed much quicker than the full DA and 
MA. However, as is well known, quantities computed 
perturbatively do not necessarily guarantee a clear 
correlation with the DA and MA (see e.g. [14]), therefore 
they are nowadays replaced by the direct calculations of 
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the DA and MA. Diffusion rates in frequency maps (FM) 
have been proposed as more accurate evaluators of the 
beam dynamics as they carry information on the 
regularity of motion, beside the extent of the DA [15]. 
Tracking should be performed in 6D for at least one 
synchrotron cycle to capture losses at injection due to a 
mismatch in the incoming beam to the RF bucket. 
Eventually the direct simulation of the injection process 
can be used [16].  

The lattices are further evaluated with numerical tools 
such as FM [17], or spectral line analysis [18]. It is 
important to observe that these algorithms and the 
accurate computation of the beam dynamics on which 
they rely upon, have proven to be in very good agreement 
with the experimental data taken at several existing 
machines [19-21]. 

OPTIMISATION STRATEGIES 
A good choice for the linear optics is a mandatory 

starting point for a successful optimisation of the 
nonlinear dynamic and it is generally accepted that the 
optimisation of the linear optics and nonlinear optics are 
interleaved processes. 

The simplest task in the optimisation of the linear 
optics is the choice of the betatron working point in order 
to avoid destructive resonances. Tune scans often 
involving change of integer part of the tune are made to 
explore the best working point. Other relevant quantities 
are the minimum beta in the straight section and the 
overall maximum beta in the cell as they both conspire to 
build the natural chromaticity. The value of maximum 
dispersion in the cell defines the strength of the sextupole 
necessary for chromaticity correction. The linear optics 
can be further tuned to allow the cancellation of driving 
terms over one or more cells or via symmetry as 
discussed in the previous paragraph. More advanced 
strategies foresee the determination of key quantities of 
the linear optics that have specific effects on the nonlinear 
dynamics once the chromaticity is corrected (see HMBA 
optimisation below).  

Once a good solution of the combined analysis of 
linear-nonlinear optics is found, we proceed with the 
further optimisation of the parameters strictly related to 
the nonlinear optics (i.e. sextupole gradients, lengths, 
correlated drifts, etc. ditto for octupoles and higher order 
multipoles if required) to control tuneshifts and resonance 
driving terms. The resonance cancellation schemes 
proposed in the previous section are rigorously valid only 
for thin element multipoles, while the sextupoles are thick 
and interleaved. Therefore, in practice there is room for 
further optimisation of the nonlinear dynamics, either by 
departing from the exact requirements for phase 
cancellation (2) and (3), or by adding more sextupoles 
families within the cell but also by assuming different 
families across two or more cells. Additional octupoles 
have proven to be useful in many cases. 

The final step is the used of numerical algorithms. 
MOGA optimisations have been run on virtually all new 
projects, using sextupole families and targeting objectives 

related to DA and MA. Following the MOGA 
optimisation a Pareto-front describing the best trade-off 
between the objectives is generated and the solutions that 
best balance large DA and large MA can be chosen. It is 
however possible to conceive a simultaneous optimisation 
of the linear and nonlinear optics directly with MOGA by 
using quadrupole and sextupole families as parameters. 

The robustness of the optimisation must be checked 
with respect to the presence of IDs and errors resulting 
from the mis-powering of elements, intrinsic systematic 
or random errors, misalignments. As stated, MOGA can 
be run directly on models containing IDs and errors 
therefore taking fully into account their effect as shown in 
the APS studies [22]. It is worth noticing that the latest 
lattice designs take fully into account the possibility of 
correcting the effect of these errors in the optics. This has 
important consequences on the tolerances defined for 
such errors. The suite of corrections strategies used in the 
optimisation goes well beyond the traditionally orbit and 
tunes correction, but includes first turn threading, 
dispersion free steering, coupling free steering [23], beam 
based alignment, LOCO [24]. 

EXAMPLES 
In what follows we describe the application of the 

optimisation strategies just discussed to the lattice design 
proposed for new rings and upgrade of existing rings. 

 
Multi-Bend-Achromat (MBA) 

Conventional MBA cells [2, 4] are based on the use of 
the Theoretical Minimum Emittance (TME) cell, flanked 
by two end-bending cells that suppress the dispersion in 
the straight sections, also designed to reach the theoretical 
minimum contribution to the emittance. Normally the 
theoretical minimum values are not reached and we speak 
of detuned TME cells or TME-like cells. 

Such lattices generate strong focussing and a small 
dispersion. The natural chromaticity builds up in the high 
gradient quadrupoles with large optics function and is 
notoriously difficult to correct since the small dispersion 
throughout the cell calls for very large sextupole gradients 
in interleaved families. The chromaticity correction is 
usually achieved by placing the chromatic sextupoles at 
the dispersion peaks. However large dispersion is in direct 
contrast to lowering the emittance and the resulting values 
for the dynamic aperture and the local momentum 
aperture are small. For these reasons lattice designers 
have generally stayed reasonable far from achieving the 
TME conditions in order achieve optics with reduced 
natural chromaticity that allow a satisfactory corrections 
on the nonlinear dynamics.  

This is the baseline design strategy of the MAX IV cell 
(Fig. 1). The control of the nonlinear dynamics is based 
on a combination of analytical and numerical tools to 
correct the driving terms of nonlinear resonances and 
validation with numerical tracking supported by 
Frequency Map analysis (FMA). The use of small 
octupoles to control the detuning with amplitude proved 
to be beneficial [25].  
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Figure 1: MAX IV 7BA cell [25]. 

 
A similar cell was devised for the design of the SIRIUS 

ring [26] by using a 5BA with a more aggressive lattice 
tuning that delivers an emittance of 280 pm, smaller than 
MAX IV, despite a similar circumference. Again the 
chromaticity sextupoles are evenly distributed along the 
cell. Similarly the correction of the nonlinearities was left 
to a suite of tracking based tools and MOGA. An example 
taken from the SIRIUS lattice is given in Fig. 2 where DA 
and Touschek lifetime where optimised using a set of 14 
sextupole families [27]. Plots like the one shown in Fig. 2 
have become common among lattice designers. 

 

 
Figure 2: Pareto front (blue dots) for DA and Touschek 
Lifetime for the SIRIUS 5BA lattice, the red dot is the 
start of the optimisation. 

 
A noticeable example of lattice design based on TME-

like cells is given by Pep-X lattice [28] delivering an 
emittance of 29 pm reduced to 10 pm with damping 
wiggler, i.e. a truly diffraction limited ring at 1Ǻ 
wavelength. The correction of the nonlinear resonances is 
based on the tailoring of the phase advance between the 
cells so that a large number of driving terms are 
compensated after one arc (made of 8 cells). The dynamic 
aperture at injection is also enlarged by designing a 
special optics with large βx in the injection straight. 
Although the lattice symmetry is broken the 
compensation of the driving term is still effective in 
generating sufficient dynamic aperture and momentum 
aperture. The scheme has successfully corrected 
geometric resonance up to fourth order resonance. The 
cancellation of the driving terms after 8 cells is shown in 
Fig. 3 [28]. 

Many other projects have been proposed along the 
same concept [29]. A radical solution to the problem of 
the small DA consists in giving up completely the off-

axis injection for multi-turn accumulation, proposing new 
injection schemes based on swap-out on-axis injection. In 
this way the dynamic aperture required is much reduced 
and the lattice design can be pushed further. On-axis 
injection requires a DA of few beam sigma, significantly 
less than what needed in off-axis injection, and the 
additional complexity of the accumulator and injection 
system appears to be manageable [30]. Swap-out injection 
based lattices will still require good lifetime: despite 
MBA lattices have a small dispersion invariant and hence 
the excitation amplitude of Touschek scattered particle is 
reduced, the MA should still be optimised to reach few %. 
Along these lines, the ALS upgrade [31] is based on a 
9BA lattice delivering 100 pm emittance. 

 
Figure 3: Cancellation of sextupole resonances after 8 
cells at Pep-X. 
 
Hybrid MBA 

A variant of the MBA concept was developed for the 
7BA cell at the ESRF [32] shown in Fig. 4. The so-called 
Hybrid MBA cell has two separate dispersion bumps used 
to ease the chromaticity correction. The dispersion is 
allowed to grow between dipole one and two and 
symmetrically between dipole six and seven. Chromatic 
sextupoles are placed in the dispersion bump and the 
phase advance between them is tailored to 3π in the 
horizontal plane and π in the vertical plane. As done at 
MAX IV, additional octupoles are used to further control 
the detuning with amplitude. By setting the phase 
advance between the pairs to an odd multiple of π, most 
of the driving terms generated by the sextupoles are 
cancelled. The hybrid cell also uses longitudinal bending 
gradient to further minimise the emittance. The 
optimisation of the longitudinal profile of the magnetic 
field shows that the high field region is concentrated in 
the region where dispersion is small, i.e. at the end of the 
dipole and is reported in [33]. The hybrid-MBA cell has 
been preferred to the MBA cell also by the APS upgrade 
[22, 34]. The large number of cells (40 compared to the 
32 cells of ESRF) allows reaching smaller emittance. 
Furthermore the present lattice has been designed with the 
assumption that the injection will be based on a swap-out 
scheme [34] and therefore the requirements on the on-
momentum dynamic aperture are somewhat relaxed. The 
present baseline design has 67 pm and similar route has 
been followed in the first studies of the Chinese High 
Energy Photon Source (HEPS) [35]. 
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Figure 4: The ESRF cell [32]. 

 
In the optimisation of the Hybrid MBA cell, a number 

of other parameters of the linear optics are found to have 
a noticeable effect on the nonlinear optics and therefore 
are included in the combined linear/nonlinear optics 
optimisation. These are the values of the optics functions 
(β, α, Dx) at the high dispersion peak, i.e. optics functions 
at the chromatic sextupoles and the value of βy at the 
centre of the cell which helps controlling the overall 
emittance. Specific matrix elements between the 
chromatic sextupoles help controlling the detuning with 
amplitude in the different planes (e.g. M34 for dQx/dJy) 
and the cross detuning with amplitude (M12 for dQx/dJy). 
While these interdependencies can be extracted rigorously 
from the analysis of the corresponding terms in the 
Hamiltonian, it is often the case that the most critical 
quantities are selected from a systematic empirical 
analysis of their contribution to the nonlinear dynamics 
once the chromaticity correction is fixed. In this sense the 
ability of the lattice designer is still a crucial element in 
the success of the nonlinear optimisation without which 
the computing power and tools offered by MOGA type of 
optimisation are unlikely to succeed. 

In most cases the optics parameter are used directly as 
parameters for the optimisation while the objectives are 
DA and MA or proxies. In this way it is assumed that the 
optimisation process is capable of matching exactly the 
linear optics in a way that the optics parameter chosen are 
effectively achievable. A sufficient number of knobs (e.g. 
quadrupole gradients, lengths, correlated drifts, etc) must 
be provided to match the number of optics constraints 
indicated. This is the case, e.g. at the ESRF where nine 
quadrupole in the half cell are used to match nine optics 
constraints [36]. The only caveat is that the chromaticity 
is corrected each time with the two families of chromatic 
sextupole to the nominal operating values.  
The DDBA/DTBA Concepts 

Another design parameter that is often quoted as 
quality factor for light sources is the ratio between 
circumference and the length of the straight section 
available for IDs in the lattice. In operating rings, 
SOLEIL’s DBA lattice has the higher ratio exceeding 
40% of the ring available for straight sections.  

In the investigation of the Diamond lattice it proved 
possible to show that a 4BA cell could be modified by 
adding a straight section in the middle of the cell and 
hence effectively turning it into a double-double bend 

achromat (DDBA) [37]. Such lattice still maintains a very 
low emittance and the optics function can be tailored to 
minimise beta and dispersion function in the additional 
straight section.  

This concept has been recently merged with the hybrid 
MBA cell in an attempt to combine the best of both cell 
designs. By removing the central gradient dipole the 7BA 
cell has been transformed in two mirror symmetric cells 
with three dipoles each, renamed Double Triple Bend 
Achromat (DTBA), as shown in Fig. 5 [38]. The 
optimisation of the beam dynamics follows the line of the 
Hybrid MBA cell. 

 
Figure 5: The DTBA cell. 

 
Reverse Bend Lattices 

Another interesting concept in low emittance lattice 
design, revamped in the SLS-II upgrade, is the use of 
reverse bends. The basic cell is designed to approach the 
TME condition but reverse bends are introduced flanking 
the main dipole in the TME cell. Reverse bends provide a 
greater flexibility in the optics to disentangle the βx 
function from the dispersion. In the SLS-II design the 
reverse bends angle is 10% of the main bends and they 
are built as gradient dipole providing additional horizontal 
focussing. The gradient increases the damping partition 
number Jx in (1) hence minimises further the emittance. 
The procedure for the optimisation of the nonlinear optics 
is then similar to the one followed in the conventional 
MBA [39]. Nine sextupole families are used to suppress 
sextupole resonances up to second order, octupole 
resonances up to first order and chromatic terms  up to 
third order. MOGA is then used to optimise 
simultaneously the DA on-momentum and at ±3% [40]. 
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