Keyword: framework
Paper Title Other Keywords Page
MOPME050 Reliable Software Development for Machine Protection Systems software, controls, interface, feedback 489
 
  • J.C. Garnier, D. Anderson, M. Audrain, M. Dragu, K. Fuchsberger, A.A. Gorzawski, M. Koza, K.H. Krol, K. Misiowiec, K. Stamos, M. Zerlauth
    CERN, Geneva, Switzerland
 
  The Controls software for the Large Hadron Collider (LHC) at CERN, with more than 150 millions lines of code, resides amongst the largest known code bases in the world. Industry has been applying agile software engineering techniques for decades now, and the advantages of these techniques can no longer be ignored to manage the code base for large projects within the accelerator community. Furthermore, CERN is a particular environment due to the high personnel turnover and manpower limitations, where applying agile processes can improve both, the codebase management as well as its quality. This paper presents the successful application of the agile software development process SCRUM for machine protection systems at CERN, the quality standards and infrastructure introduced together with the agile process as well as the challenges encountered to adapt it to CERN’s environment.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPME050  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO048 Dynamics of Twiss Parameters from the Geometrical Viewpoint emittance, betatron, survey 1135
 
  • V. Balandin, N. Golubeva
    DESY, Hamburg, Germany
 
  We show that with an appropriate parametrization the linear transport of the Twiss parameters can be viewed as a bilinear (or Moebius) map of the upper complex half-plane (which is the hyperbolic plane) into itself. Using then elementary techniques of hyperbolic geometry we classify transformations of the Twiss parameters into elliptic, hyperbolic and parabolic types and, for each type, present its typical phase space portraits.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO048  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO052 The ThomX Project Status laser, cavity, synchrotron, gun 2062
 
  • A. Variola, D. Auguste, A. Blin, J. Bonis, S. Bouaziz, C. Bruni, K. Cassou, I. Chaikovska, S. Chancé, V. Chaumat, R. Chiche, P. Cornebise, O. Dalifard, N. Delerue, T. Demma, I.V. Drebot, K. Dupraz, N. El Kamchi, M. El Khaldi, P. Gauron, A. Gonnin, E. Guerard, J. Haissinski, M. Jacquet, D. Jehanno, M. Jouvin, E. Jules, F. Labaye, M. Lacroix, M. Langlet, D. Le Guidec, P. Lepercq, R. Marie, J.C. Marrucho, A. Martens, B. Mercier, E. Mistretta, H. Monard, Y. Peinaud, A. Pérus, B. Pieyre, E. Plaige, C. Prevost, T. Roulet, R. Roux, V. Soskov, A. Stocchi, C. Vallerand, A. Vermes, F. Wicek, Y. Yan, J.F. Zhang, Z.F. Zomer
    LAL, Orsay, France
  • P. Alexandre, C. Benabderrahmane, F. Bouvet, L. Cassinari, M.-E. Couprie, P. Deblay, Y. Dietrich, M. Diop, M.E. El Ajjouri, M.P. Gacoin, C. Herbeaux, N. Hubert, M. Labat, P. Lebasque, A. Lestrade, R. Lopes, A. Loulergue, P. Marchand, F. Marteau, D. Muller, A. Nadji, R. Nagaoka, J.-P. Pollina, F. Ribeiro, M. Ros, R. Sreedharan
    SOLEIL, Gif-sur-Yvette, France
  • A. Bravin, G. Le Duc, J. Susini
    ESRF, Grenoble, France
  • C. Bruyère, A. Cobessi, W. Del Net, J.L. Hazemann, J.L. Hodeau, P. Jeantet, J. Lacipière, O. Proux
    Institut NEEL, Grenoble, France
  • E. Cormier, J. Lhermite
    CELIA, Talence, France
  • L. De Viguerie, H. Rousselière, P. Walter
    LAMS, Universite Pierre et Marie Curie, Ivry Sur Seine, France
  • H. Elleaume, F. Esteve
    INSERM, Grenoble Institut des Neurosciences, La Tronche, France
  • J.M. Horodinsky, N. Pauwels, P. Robert
    CNRS (IRSD), Orsay, France
  • S. Sierra
    TED, Velizy, France
 
  Funding: Work supported by the French Agence Nationale de la Recherche as part of the program EQUIPEX under reference ANR-10-EQPX-51, the Ile de France region, CNRS-IN2P3 and Université Paris Sud XI
A collaboration of seven research institutes and an industry has been set up for the ThomX project, a compact Compton Backscattering Source (CBS) based in Orsay – France. After a period of study and definition of the machine performances a complete description of all the systems has been provided. The infrastructures work is started and the main systems are in the call for tender phase. In this paper we will illustrate the definitive machine parameters and components characteristics. We will also update the results of the different ongoing R&D on optical resonators, fast power supplies for the injection kickers and on the electron gun.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO052  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRI060 Investigation of Thermocurrents Limiting the Performance of Superconducting Cavities cavity, shielding, niobium, linac 2621
 
  • R.G. Eichhorn, C.G. Daly, F. Furuta, A. Ganshin
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  As the surface resistance of superconducting cavities approach the theoretical limits parasitic effects limiting the performance came into focus of current research. One of these effects is that the quality factor of a cavity is impacted by the cooldown rate. We will present results from recent investigations on thermocurrents, driven by the temperature difference between the two material interfaces between the superconducting Niobium cavity and its Titanium helium-vessel, leading to the presence of a magnetic field while the cavity transits to the superconducting state.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRI060  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRO061 New and Unifying Formalism for Study of Particle-Spin Dynamics Using Tools Distilled From Theory of Bundles resonance, polarization, HOM, lepton 3014
 
  • K.A. Heinemann, J.A. Ellison
    UNM, Albuquerque, New Mexico, USA
  • D.P. Barber
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • D.P. Barber, M. Vogt
    DESY, Hamburg, Germany
 
  Funding: The work of JAE and KH was supported by DOE under DE-FG-99ER41104 and the work of DPB and MV was supported by DESY.
We summarize our recent work on spin motion in storage rings *. In fact we return to our study ** of spin motion in storage rings. We again focus on spin tunes, polarization fields etc. but in contrast to ** we base the description on one turn maps and refine and expand our toolset from that in * by using a rather modern method from Dynamical-Systems theory, developed in the 1980's by R. Zimmer and others based on bundles **, ***. With this we obtain new insights into invariant spin fields, invariant frame fields, spin tunes and spin-orbit resonances. At the same time we get a unified way to treat spin-1/2 and spin-1 particles. The bundle aspect is pointed out and we briefly mention the relation to Yang-Mills Theory as well.
* K.Heinemann, D.P.Barber, J.A.Ellison, M.Vogt. To be submitted.
** D.P.B., J.A.E., K.H., PRSTAB 7 (2004) 124002.
*** K.Heinemann, PhD Thesis, University of New Mexico, 2010 (available on the web).
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRO061  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME131 A Multi-conductor Transmission Line Model for the BPMs pick-up, impedance, beam-transport, induction 3550
 
  • T. Toyama
    J-PARC, KEK & JAEA, Ibaraki-ken, Japan
 
  We have developed an accurate and efficient analysis method with a multi-conductor transmission line model for beam position monitors (BPMs). This method combines the two-dimensional electrostatic analysis including beams in the transverse plane and the transmission line analysis in the longitudinal direction. The loads are also included in the boundary condition of the transmission line analysis. Calculation of 2D electrostatic fields can be easily performed with the boundary element method. The BPM response to a beam is compared with that to a stretched wire.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME131  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRI095 Testing Quality and Metrics for the LHC Magnet Powering System throughout Past and Future Commissioning hardware, operation, interface, embedded 3995
 
  • D. Anderson, M. Audrain, Z. Charifoulline, M. Dragu, K. Fuchsberger, J.C. Garnier, A.A. Gorzawski, M. Koza, K.H. Krol, S. Rowan, K. Stamos, M. Zerlauth
    CERN, Geneva, Switzerland
 
  The LHC magnet powering system is comprised of thousands of individual components to assure a safe operation when operating with stored energies as high as 10GJ in the superconducting LHC magnets. Each of these components has to be thoroughly commissioned following interventions and machine shutdown periods to assure their protection function in case of powering failures. As well as a dependable tracking of test executions it is vital that the executed commissioning steps and applied analysis criteria adequately represent the operational state of each component. The Accelerator Testing (AccTesting) framework in combination with a domain specific analysis language provides the means to quantify and improve the quality of analysis for future campaigns. Dedicated tools were developed to analyse in detail the reasons for failures and success of commissioning steps in past campaigns and to compare the results with newly developed quality metrics. Observed shortcomings and discrepancies are used to propose additional verification and mitigation for future campaigns in an effort to improve the testing quality and hence assure the overall dependability of subsequent operational periods.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRI095  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)