Keyword: permanent-magnet
Paper Title Other Keywords Page
TUZB01 Prospects for the use of Permanent Magnets in Future Accelerator Facilities undulator, radiation, lattice, dipole 968
 
  • J. Chavanne, G. Le Bec
    ESRF, Grenoble, France
 
  Permanent magnet based accelerator magnets may offer a viable alternative to their conventional electromagnetic pairs for many applications, especially where strong gradients and low power consumption is needed. As an example, the development of future light sources based on ultimate storage ring needs to be done in an important energy saving context aiming at a significant reduction of operational costs. After more than two decades of continuous developments in the field of permanent insertion devices, a knowledge capital on different issues such as aging effects has been gained. This technology seems ready to jump into the design and construction of advanced accelerator magnets. This talk reviews the status of the permanent magnet technology and the perspectives for its implementations in standard lattice magnets, highlighting both the advantages and the challenges as compared to electromagnetic magnets.  
slides icon Slides TUZB01 [9.341 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUZB01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO080 Experience with a NdFeB based 1 Tm Dipole synchrotron, radiation, injection, dipole 1226
 
  • F. Bødker, L.O. Baandrup, A. Baurichter, N. Hauge, K.F. Laurberg, B.R. Nielsen, G. Nielsen
    Danfysik A/S, Taastrup, Denmark
  • O. Balling
    Aarhus University, Aarhus, Denmark
  • F.B. Bendixen, P. Kjeldsteen, P. Valler
    Sintex A/S, Hobro, Denmark
  • N. Hertel, S.P. Møller, J.S. Nielsen, H.D. Thomsen
    ISA, Aarhus, Denmark
 
  Funding: *Work supported by The Danish National Advanced Technology Foundation
A 30° Green Magnet based on permanent NdFeB magnets has been developed and installed in the injection line at the ASTRID2 synchrotron light source. The cost efficient design is optimized for a 1 T field at a length of 1 m using shaped iron poles to surpass the required field homogeneity. The inherent temperature dependence of NdFeB has been passively compensated to below 30 ppm/°C. A study of potential demagnetization effects has been performed by irradiation of NdFeB samples placed directly in a 100 MeV e-beam. A high permanent magnet work point was found to result in enhanced robustness, and the risk of demagnetization was found to be negligible for typical synchrotron applications. The magnet has successfully been in operation at ASTRID2 since autumn 2013.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO080  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO085 Properties, Options and Limitations of PrFeB-magnets for Cryogenic Undulators undulator, cryogenics, induction, polarization 1238
 
  • F.-J. Börgermann, C. Brombacher, K. Üstüner
    Vacuumschmelze GmbH & Co. KG, Hanau, Germany
 
  The gap induction and thus the K-factor of permanent magnet undulators may be increased by cooling them to cryogenic temperatures. The use of NdFeB-magnets in cryogenic undulators, however, is limited to temperatures above 140 K due to the spin-reorientation transition (SRT) which leads to a reduction of the magnetization level. A further increase of the gap induction in undulators may be achieved by use of PrFeB-magnets at even lower temperatures, as this alloy does not show the SRT phenomenon. Although the effects are well known, up to now only a few undulator prototypes were built using this class of material since the coercivity of ternary PrFeB-magnets is not sufficient to minimize the risk of partial demagnetization when the undulator structure is kept at room temperature. This problem can be solved by applying actual technologies like grain-boundary diffusion in order to achieve coercivities exceeding 20 kOe at RT without sacrificing the high remanence Br of about 1.6 T at 77 K. We will provide actual data of the magnet performance achieved and show up the technological limitations in building PrFeB-based CPMU’s.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO085  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO091 Simple Characterization Method of Small High Gradient Permanent Magnet Quadrupoles quadrupole, proton, linac, focusing 1250
 
  • C. Ronsivalle, L. Picardi, M. Vadrucci
    ENEA C.R. Frascati, Frascati (Roma), Italy
  • F. Ambrosini
    URLS, Rome, Italy
 
  The application of quadrupoles with high or ultra-high gradient and small apertures requires a precise control over harmonic components of the field. A simple, fast, low cost measurement method on small size PMQs (Permanent Magnet Quadrupoles) is described. It is based on the same principle of the familiar "rotating coil technique", but in this case, profiting of the small dimensions of the PMQ, it consists in rotating the PMQ itself instead of the coil. In such way a gain on accuracy and measure time is obtained. It has been applied to characterize a set of commercial PMQs with a gradient around 200 T/m and an internal radius of 3.5 mm to be mounted in a SCDTL (Side Coupled Drift Tube Linac) structure for the acceleration of a proton beam from 7 to 12 MeV. This structure has been developed in the framework of the Italian TOP-IMPLART (Intensity Modulated Proton Linear Accelerator for Radiotherapy) Project  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO091  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO092 Magnetic-field Variable Permanent Dipole Magnet for Future Light Sources dipole, simulation, operation, emittance 1253
 
  • T. Watanabe, K. Fukami, T. Nakanishi, S. Sasaki
    JASRI/SPring-8, Hyogo, Japan
 
  Permanent dipole magnets with variable magnetic field have been designed, fabricated, and tested at SPring-8. Permanent magnets can be advantageous over electromagnets in terms of reliability, stability and compactness in addition to the small power consumption. No unexpected down of an accelerator due to power supply failure is supposed to happen. There is no cooling water flow that can induce a fluctuation of the magnetic field. These features may become important for future light sources, where a very reliable, stable, and compact ring is required. In addition, the power consumption is now one of the most important issues after the 3.11 disaster in Japan. One of critical issues to realize such a magnet is that a magnetic field has to be tuned. In the future, combined-functioned and longitudinally gradient magnets will play a key role in achieving extremely small emittance. In such a case, changing a gap will not work any more. We have designed and fabricated a permanent dipole magnet of which magnetic field can be tuned without changing the gap. The results of the performance test will be presented and a possibility to apply it for future light sources will be discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO092  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO094 Magnetic Field Evaluation of Multipole Permanent Magnets by Harmonic Coil with Novel Calibration Technique multipole, focusing, sextupole, neutron 1259
 
  • R. Kitahara, Y. Fuwa, Y. Iwashita
    Kyoto ICR, Uji, Kyoto, Japan
 
  Quadrupole magnets for ILC final focus should be strong enough with the restriction on the external radius to let the disrupted out-going beam pass by, while vibration of the magnetic center has to be highly avoided to keep the nm sized beam focusing stable at the interaction point a few meter downstream from the lens. Gluckstern's 5-ring PMQ singlet seems a good candidate for this point of view. In order to fabricate a good 5-ring singlet, property of each ring has to be good enough. A harmonic coil system, which has 24-bit ADC’s for high resolution, was developed. Current noise level of the system is less than 10-5, which is supposed to be improved by reducing mechanical vibration of the ball bearings. We demonstrated the evaluation method of coil wire position with magnetic field from pin point magnet, so that the accuracy of the method was comparable to um scale. We measured the prototype 5-ring PMQ singlet and evaluated harmonic components. This result was compared with the data measured at KEK.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO094  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO100 Rare-Earth End Magnets of a Miniature Race-Track Microtron and their Tuning microtron, linac, quadrupole, simulation 1277
 
  • I.Yu. Vladimirov, N.I. Pakhomov, V.I. Shvedunov
    MSU, Moscow, Russia
  • Yu.A. Kubyshin
    UPC, Barcelona, Spain
  • J.P. Rigla
    I3M, Valencia, Spain
  • V.V. Zakharov
    Tehnomag ltd., Kaluga, Russia
 
  We report on the tuning of end magnets of a compact 12 MeV racetrack microtron (RTM) which is under construction at the Technical University of Catalonia. They are magnetic systems composed of four dipoles with the Rare-Earth Permanent Magnet (REPM) material used as a source of the magnetic field. The poles of the magnets are equipped with tuning plungers which allow to adjust the magnetic field level. In the article we describe the tuning procedure and different techniques that were used in order to fulfill strict requirements of the field characteristics of the end magnets. It is shown that the obtained magnetic systems provide correct beam trajectories in the 12 MeV RTM.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO100  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO103 Novel Magnet Production Technique used for an Elliptically Polarizing Undulator undulator, controls, multipole, radiation 1286
 
  • E.J. Wallén, K.I. Blomqvist
    MAX-lab, Lund, Sweden
  • J. Bahrdt
    HZB, Berlin, Germany
  • F.-J. Börgermann
    Vacuumschmelze GmbH & Co. KG, Hanau, Germany
 
  A common problem for elliptically polarizing undulators (EPUs) is that the magnetic forces give a mechanical deflection in the magnet holder construction when changing the undulator phase. Gluing horizontally and vertically magnetized blocks together can increase the mechanical stability of the magnet holders. The gluing process of pairs of magnetized magnet blocks is time-consuming, expensive and difficult to carry out with high positional precision. A novel magnet production technique has been developed where un-magnetized pairs of blocks are glued together before magnetization. The large number of parts, the time for assembly, and the cost of the EPU can be reduced with the novel magnet production technique. The novel magnet production method has been used for a 2.6 m long EPU of APPLE-II type, which has been built in-house at the MAX IV Laboratory. The frame for the EPU is made of cast iron in order to get a small mechanical deformation when changing phase in the inclined mode. The paper includes detailed descriptions of the novel magnet production technique, including measurements of the magnetization, and the new EPU.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO103  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO113 Design and Measurement of a Low-energy Tunable Permanent Magnet Quadrupole Prototype quadrupole, linear-collider, collider, magnet-design 1316
 
  • B.J.A. Shepherd, J.A. Clarke, P. Wadhwa
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • A. Bartalesi, M. Modena, M. Struik
    CERN, Geneva, Switzerland
  • N.A. Collomb
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
 
  The 42 km long CLIC Drive Beam Decelerator (DBD) will decelerate beams of electrons from 2.4 GeV to 240 MeV. ASTeC in collaboration with CERN has developed a novel type of tunable permanent magnet quadrupole for the DBD. Two versions of the design were produced, for the high-energy and low-energy ends of the DBD respectively. This paper outlines the design of the low-energy version, which has a tuning range of 3.5-43 T/m. A prototype was built at Daresbury Laboratory (DL) in 2013, and extensive magnetic measurements were carried out at DL.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO113  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO029 Developing of Advanced Magnet Structures for Cryogenic in Vacuum Permanent Magnet Undulators undulator, cryogenics, vacuum, electron 2004
 
  • C. Kuhn, J. Bahrdt, A. Gaupp, M. Scheer, B. Schulz
    HZB, Berlin, Germany
 
  Cryogenic in vacuum permanent magnet undulators with periods less than 10 mm and correspondingly narrow gaps require tighter geometric and magnetic tolerances and complex pole designs from different materials to achieve the needed high field strengths. We use new mechanic designs and manufacturing technologies for magnet and pole assembly. We develop new precise and UHV-compatible joining methods which are different from the current approaches which are based on mechanical clamping or gluing. . We examine the mechanical and magnetic properties by performing tests and discuss the results.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO029  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPME031 Magnetic Design of the First Prototype Pure Permanent Magnet Undulator for the ILSF undulator, brilliance, radiation, electron 2326
 
  • A. Ramezani Moghaddam, J. Rahighi
    ILSF, Tehran, Iran
  • H. Ghasem
    IPM, Tehran, Iran
  • M. Lamehi Rashti
    Nuclear Science & Technology Research Institute, Tehran, Iran
  • A. Ramezani Moghaddam
    NSTRI, Tehran, Iran
 
  Iranian light source facility (ILSF) is a 3GeV, 400 mA, 3rd generation light source under design and construction. This paper describes the details of the preliminary magnetic design of the first prototype PPM undulator for the ILSF. In the preliminary design, the undulator period and some other parameters have been determined to reach desired x-ray spectrum to be used for soft x-ray application. A PPM layout and a model undulator with 16 poles is used to calculate the properties of the designs.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPME031  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRI105 Preliminary Design of Cooling System for a PrFeB-based Cryogenic Permanent Magnet Undulator Prototype at IHEP vacuum, cryogenics, undulator, simulation 2743
 
  • Y.C. Zhang, S.P. Li, H.H. Lu, S.C. Sun, Y.F. Yang
    IHEP, Beijing, People's Republic of China
 
  A circulation cooling system is under progress for a 2-m-long PrFeB-based cryogenic permanent magnet undulator (CPMU) prototype at IHEP. Sub-cooled liquid nitrogen flows through each in-vacuum girder back and forth once. Refrigerant channels for both girders are parallel connected in vacuum chamber. Numerical simulation shows that the cooling system is able to cool down magnet array from 300 K to 83 K. Meanwhile, phase error increases about 0.1 degree.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRI105  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRO055 Electron Beam Final Focus System for Thomson Scattering at ELBE quadrupole, electron, focusing, laser 2995
 
  • J.M. Krämer, F. Bødker, A. Baurichter, M. Budde
    Danfysik A/S, Taastrup, Denmark
  • A. Irman, U. Schramm
    Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiation Physics, Dresden, Germany
  • U. Lehnert, P. Michel
    HZDR, Dresden, Germany
 
  Funding: This work is part of LA3NET and funded by European Commission under Grant Agreement Number 289191.
The design of an electron beam Final Focus System (FFS) aiming for high-flux laser-Thomson backscattering x-ray sources at ELBE* is presented. A telescope system consisting of four permanent magnet based quadrupoles was found to have significantly less chromatic aberrations than a quadrupole triplet. This allows sub-ps electron beam focusing to match the laser spot size at the interaction point. Focusing properties like the position of the focal plane and the spot size are retained for electron beam energies between 20 and 30 MeV by adjusting the position of the quadrupoles individually on a motorized stage. Since the electron beam is chirped for bunch compression upstream, the rms energy spread is increased to one or two percent and second order chromatic effects must be taken into account. For an emittance of 13 pi mm mrad, we predict rms spot sizes of about 40 um and divergences of about 15 mrad. We also present the design of the permanent magnet quadrupoles to be used for the FFS. Ferromagnetic poles ensure a high field quality and adjustable shunts allow for fine adjustment of the field strength and compensation of deviations in the permanent magnet material.
*A. Jochmann et al., Phys. Rev. Lett. 111 (2013) 114803
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRO055  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRXBA01 Imaging Systems for 800 MeV Proton Radiography proton, scattering, quadrupole, experiment 4057
 
  • F.E. Merrill, D.B. Barlow, C.J. Espinoza, B.J. Hollander, K. Kwiatkowki, J.D. Lopez, F.G. Mariam, D.J. Morley, C.L. Morris, P. Nedrow, A. Saunders, A. Tainter, D. Tupa, J. Tybo
    LANL, Los Alamos, New Mexico, USA
 
  Los Alamos National Laboratory has developed the technique of proton radiography as a flash radiography system for the study of dynamic systems. Historically these studies have focused on measuring fundamental material properties of dynamic materials (equation of state, strength, phase transitions…) as well as the physical processes important in predicting the hydrodynamic flow of these materials at high velocity pressure and density (instabilities such as Richtmyer-Meshkov, Rayleigh-Taylor and Kelvin-Helmholtz). Recently these techniques have been extended to new applications which benefit from the unique capabilities of 800 MeV proton radiography. These new applications range from the study of metal alloy solidification to medical imaging applications. In addition to extending the application of this capability performance improvements have been investigated for future implementation. The results of dynamic studies and new applications are presented along with a proposed plan for future radiographic improvements.  
slides icon Slides FRXBA01 [8.667 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-FRXBA01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)