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Abstract

The main synchrotron SIS100 of the Facility for Antipro-

ton and Ion Research (FAIR) will be equipped with a bunch-

by-bunch feedback system to damp longitudinal beam oscil-

lations. In the basic layout, one three-tap finite impulse

response (FIR) filter will be used for each single bunch

and oscillation mode. The detected oscillations are used

to generate a correction voltage in dedicated broadband ra-

dio frequency (RF) cavities. The digital filter is completely

described by two parameters, the feedback gain and the pass-

band center frequency, which have to be defined depending

on the longitudinal beam dynamics. In earlier works [1, 2],

the performance of the closed loop control with such an FIR-

filter was analyzed and compared to simulations and mea-

surements with respect to the damping of coherent dipole

and quadrupole modes, the first modes of oscillation.

This contribution analyzes the influence of cavity beam load-

ing on the closed loop performance and the choice of the

feedback gain and passband center frequency to verify future

high current operation at FAIR.
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Figure 1: Block diagram for small modulation with the

notation of [3] (p: phase, a: amplitude, v: voltage, b: beam

and Gb
s , Gb

c , Bp , Ba : transfer functions, see also Eqs. (1-5)).

To eliminate the coupling term tanΦs , usually used in

the Pedersen model [3, 4], shown as part of Fig. 1, the gap

voltage modulations,

v(x) = (1 + ãv ) sin(x + p̃v ) (1)

were chosen in quadrature with the first harmonic of the

beam current

ib (x) = Y I0(1 + ab ) sin(x − Φs + pb ) (2)
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where Y I0 denotes the steady state amplitude, Y the relative

beam loading andΦs the synchronous phase angle, by setting

av = ãv − tanΦs p̃v and pv = p̃v + tanΦs ãv (3)

as sketched in Fig. 2.

The single particle dynamics are then described by

∆̈ϕ = ω2
syn,0

[

v(Φs + ∆ϕ) − sinΦs

]

with the gap voltage

amplitude included in the stationary synchrotron frequency

ωsyn,0. This choice of the gap voltage modulations from
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Figure 2: Convenient choice of gap voltage modulations.

Eqs. (3), in addition, reduces the cavity transfer functions

Eqs. (5) for the beam current (with an equivalent meaning

of the tilde) to a simpler form. Nevertheless, the following

considerations, other than e.g. Eq. (6), are shown forΦs = 0.

The SIS100 accelerating system will be based on the

SIS18 cavities with a loaded Q in the order of 10. Thus

it is a reasonable assumption to consider only the fundamen-

tal harmonic of the beam induced voltage.

Figure 3 shows the frequency diagrams coming along with

the well-known Robinson stability diagram [3, 5] calculated

without the common approximations for a rigid bunch and a

high loaded quality factor of the cavity. To be able to cope

with long bunches (σ = 33◦ as standard deviation at the

bottom of Fig. 3) the beam dynamics were taken from [5],

replacing the beam transfer functions for short bunches (here

e.g. σ = 6◦) [6]:

Bp (s) =
ω2

syn,0

s2 + ω2
syn,0

and Ba (s) ∼
−2ω2

syn,0

s2 + 4ω2
syn,0

(4)

The white curve indicates the optimum (concerning power

consumption) detuning ΦL = 0 (generator current and gap

voltage in phase) for the loading angle ΦL and stationary

beam loading compensation. The diagrams were calculated

for Q = 10 and a synchrotron tune of 10−3 but are valid

for all cavities that react on modulations of the beam cur-

rent within one period of a synchrotron oscillation. This,

however, primarily depends on the real part of the dominant

pole of the cavity impedance with the resonant frequency

ω0, which is the half cavity bandwidth α = ω0

2Q
for Q ≥ 1
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Figure 3: Damping, coherent dipole and quadrupole fre-

quency (left to right) for short (top) and long (bottom)

bunches; with from ωsyn,0 to 2ωsyn,0 for the

quadrupole frequency and from 0 to ωsyn,0 otherwise.

and ω0

2Q

(

1 −
√

1 − 4Q2
)

for Q ≤ 1
2
. To support the follow-

ing simplification, a more detailed evaluation regarding the

dependence of the extended Robinson stability diagrams

(Fig. 3) on the synchrotron tune and the loaded Q-factor

was done based on the transfer functions given in the Ap-

pendix. Supposing that the cavity reacts on changes in the

beam current virtually immediately, the transfer functions

can be taken as quasi-static, with Gs = 1 and Gc = 0 as

transfer functions for the total current, and hence for the

beam current

G̃b
s = Y cosΦZ (sinΦZ cosΦs − cosΦZ sinΦs ) (5a)

G̃b
c = Y cosΦZ (cosΦZ cosΦs + sinΦZ sinΦs ) (5b)

Gb
s = Y sinΦZ cosΦZ/ cosΦs (5c)

Gb
c = Y cos2

ΦZ/ cosΦs (5d)

is obtained, where ΦZ is the cavity detuning angle. This

gives the high current limit from the stability considerations

by Robinson [3]

Y =
2 cosΦs

sin(2ΦZ )

which is due to the loss of phase focusing as the phase angle

between the generator induced voltage ΦZ − ΦL and the

synchronous phase Φs is 90◦
= Φs + ΦZ − ΦL with the

steady state condition [3]

tanΦL =
Y cosΦs − tanΦZ

Y sinΦs + 1

to keep the total gap voltage independent of Y andΦZ . Thus

a single particle arriving too late in the cavity is no longer

accelerated with respect to the synchronous particle.

From pb = Bp (s)pv and pv = Gb
s pb using Eqs. (4) and

(5) the coherent synchrotron frequency with beam loading,

corresponding to the dipole frequency shift along the white

curve in Fig. 3, is found to be [7]:

ω2
syn,bl = ω

2
syn,0

(

cosΦs − Y
1

2
sin(2ΦZ )

)

(6)

It is shown in the following that Eq. (6) is important to tune

the passband center frequency of the bunch phase feedback.

LONGITUDINAL FEEDBACK SYSTEM

The closed loop bunch-by-bunch feedback system basi-

cally consists of

• broadband measurement of the beam current

• de-multiplexing of the beam signal

• one DSP-system per bunch with

– IF pre-processing of the pulsed signals

– phase / amplitude detection

(actuating variables, see Eq. (2))

– one digital FIR-filter for each oscillation mode

– post-processing of the filter output

(control variables, see Eqs. (1) and (3))

• multiplexing of the control signals

• two broadband kicker cavities

The scope of the longitudinal feedback system is to reduce

dilution in longitudinal phase space due to filamentation.

Different single bunch modes are damped, in the first in-

stance dipolar (m = 1) and quadrupolar (m = 2) oscillations,

whereas all coupled bunch modes (0 ≤ n ≤ h − 1) are cov-

ered by the bunch-by-bunch processing. The modularity and

scalability of the digital control system allow considerable

flexibility regarding the oscillation modes and frequencies.

Fig. 4 (top) shows the basic stability diagrams of the FIR-

filters (feedback gain and passband center frequency) used

to damp undesired beam phase [1] and bunch length [2]

oscillations. The large stability regions indicate robustness

against parameter uncertainties. The dynamics of the digital

FIR-filter with

k =
fsample

2 fpass

are implemented as:

y(t) = −
1

4
x(t) +

1

2
x(t − kTsample) −

1

4
x(t − 2kTsample) (7)

It is followed by an integrator with the gain KI as shown in

Fig. 1. Please note that the bunch phase feedback works with

both inputs pb − p̃v and pb − pv if Φs changes adiabatically

as constant offsets are suppressed by the FIR-filter (7). Fig-

ure 4 verifies the strong dependence of the passband center

frequency fpass of the bunch phase feedback (left columns)

on the relative beam loading Y according to Eq. (6). The

predicted optimum for a short bunch marked with a white

¨x¨ on the k-axis in the left column of Fig. 4 is remarkably

close to the optimum k found from the eigenvalue analysis

of the full order closed loop system.

In addition to the references [1, 2] the analysis includes

the coupling of the two feedback loops. The slower (due

to more filter taps) bunch phase feedback dominates the

dynamics, resulting in the feignedly extended optimum of

the bunch length feedback, with respect to reference [2]. The

parameters of the other loop are each set to the value marked

with a white ¨o¨ for respective scenario (Y , σ). For the

scaling of the KI -axes please refer to [1] and [2, Eq. (24)].
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Figure 4: Impact of (relative) beam loading, Y ∈ {0,0.75,1.5} (top to bottom), on the closed loop performance for damping

of dipole (left) and quadrupole (right) oscillations for short and long bunches, respectively.

CONCLUSION

It was shown that the simple estimation of the coherent

synchrotron frequency from Eq. (6) is sufficient for the tun-

ing of the longitudinal feedback system when beam load-

ing becomes relevant during future high current operation

at SIS100. This result may be limited to heavy ion syn-

chrotrons as the coherent synchrotron frequency decreases

with beam loading only if the loaded quality factor of the

cavity is small compared to the inverse of the synchrotron

tune times the harmonic number.
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APPENDIX

To find the scope of application of Eq. (6) it is important

to use the full 4th order cavity transfer functions

Gs (s) =
2α

(

s3+(2α−ωtZ )s2+2ω (αtZ+ω)s+2αω2 (t2
Z

+1)
)

s4+4αs3+4(αωtZ+α2+ω2)s2+8αω (αtZ+ω)s+4α2ω2 (t2
Z

+1)

Gc (s) =
2αs

(

tZ s2+(2αtZ+ω)s+2ωtZ (αtZ+ω)
)

s4+4αs3+4(αωtZ+α2+ω2)s2+8αω(αtZ+ω)s+4α2ω2 (t2
Z

+1)

with the angular RF frequency ω and the abbreviation

tZ := tanΦZ =
ω

2
0−ω

2

2αω
.

Usually 1st or 2nd order transfer function are applied

when dealing with beam loading due to high Q-factors [3–5].
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