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Abstract

For the quantification of intensity thresholds due to coher-

ent instabilities and beam induced heating in the FAIR syn-

chrotron SIS100 a detailed knowledge of transverse and lon-

gitudinal beam coupling impedance is required. Due to the

rather long proton and heavy-ion bunches, the relevant spec-

trum is below 100MHz. For the computation of beam cou-

pling impedances in the low frequency regime, frequency

domain methods are more advantageous than (explicit) time

domain methods. We show the setup of a 2D finite element

code that allows to compute the impedance for arbitrary lon-

gitudinally homogeneous beam and structure shapes. Per-

fectly conducting pipes, a dispersive ferrite tube, and thin

resistive beam pipe serve as test cases. The influence of the

beam velocity on the coupling impedance is studied.

INTRODUCTION

The beam in a synchrotron is modeled as a disc with ra-

dius a and surface charge density σ traveling with velocity

βc. The displacement dx of the beam (i.e. a coherent dipole

oscillation) can be approximated to first order by

σ(̺,ϕ) ≈
q

πa2
(Θ(a − ̺) + δ(a − ̺)dx cos ϕ). (1)

The force acting back on the beam is described by the cou-

pling impedance [1]

Z
‖
(ω) = −

1

q2

∫

beam

~E · ~J
∗

‖
dV (2)

Z
⊥,x(ω) = −

βc

(qdx)2ω

∫

beam

~E · ~J
∗

⊥
dV. (3)

where the beam current in frequency domain (FD) is ob-

tained from Eq. 1 as

J
s,z

(̺,ϕ, z;ω) = J
‖
+ J
⊥
= (σ ‖ + σ⊥)e−iωz/βc (4)

such that its magnitude is independent of the beam velocity.

The task is to solve Maxwell’s equations subject to exci-

tation by J
s,z

, including the charge that can be obtained by

the continuity equation. This has been approached by the

Finite Integration Technique (FIT) as described in [2] and

references therein. Nonetheless, straightforward implemen-

tations of staircase FIT suffer from slow convergence on

curved surfaces. This paper will focus on the Finite Element

Method (FEM) in 2D on a standard unstructured triangular
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mesh. The algorithm is implemented using FEniCS [3, 4],

an automated FEM toolbox providing a ’Functional Analy-

sis’ framework. The mesh originates from GMSH [5] and is

imported using DOLFIN-CONVERT [6]. FEniCS does not

provide complex functions, but it is easily possible to define

coupled function spaces. This motivates splitting real and

imaginary parts and solving the coupled problem, which

should have the same number of degrees of freedom (dofs)

as the complex problem.

2D IMPEDANCE FEM SOLVER

The fields required to determine the coupling impedance

are solutions of

∇ × ν∇ × ~E − ω2ε ~E = −iω ~J
s

(5)

with the complex reluctivity ν = µ−1
= (µ′+iµ′′)/|µ|2, and

the complex permittivity ε = ε0εr − iκ/ω (conductivity κ)

as functions of position and frequency. On the sufficiently

smooth boundary ∂Ω of the computational domainΩ ⊂ R2

a Dirichlet condition, i.e. ~n × ~E |∂Ω = 0, is applied. There-

fore, for brevity, all boundary terms in weak formulations

are omitted. The Fourier correspondence ∂z → −iω/v mo-

tivates splitting the electric field as

~E =

(

~Er
⊥

Er
z

)

+ i

(

~Ei
⊥

Ei
z

)

(6)

where the upper incices denote real and imaginary parts. In

order to avoid ’too much continuity’ on material interfaces,

Nedelec edge-elements [7] are used for the vectorial part of

the fields. Since they are H(curl) conformal, the divergence

part is calculated separately by applying a Helmholtz split
~E = ~Ecurl +

~Ediv. For ~Ediv = −∇Φ the Poisson equation

∇ · ε∇Φ = −̺ = −
1

βc
J

s,z
(7)

has to be solved and for the rotational part the same curlcurl

equation as Eq. 5,

∇ × ν∇ × ~Ecurl − ω
2ε ~Ecurl =

~R, (8)

is found, but with a divergence free right hand side

~R = ω2ε ~Ediv − iω ~J
s
. (9)

Statics Solver

Equation 7 represents a coupled electrostatic and station-

ary current problem

∇ · ε∇Φr
+ ∇ ·

κ

ω
∇Φi
= −̺r

∇ · ε∇Φi − ∇ ·
κ

ω
∇Φr
= −̺i. (10)
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It is solved by standard Galerkin FEM 1st order nodal trial-

and test-functions

Φ
r
=

Nn
∑

k=1

ar
k Nk (x, y) (11)

The electric field on a mesh edge j is obtained by ~Er
⊥, j
=

−∇⊥Φ
r
= (Φr

k ′
− Φr

k
)~t j/l j , which is then projected on the

H(curl) basis.

Curlcurl Solver

In order to solve Eq. 8 we decompose the curl operator

as

∇× ~E =
*.
,

0 −∂z ∂y
∂z 0 −∂x
−∂y ∂x 0

+/
-
~E =

*.
,

iZ A

B 0

+/
-
~E (12)

Z2
= −

ω2

β2c2
I , A = −BT (13)

such that the stiffness term in the weak formulation
∫

Ω

∇ × νr∇ × ~Er
curl ·

(

~wk

vl

)

dΩ (14)

can be assembled using
∫

Ω

(Aνr B ~Er
⊥) · ~wr

jdΩ =

∫

Ω

(νr B ~Er
⊥)(B~wr

j )dΩ (15)

∫

Ω

(Bνr AEr
z )vr

jdΩ =

∫

Ω

(νr AEr
z ) · (Avr

j )dΩ. (16)

Finally, a Galerkin approach with 1st order reduced Nedelec

elements (see also e.g. [8])

~Er
⊥(~x) =

Ne
∑

i=1

eri ~wi (~x) (17)

~wi (~x) = Nk∇Nl − Nl∇Nk (18)

is applied, fulfilling
∫

l j

~wi ·~t jds = δi j . (19)

For brevity we skip the explicit form of the complete curl-

curl stiffness operator containing 20 terms, the mass op-

erator containing 8 terms and the linear form for ~R con-

taining 4 terms. The total number of dofs at lowest order

is 2 ∗ (#edges + #nodes), as expected from Eq. 6, plus

2 ∗ #nodes of the Poisson system.

SELECTED BENCHMARK EXAMPLES

When the relativistic velocity is β < 1, the solution of Eq.

5 always contains a space charge part, i.e. an impedance

due to interaction of the source with itself and with im-

age charges. For structures with largely varying skin-depth

it cannot be separated from the resistive wall impedance.

Therefore, the code is first validated with a uniform cylin-

drical perfectly conducting (PEC) pipe. Subsequently, the

code is applied to a thin resistive pipe and a dispersive Fer-

rite ring.

Space Charge Impedance

The longitudinal and transverse space charge impedance

is calculated for a uniform cylindrical beam and pipe of ra-

dius a = 0.01m and b = 0.04m, respectively. The results
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Figure 1: Longitudinal and transverse space charge

impedance for uniform cylindrical beam and PEC pipe for

β = 0.1 (l = 1m)

can be seen in Fig. 1, where the asymptotes are

Z
spch

‖,LF
=

−iωµ0lg

2π β2γ2
, g =

1

4
+ ln

b

a
, Z

spch

‖,HF
=

−il

ωε0πa2

Z
spch

⊥,LF
=

−iZ0l

2π βγ2

(

1

a2
−

1

b2

)

, Z
spch

⊥,HF
=

−ilZ0c

2πa3γω
(20)

and the full analytical solutions can be found in [1]. The

discrepancy in the transverse impedance originates from

improper representation of the dipole moment on the FEM

mesh, i.e. a linear function has been used instead of the δ-

function in Eq. 1, σ⊥ = xσ ‖ , leading to improper scaling

with a.

Resistive Beam Pipe

Figure 2 shows the resistive wall impedance for the same

pipe inner radius but 1mm thickness, finite conductivity

κ = 106S/m, and radius of the boundary 0.1m. The ana-

lytical result was obtained by ReWall [9]. A major problem

in the FEM simulation is to resolve the skin depth, which

becomes very small at HF. This can be eased by using sur-

face impedances or sophisticated thin sheet approaches (see

e.g. [10]), or as done here by refining the mesh. Note that a

very fine mesh at LF can lead to numerical instability, which

requires adapting the mesh according to frequency and β.

5th International Particle Accelerator Conference IPAC2014, Dresden, Germany JACoW Publishing
ISBN: 978-3-95450-132-8 doi:10.18429/JACoW-IPAC2014-TUPRI045

TUPRI045
1666

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

14
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

05 Beam Dynamics and Electromagnetic Fields
D05 Instabilities - Processes, Impedances, Countermeasures



103 104 105 106 107

f [Hz]

102

103

104

Z
⟂
[Ω
/
m
]

FEM a=1cm Re
FEM a=2cm Re
Analytical Re
FEM a=1cm Im
FEM a=2cm Im
Analytical Im
fskin

Figure 2: Z⊥ of a resistive pipe for β = 1 (l = 1m).

Dispersive Ferrite Ring

The last example is a ring of Ferrite Amidon43 [11]

(see Fig. 3) which has strongly dispersive material proper-

ties. Therefore geometric resonances are not visible in the

impedance and one observes a broadband peak. Figure 4

PEC

vacuum

ferrite

r1

r2

r3

a
1 2 3 41 2 3 4

X

Y

Z X

Y

Z

Figure 3: Ferrite ring geometry and mesh, a = 0.5cm,

r1 = 1.78cm , r2 = 3.05cm , r3 = 3.3cm , l = 2.54cm.

shows the β dependence of the impedance. The analytical

results are obtained by a field-matching implementation in

Mathematica [12], similar to the one in [13].

CONCLUSION AND OUTLOOK

For longitudinal impedances the presented 2D solver

works very well, arbitrary beam and structure shapes can be

simulated for a large range of β and frequency. Problems oc-

cur only for extremely small longitudinal impedance, such

as the resistive wall impedance at frequencies below the im-

age current onset (see also [13]). Transverse impedances

are more complicated to compute, since the dipole moment

cannot be represented as in Eq.1. Nonetheless, satisfactory

results have been obtained for rather large beam radius a.

This code is particularly well suited for low β, since β enters

only as a parameter. Nonetheless the mesh requirements de-

pend on β via the transverse wavenumber. Note that for dis-

persive material the frequency dependence of the speed of

light has to be taken into account in the choice of the mesh.

For checking the the 2D assumption a 3D code is required

which is presently under development.
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Figure 4: Longitudinal impedance of a ferrite ring.
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