Keyword: insertion-device
Paper Title Other Keywords Page
MOPRO048 Update on Sirius, the New Brazilian Synchrotron Light Source emittance, lattice, insertion, coupling 191
 
  • L. Liu, A.P.B. Lima, N. Milas, A.H.C. Mukai, X.R. Resende, A.R.D. Rodrigues, F. H. de Sá
    LNLS, Campinas, Brazil
 
  Sirius is a 3 GeV synchrotron light source that is being built by the Brazilian Synchrotron Light Laboratory (LNLS). The electron storage ring uses the multi-bend-achromat approach (5BA in this case) to achieve a very low beam emittance of 0.28 nm.rad. The 518 m circumference contains 20 straight sections of alternating 6 and 7 meters in length, to be used for insertion devices as well as injection and RF systems. The 5BA cell is modified to accommodate a thin high field dipole (for 1.4˚ deflection) in the center of the middle bend producing hard X-ray radiation (12 keV critical energy) with a modest contribution to the total energy loss. This high field dipole (2.0 T) will be made of permanent magnet material, whereas the low field (0.58 T) ones, responsible for the main beam deflection, will be electromagnetic. Many challenges are associated with this kind of lattice, including both in beam dynamics and in accelerator engineering, that require R&D on new techniques. In this paper we discuss the main issues and achievements for Sirius during the last year.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO048  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRO050 Status of the ASTRID2 Synchrotron Light Source controls, wiggler, operation, insertion 197
 
  • J.S. Nielsen, N. Hertel, S.P. Møller
    ISA, Aarhus, Denmark
 
  With regular user beam delivered to experiments, the commissioning of the ASTRID2 synchrotron light source is now mostly completed. The ring is running stable in top-up mode for beam currents up to 90 mA, with a lifetime of ~0.8 h at 90 mA. The orbit is controlled by a 10 Hz feedback loop, which includes feed forward loops when the insertion devices change gap. A similar 10 Hz loop compensates tune and beta function changes from the insertion devices. Some issues are still remaining. These include installation of a Landau cavity for lifetime improvements, a reduction in the heating of the in-vacuum ferrites of the injection bumpers, and a shielding of the stray magnetic field from the booster dipoles.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO050  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPME084 Proposal for a Soft X-ray Diffraction Limited Upgrade of the ALS lattice, emittance, insertion, injection 567
 
  • C. Steier, A. Anders, D. Arbelaez, K.M. Baptiste, W. Barry, J.M. Byrd, K. Chow, S. De Santis, R.M. Duarte, R.W. Falcone, J.-Y. Jung, S.D. Kevan, S. Kwiatkowski, T.H. Luo, A. Madur, H. Nishimura, J.R. Osborn, G.C. Pappas, L.R. Reginato, D. Robin, F. Sannibale, D. Schlueter, C. Sun, C.A. Swenson, H. Tarawneh, W.L. Waldron, W. Wan
    LBNL, Berkeley, California, USA
 
  Funding: The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
The Advanced Light Source (ALS) at Berkeley Lab has been updated many times and remains as one of the brightest sources for soft x-rays worldwide. However, recent developments in technology, accelerator physics and simulation techniques open the door to much larger future brightness improvements. Similar to proposals at several other 3rd generation sources, this could be achieved by reducing the horizontal emittance with a new ring based on a multi-bend achromat lattice, reusing the existing tunnel, as well as much of the infrastructure and beamlines. After studying candidate lattice designs, development efforts in the last year have concentrated on technology and physics challenges in four main areas: Injection, Vacuum Systems, Magnets and Insertion Devices, as well as main and harmonic RF systems.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPME084  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRI074 First Results of the New Bunch-by-bunch Feedback System at ANKA injection, feedback, operation, insertion 1739
 
  • E. Hertle, N. Hiller, E. Huttel, B. Kehrer, A.-S. Müller, A.-S. Müller, N.J. Smale
    KIT, Eggenstein-Leopoldshafen, Germany
  • M. Höner
    DELTA, Dortmund, Germany
  • D. Teytelman
    Dimtel, San Jose, USA
 
  A new digital three dimensional fast bunch by bunch feedback system has been installed and commissioned at ANKA. Immediate improvements to stored current and lifetime were achieved for normal user operation. For this, the feedback has to be running during the injection and the energy ramp to 2.5 GeV. Additionally, the feedback system was also incorporated into the diagnostic tool-set at ANKA and opened up new possibilities of automated and continuous measurements of certain beam parameters. The system can operate in different modes such as the low alpha operation mode, which has different requirements on the feedback system compared to normal user operation. Results on the various aspects will be presented as well as future improvements.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI074  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRI105 Determination of Magnetic Multipoles using a Hall Probe multipole, quadrupole, insertion, synchrotron 4025
 
  • J. Campmany, J. Marcos, V. Massana
    CELLS-ALBA Synchrotron, Cerdanyola del Vallès, Spain
 
  In this work we present a method that allows determining the harmonic content of the magnetic field generated by an accelerator magnet using a Hall probe bench. The method is based on measuring the three components of the magnetic field on a cylindrical surface parallel to the longitudinal axis of the magnet. Such a measurement is accomplished by carrying out a series of on-the-fly scans for a series of straight lines whose transversal coordinates lay on a circle. The Fourier decomposition of the magnetic field along a circle at a given longitudinal position yields the harmonic terms of the field at a reference radius equal to the circle’s radius. As a result the method provides the longitudinal dependence of the harmonic terms, and in particular it allows analyzing their behavior in the fringe field region. We present an example of the application of this method to the measurement of a quadrupole of the Storage Ring of ALBA. A comparison with the integrated results provided by a rotating coil bench is also shown.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRI105  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)