Keyword: wiggler
Paper Title Other Keywords Page
MOPRO050 Status of the ASTRID2 Synchrotron Light Source controls, operation, insertion, insertion-device 197
 
  • J.S. Nielsen, N. Hertel, S.P. Møller
    ISA, Aarhus, Denmark
 
  With regular user beam delivered to experiments, the commissioning of the ASTRID2 synchrotron light source is now mostly completed. The ring is running stable in top-up mode for beam currents up to 90 mA, with a lifetime of ~0.8 h at 90 mA. The orbit is controlled by a 10 Hz feedback loop, which includes feed forward loops when the insertion devices change gap. A similar 10 Hz loop compensates tune and beta function changes from the insertion devices. Some issues are still remaining. These include installation of a Landau cavity for lifetime improvements, a reduction in the heating of the in-vacuum ferrites of the injection bumpers, and a shielding of the stray magnetic field from the booster dipoles.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO050  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRO054 Commissioning progress of the Femto-slicing Project at SOLEIL laser, electron, radiation, synchrotron 206
 
  • M. Labat, H.B. Abualrob, P. Betinelli-Deck, A. Buteau, N. Béchu, L. Cassinari, M.-E. Couprie, F. Dohou, C. Herbeaux, Ph. Hollander, J.-F. Lamarre, C. Laulhé, A. Lestrade, J. Lüning, O. Marcouillé, J.L. Marlats, T. Moreno, P. Morin, A. Nadji, L.S. Nadolski, D. Pédeau, P. Prigent, S. Ravy, J.P. Ricaud, M. Ros, P. Roy, M.G. Silly, F. Sirotti, K. Tavakoli, M.-A. Tordeux, D. Zerbib
    SOLEIL, Gif-sur-Yvette, France
 
  The femtoslicing project at SOLEIL is currently under commissioning. It will enable to serve several beamlines with 100 fs FWHM long pulses of soft and hard X-rays with reasonable flux and with a 1 kHz repetition rate. It is based on the interaction of a femtosecond Ti:Sa laser with electrons circulating in the magnetic field of a modulator wiggler, that provides the electron beam energy modulation on the length scale of the laser pulse. The optimization of the interaction is performed using two dedicated diagnostics stations. The first one, operating in the Infra-Red (IR) is installed in the tunnel and allows the adjustment of the temporal, spectral and spatial overlap between the laser and the electron beam. The second one, located in the IR-THz AILES beamline, measures the intensity of the terahertz (THz) radiation emitted by the local dip structure produced in the core electron beam after interaction. This second setup provides refined optimization of the interaction. This paper describes the layout of these diagnostics and gives first results and characterization of the slicing experiment at SOLEIL.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO054  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRO098 Compact Electron Storage Ring Concepts for EUV and Soft X-ray Production emittance, storage-ring, damping, dipole 316
 
  • H.L. Owen, S.A. Geaney, M. Kenyon
    UMAN, Manchester, United Kingdom
  • J.K. Jones, D.J. Scott
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  Funding: Funded in part by the Science and Technology Facilities Council
We discuss the use of two novel techniques to deliver low emittance from a compact electron ring at energies around 1 GeV, suitable for EUV and soft X-ray synchrotron radiation production. The first method is the circulation of non-equilibrium electron bunches, which is made feasible using high repetition rate linacs and very fast bunch-by-bunch injection and extraction. The second method is to utilise a stacked storage ring in which two rings are coupled, and in which the strong damping wigglers in one ring depress the emittance in the other. We present example designs of each approach, noting that these methods may be used in combination with other emittance reduction techniques.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO098  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRI057 Review of the Transverse Impedance Budget for the CLIC Damping Rings impedance, damping, simulation, operation 1701
 
  • E. Koukovini-Platia, G. Rumolo
    CERN, Geneva, Switzerland
 
  Single bunch instability thresholds and the associated coherent tune shifts have been evaluated in the transverse plane for the damping rings (DR) of the Compact Linear Collider (CLIC). A multi-kick version of the HEADTAIL code was used to study the instability thresholds in the case where different impedance contributions are taken into account such as the broad-band resonator model in combination with the resistive wall contribution from the arcs and the wigglers of the DR. Simulations performed for positive values of chromaticity showed that higher order bunch modes can be potentially dangerous for the beam stability.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI057  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO023 Preventing Superconducting Wiggler Quench during Beam Loss at the Canadian Light Source electron, simulation, radiation, storage-ring 1992
 
  • W.A. Wurtz, L.O. Dallin, M.J. Sigrist, J.M. Vogt, M.S. de Jong
    CLS, Saskatoon, Saskatchewan, Canada
 
  The Canadian Light Source utilizes two superconducting wigglers for the production of hard x-rays. These superconducting wigglers often quench during beam loss, even though tracking calculations predict that the beam is lost on an aperture far from the wigglers. We present measurements that suggest the tracking simulations are correct and the electron beam indeed strikes the predicted limiting inboard aperture. By simulating the interaction of the beam with the aperture, we find that some scattered electrons can retain sufficient energy to remain inside the storage ring. The simulations show that some of these scattered electrons strike the wiggler vacuum chamber and deposit energy in the superconducting coils, causing the quench.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO023  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO027 W164: A Wiggler Dedicated to the PUMA Beamline and the FEMTOSLICING Project at SOLEIL operation, laser, electron, photon 1998
 
  • O. Marcouillé, H.B. Abualrob, P. Brunelle, L. Chapuis, M.-E. Couprie, T.K. El Ajjouri, M. Labat, J.L. Marlats, F. Marteau, A. Mary, A. Nadji, K. Tavakoli, M.-A. Tordeux, M. Valléau
    SOLEIL, Gif-sur-Yvette, France
 
  The W164 out-vacuum wiggler was designed and built at SOLEIL with the double goal of producing high energy photons for the PUMA beamline (10 keV to 70 keV) and to be used as a modulator for the FEMTOSLICING project. The insertion device requires simultaneously reaching low resonant energy (1.55 eV) and high critical energy of photons (above 10 keV), leading to the choice of high field and large periods. The 3.28 m long wiggler is composed of 20 periods of 164 mm made of NdFeB magnets and vanadium permendur poles. The required effective field for the FEMTOSLICING is 1.53 T and the maximum total field reaches 1.8T at the minimum gap of 14.5 mm. The small transverse size of the poles was optimized to minimize the magnetic forces (8 tons maximum) resulting, together with the large field produced at minimum gap, to a large vertical dynamic field integral (DFI) inside the horizontal physical aperture of the chamber. A dedicated permanent magnet system was designed, constructed and installed at both wiggler ends to cancel the DFI at minimum gap. The construction of the wiggler, the results of the magnetic measurements and the effects on dynamics measured on electron beam are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO027  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO028 A Robinson Wiggler Proposal for the Metrology Light Source emittance, damping, radiation, synchrotron 2001
 
  • T. Goetsch, J. Feikes, M. Ries, G. Wüstefeld
    HZB, Berlin, Germany
 
  Funding: Work supported by German Bundesministerium für Bildung und Forschung and Land Berlin.
The Metrology Light Source (MLS), situated in Berlin (Germany) is owned by the Physikalisch-Technische Bundesanstalt and was built / is operated by the Helmholtz-Zentrum Berlin. It is an electron storage ring operating from 105 MeV to 630 MeV. The MLS serves as the national primary source standard from the near infrared to the extreme ultraviolet spectral region *. Users of synchrotron radiation demand an improved lifetime which is Touschek dominated at the MLS. A possible solution to meet this demand is to lengthen the electron bunches. By installing a Robinson Wiggler (RW), damping effects can be transferred from the longitudinal to the horizontal plane **,***, thereby increasing the energy spread and reducing the horizontal emittance. By varying the energy spread, the bunch length can be increased and thus the scattering rate decreased, resulting in an improved lifetime. According to preliminary estimations a considerable increase in lifetime seems achievable, while preserving the source size.
* R. Klein et al., Phys. Rev. ST-AB 11, 110701, 2008
** K. W. Robinson, Radiation effects in circular electron accelerators, 1958.
*** H. Abualrob et al., MOPPP062, IPAC2012, New Orleans, 2012
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO028  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO035 Radiation Damage of Undulators at PETRA III undulator, radiation, damping, vacuum 2019
 
  • P. Vagin, O. Bilani, A. Schöps, M. Tischer, S. Tripathi, T. Vielitz
    DESY, Hamburg, Germany
 
  In the new octant of PETRA~III, there are 14 undulator beamlines covering photon energy range from 0.3keV to 150keV. There are also 80m of damping wigglers in order to achieve a low emittance of 1nmrad. Some of these devices, operating at PETRAIII since 2008, accumulated total radiation doses of about 100kGy. Visible corrosion at the magnet structures of some permanent magnet undulators setting in after a few years and a high dose rate measured regularly by thermoluminescent dosimeters (TLDs) gave reason to inspect the magnetic field of all insertion devices in the PETRA tunnel. This paper presents details of the magnetic field degradation caused by radiation damage to the undulator magnets. For some undulators changes in the spectral properties of the generated light were observed. It was measured with different taper settings in order to partly compensate the nonuniform demagnetization along the structure. The results are compared with the data from the sFLASH undulators and measurements of special 3 pole "sacrificial" undulator, installed in FLASH. Its magnetic field is periodically remeasured and shows field amplitude decrease of 1% per 16kGy accumulated dose.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO035  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO042 Damping Wiggler with Tapered Period emittance, lattice, damping, radiation 2038
 
  • K. Karyukina
    BINP, Novosibirsk, Russia
  • A.V. Bogomyagkov, E.B. Levichev
    BINP SB RAS, Novosibirsk, Russia
 
  Strong-field short-period wigglers installed in electron storage ring increase the radiation damping integral I2 and either increase or decrease the I5 integral responsible for quantum excitation. In case of the I5 integral decreasing, the beam emittance can be substantially reduced. In the paper we discuss additional reduction of I5 by applying of the longitudinal modulation of the wiggler period (tapering).  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO042  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO046 Beam Dynamic Effect of Multi-period Robinson Wiggler in Taiwan Photon Source emittance, dipole, damping, storage-ring 2044
 
  • C.W. Huang
    NTHU, Hsinchu, Taiwan
  • C.-S. Hwang
    NSRRC, Hsinchu, Taiwan
  • S.-Y. Lee
    IUCEEM, Bloomington, Indiana, USA
 
  Robinson wiggler is a special insertion device that can be used to decrease natural emittance of the Taiwan Photon Source (TPS) storage ring. There are four poles in one set of Robinson Wiggler and each pole has combined with dipole and quadrupole field strength. The dipole field strength multiply quardupole field strength in each pole should be negative. This Robinson wiggler can change damping partition number and then affect the emittance. This study will evaluate practicability of reducing the emittance of TPS storage ring by muti-period Robinson wiggler and will be installed in the 7 m long-straight section. One period of the traditional Robinson Wiggler include four poles with different field polarity. In the same length, the mult-period Robinson Wiggler have many period in one set of Robinson Wiggler that is different from the traditional Robinson wiggler. Due to the traditional Robinson wiggler can not be effective to improve emittance in TPS storage ring (the efficiency is only 7%). So we adopt to use muti-period Robinson wiggler, the efficiency can be up to 37%, and the linear matching result is better than one period Robinson Wiggler.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO046  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO051 Commissioning of the Laser Beam Transport for the Femto-slicing Project at the Synchrotron SOLEIL laser, beam-transport, diagnostics, electron 2059
 
  • P. Prigent, M.-E. Couprie, Ph. Hollander, M. Labat, C. Laulhé, A. Lestrade, J. Lüning, J.L. Marlats, P. Morin, A. Nadji, S. Ravy, J.P. Ricaud, M.G. Silly, F. Sirotti, M.-A. Tordeux, D. Zerbib
    SOLEIL, Gif-sur-Yvette, France
 
  The aim of the Femto-Slicing project at SOLEIL is to generate 100 fs X-rays pulses on two beamlines, CRISTAL and TEMPO in a first step, for pump-probe experiments in the hard and soft X-rays regions and possibly on two other beamlines in the future. Two fs lasers are currently in operation on TEMPO and CRISTAL for pump-probe experiments on the ps time scale enabling time resolved photoemission and photodiffraction studies. The Femto-Slicing project is based on the fs laser of the CRISTAL beamline, which can be adjusted to deliver 5 to 3 mJ pulses of 30 fs duration at 1 to 2.5 kHz respectively. The laser beam is separated in three branches: one delivering about 2 mJ to the modulator Wiggler and the other ones delivering the remaining energy to the TEMPO and CRISTAL experiments. This layout will yield natural synchronization between IR laser pump and X-ray probe pulses, only affected by drift associated with beam transport. In this paper, we present the current status of the Femto-Slicing project at SOLEIL, with particular emphasis on the characterization of the laser beam transport to the wiggler, to the CRISTAL beamline, and with the first results that will be obtained.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO051  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO093 Possibility of Application of THz Wiggler in Low Energy FEL for Measurements of Electron Bunch Longitudinal Structure electron, laser, radiation, undulator 2177
 
  • E. Syresin, S.A. Kostromin, R.S. Makarov, N.A. Morozov, D. Petrov
    JINR, Dubna, Moscow Region, Russia
  • M. Krasilnikov
    DESY Zeuthen, Zeuthen, Germany
 
  Funding: The work is funded by HGDF-RFBR Grant HRJRG-400
The infrared undulator constructed at JINR and installed at FLASH in 2007 is used for longitudinal bunch shape measurements in the range of several tenths of μm. The presented below electromagnetic wiggler is applied for a narrow-band THz radiation for measurements of electron bunch longitudinal structure in FEL with electron energy of several tenths of MeV. This is a planar electromagnetic device with 6 regular periods, each of 30 cm long. The K parameter is varied in the range 0.5- 7.12 corresponding to a range B=0.025- 0.356 T of the peak field on axis. The wiggler is simulated for 19.8 MeV/c FEL. The bunch compression scheme allows the whole wavelength range to be covered by super-radiant emission with a sufficient form factor. The wavelength range corresponds to 126 μm - 5.3 mm for the electron beam momentum of 19.8 MeV/c. The 3D Opera simulations of THz wiggler will be discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO093  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRI085 The Elettra 3.5 T Superconducting Wiggler Refurbishment vacuum, electron, controls, storage-ring 2687
 
  • D. Zangrando, R. Bracco, D. Castronovo, M. Cautero, E. Karantzoulis, S. Krecic, G.L. Loda, D. Millo, L. Pivetta, G. Scalamera, R. Visintini
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • S.V. Khrushchev, N.A. Mezentsev, V.A. Shkaruba, V.M. Syrovatin, O.A. Tarasenko, V.M. Tsukanov, A.A. Volkov
    BINP SB RAS, Novosibirsk, Russia
 
  A 3.5 Tesla 64 mm period superconducting wiggler (SCW) was constructed by the Russian Budker Institute of Novosibirsk (BINP) and installed in the Elettra storage ring as a photon source for the second X-ray diffraction beamline in November 2002, but never used due to the lack of the funding required for the beamline construction. About three years ago, the beamline construction was finally funded together with the refurbishment of the SCW. This upgrade, that was necessary in order to make the SCW operations compatible with the top up mode of the storage ring aimed in a drastic reduction of the liquid helium consumption by means of replacing the cryostat with a new version. At the same time the upgrade aimed as well to improve the reliability of the cryostat, to update the control system and to verify the magnetic field performance after a very long time of inactivity. In this paper we present and discuss the performances of the SCW following its refurbishment carried out by BINP team and its re-commissioning in the Elettra storage ring.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRI085  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRI091 Superconducting Multipole Wigglers: State of the Art radiation, synchrotron, synchrotron-radiation, vacuum 4103
 
  • N.A. Mezentsev, S.V. Khrushchev, V.K. Lev, V.A. Shkaruba, V.M. Syrovatin, V.M. Tsukanov
    BINP SB RAS, Novosibirsk, Russia
 
  Superconducting multipole wigglers installed on synchrotron radiation sources are the powerful tools for researches in various areas of science and technics. SuperConducting Multipole Wigglers (SCMWs) represent sign-alternating sequence of magnets with lateral magnetic field. Relativistic electrons, passing through such set of magnetic elements, create radiation with properties of synchrotron radiations depending on maximum field its period and poles number. The first superconducting wiggler has been made and installed on the VEPP-3 electron storage ring as generator of synchrotron radiation in 1979. Nowadays tens of wigglers are successfully working in the various synchrotron radiation centers and more than 10 of them were developed and made in Budker INP. These wigglers may be divided into 3 groups: 1- Short period 3-3.5 cm with field ~2-2.5 Tesla 2- Medium period 4.8-6 cm with field ~ 3.5-4.5 Tesla 3- Long period 14.5-20 cm with field 7-7.5Tesla. The description of magnetic properties of the wigglers, parameters of both cryogenic and vacuum systems and their technical decisions are presenteded in the report.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRI091  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRO023 Methods for the Optimization of a Tapered Free-Electron Laser radiation, FEL, electron, simulation 2909
 
  • A.W.L. Mak, F. Curbis, S. Werin
    MAX-lab, Lund, Sweden
 
  In a free-electron laser (FEL), the technique of wiggler tapering enables the sustained growth of radiation power beyond the initial saturation. With the goal to develop an X-ray FEL in the terawatt power regime, it is important to utilize this technique and optimize the taper profile, giving the wiggler parameter as a function of the distance along the wiggler line. This work examines two methods of optimization, which are based on the theoretical analysis by Kroll, Morton and Rosenbluth (KMR). Using the numerical simulation code GENESIS, the methods are applied to a case for the possible future FEL at the MAX IV Laboratory in Lund, Sweden, as well as a case for the LCLS-II.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRO023  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)