State-of-the-art and Future Challenges for Machine Protection Systems

IPAC14, Dresden, 20 ${ }^{\text {th }}$ June 2014

Jörg Wenninger
CERN Beams Department
Operation group - LHC

Acknowledgements: R. Schmidt, M. Zerlauth, D. Wollman, S. Redaelli, G. Valentino, B. Dehning, C. Bracco, J. Uythoven, V. Kain (CERN), M. Werner, T. Lensch (DESY), G. Stancari (FNAL)

๒ Introduction

- Material robustness
- Instrumentation
- Collimation and halo
\square Availability, safety and operation
\square Conclusion
\square An accelerator consist of an ensemble of equipment. The components must be protected when powered - without beam.
> Superconducting magnets/cavities can quench with / without beam!
\Rightarrow Equipment protection
\square The beam adds an extra damage potential for a subset of the accelerator components - those exposed to beam.
\Rightarrow Machine protection

Machine protection is the collection of measures that
protect an accelerator from beam induced damage
> Not a universal definition!
> In this presentation I will discuss Machine Protection in relation with beam

Risks and protection

\square Protection is required when there is some risk.
Risk = probability of an incident
x consequences (money, downtime, radiation doses).

- Probability of an uncontrolled beam loss:
> What are the failures that lead to beam loss into equipment?
> What is the probability for the failure modes?
- Consequences:
> Damage to equipment.
$>$ Downtime of the accelerator for repair.
$>$ Activation of material, dose to personnel.
Define matrix of occurrence frequency and cost
\Rightarrow protection requirements
\Leftrightarrow SIL concept for safety

MP designers mitigate probability and consequences

Damage potential of beams

- Beam momentum
- Particle type

Protons - ions - electrons - photons.

- Energy stored in the beam

1 MJ can heat and melt 1.5 kg of copper.
$1 \mathrm{MJ}=$ energy stored in 0.25 kg of TNT.

- Beam power
- Beam size
- Time structure of beam

90 kg of TNT

Different accelerators (colliders, linacs, hadron - lepton) cannot always be compared directly!

MPS challenges can be quite different !

Stored energy - colliders

High power hadrons sources

Planned projects: 1-10 MW range
J. Wei -MOYBA01

$$
\text { ILC } \sim 20 \mathrm{MW}
$$

Courtesy M. Lindroos

Release of 600 MJ at LHC

The 2008 LHC accident happened during test runs without beam.

A magnet interconnect was defect and the circuit opened. An electrical arc provoked a He pressure wave damaging $\sim 600 \mathrm{~m}$ of LHC, polluting the beam vacuum over more than 2 km .

Collateral damage from the helium pressure wave dominates !

Release of 600 MJ at LHC

The 2008 LHC accident happened during test runs without beam.

A magnet interconnect was defect and the circuit opened. An electrical arc provoked a He pressure wave damaging $\sim 600 \mathrm{~m}$ of LHC, polluting the beam vacuum over more than 2 km .

Collateral damage from the helium pressure wave dominates !
Arcing in the interconnection

Release of 600 MJ at LHC

The 2008 LHC accident happened during test runs without beam.

A magnet interconnect was defect and the circuit opened. An electrical arc provoked a He pressure wave damaging $\sim 600 \mathrm{~m}$ of LHC, polluting the beam vacuum over more than 2 km .

Collateral damage from the helium pressure wave dominates !
Arcing in the interconnection

Over-pressure

Release of 600 MJ at LHC

The 2008 LHC accident happened during test runs without beam.

A magnet interconnect was defect and the circuit opened. An electrical arc provoked a He pressure wave damaging $\sim 600 \mathrm{~m}$ of LHC, polluting the beam vacuum over more than 2 km .

Collateral damage from the helium pressure wave dominates !
Arcing in the interconnection

Magnet displacement

J. Wenninger for LHC, PAC09

Example from the other end of the scale. .

\square SNS short errant beams ($\sim 10 \mu \mathrm{~s}$) : beam outside the normal operation envelope. Issues with beam intensity loss well below 'classical damage' level:
W. Blokland \& C. Peters, IBIC13

- Errant beam loss in SC Linac leads to accumulating damage,
- Degradation of SC Linac cavity performance over time.
\Rightarrow Detailed investigations to improve the situation. Majority of trips located in room temperature linac.
- Damage to undulator magnets at FELs / light sources.
- Degradation with low loss /radiation levels.
L. Froehlich, FEL2012

Petra III - WEPRE035

Modern Machine Protection System : P3

- Protect the machine
- Highest priority is to avoid damage of the accelerator.
- Protect the beam
- Complex protection systems may reduce the accelerator availability, an aspect that must be taken into account at the design phase.
- Trade-off between protection and operation.
> Availability (targets): ~99\% light sources, $\sim 95 \%$ spallation sources like SNS, ESS, LHC so far modest 35%.
- Provide the evidence
- Clear (post-mortem) diagnostics must be provided when:
- the protection systems stop operation,
- something goes wrong (failure, damage, but also 'near miss').

Modern Machine Protection System : P3

- Protect the machine
- Highest priority is to avoid damo is not limited - Prot Machine protection fast interlock!
to desighing riay reduce the accelerator an...ity, an
- Tracu-ott between protection and on the deo closely > Availability (targets). ction must De
- the protection systems stop operation,
- something goes wrong (failure, damage, but also 'near miss').

Circular - linear

- Circulating beams: with the notable exception of kicker magnet failures (injection / dump) the impact of a failure on the beam usually develops progressively - many turns
- Provides room for reaction by the MPS.
- Linacs, beam transfer: once the beam is produced or the transfer is initiated the beam cannot be stopped anymore.
- Avoid incorrect element settings before launch.
- Mitigation by active and passive protection, probe beams / bunches, intermediate dumps.

LHC beam: stored - transfer

Despite storing up to 140 MJ at 4 TeV , not a single superconducting magnet was quenched with circulating beam - threshold \sim few 10's of mJ.
\square Many magnets were however quenched at injection, mainly due to (expected) injection kicker failures.

- The beam ($\sim 2 \mathrm{MJ}$) is safely absorbed in injection dump blocks, but the shower leakage quenches magnets over $\sim 1 \mathrm{~km}$.

FCC-hh injected intensity @ 3 TeV limited by MPS concerns !

\square Introduction

๒ Material robustness
\square Instrumentation

- Collimation and halo
\square Availability, safety and operation
\square Conclusion

Material limits - passive protection

-An important aspect for collimators, absorbers, dumps and targets is the survival due to nominal or abnormal impacts.

- LHC dump block must withstand up to $700 \mathrm{MJ} \rightarrow$ strong dilution !
\square For high intensity \& energy proton beams, current material limits are around $3-4 \mathrm{MJ}$ - low density and high resistance to shocks.

MOPRI086

- In the past decade a lot of effort was invested to better understand the interaction of high energy / high density beams with matter.
- Ad-hoc test for LHC @ 450 GeV

Materials test facility

- New beam line at the SPS @ CERN coupled to a high radiation to materials test facility - HiRadMat.
- 2-3 MJ beam, 7-8 $\mu \mathrm{s}$ (fast extraction).
- Tunable beam intensity and density.
- Test of new materials, bench marking of simulation codes.
- Robust materials:
- CFC, graphite, boron nitrite.
- Impedance \Rightarrow coating.

Tungsten collimator test

Hydrodynamic tunneling

For high intensity beams made of long bunch trains hydrodynamic tunneling significantly increases the damage range in a material.

- Leading bunches melt the material and create a plasma, the following bunches see less material and penetrate deeper etc.

Experimental verification with SPS beam on Cu target @ HiRadMat

For the 50 TeV FCC-hh proton beam the penetration depth is > 100 m

LHC beam in carbon target

\square Understanding quench levels of magnets are essential to set correct thresholds for beam loss monitors.

- Impact on availability - dump versus quench recovery.
- Beam induced quenches involve complex simulations on the beam (tracking + FLUKA, GEANT, MARS...) and on the magnet side. And experimental tests are required.
- Influence of the loss time scale.
- Series of beam tests at the LHC to prepare for higher energies.

Workshop on beam induced quenches in preparation,
CERN $15^{\text {th }}-16^{\text {th }}$ September 2014

- Introduction

- Material robustness

๒ Instrumentation and failure detection

- Collimation and halo
\square Availability, safety and operation
\square Conclusion

Instrumentation

\square Nowadays almost all beam instrument types are used in interlocks:

- BCTs (masking, linac losses, fast ring losses, ...)
- Beam loss monitors (not at very low energy!),
- Beam position monitors,
- Synchrotron light monitors.
W. Blokland, C. Peters, IBIC13

\square A general challenge for beam instrumentation is to cope with an increasing dynamic range between safe commissioning beams and nominal beams - minimize systematic effects.
- Applies to ALL instruments - not just for MPS devices.
- At LHC: 4 orders of magnitude!
> Beam position measurements should be independent of bunch intensity and filling pattern.
$>$ Dynamic range of BLMs (\rightarrow see s. 12).

'Cryogenic' BLMs

a To improve the sensitivity of BLMs: from the outside to the inside of the cryostats - avoid shielding from iron yokes.

- BLMs in cryogenic environment (LHe, silicon, diamonds).
- First tests in the LHC in 2015.
- Similar ideas at FRIB and IFMIF for high sensitivity halo monitors.

Beyond just protection

-The sensitivity and speed of certain BLMs (diamonds, scintillators) provide powerful diagnostics beyond the pure protection.

- LHC: CVD diamonds for bunch-by-bunch diagnostic - machine \& experiments.
- IFMIF : CVD diamonds μ-loss halo diagnostics and tuning, integrated into cryo-module as close as possible to the beam.
- XFEL : Scintillator+PMT for bunch-by-bunch diagnostics.

Dust particle - 'UFO' - falling into the LHC beam.

Bunch by bunch losses @ LHC from diamond detectors close to primary collimators

Beam as witness

- Direct 'injection' of an intense beam into a synchrotron or a linac may be problematic or require large / extensive monitoring efforts.

\Rightarrow concept of 'witness' beam / bunch

- The LHC with nominal injection of 3 MJ (>> damage threshold) uses the beam presence concept.
> Only a probe beam (typically 10^{10} protons, max 10^{11}) may be injected into an EMPTY ring.
> Logic is implemented with a highly reliable and redundant 'presence' measurement - diode detection system.
> Even a probe bunch was able to quench 4 magnets at injection!
\square CLIC and ILC foresee to use witness bunches (ahead of main train) or low intensity witness trains.

\square Introduction

- Material robustness
\square Instrumentation
๒Collimation and halo
\square Availability, safety and operation
\square Conclusion

Collimating the halo

\square At the LHC it was demonstrated that a multi-stage collimation system with >100 collimators can be operated efficiently and that it provides excellent and reproducible cleaning and protection - no quench with circulating beam.

- Cleaning efficiencies of $\approx 99.99 \%$ - verified regularly with defined procedure.
- Also for protection against asynchronous beam dumps - Carbon jaws.
- One alignment per year \Leftrightarrow reproducible orbit, optics and collimator position.
- Alignment speed improvement by automation (from 20 mins to ~ 3 mins / collimator)

MOPRO043

Merging instrumentation and collimation

a Setting up many collimators with loss signals is very time consuming.

- Integration of BPMs into the jaws for next generation collimators (LHC):
- Direct monitoring of the beam position wrt jaw center.
- Very fast setup (< 1 min/collimator), interlocking of beam wrt jaws.
- High resolution on position with small gaps.
\square The first collimators with integrated BPMs will be used in operation at the LHC in 2015.

G. Valentino et al., PRSTAB 17, 021005

Other trends in collimation

- Rotatable ('disposable’) collimators: less robust, but better impedance. Multiple surfaces to cope with limited number of 'incidents'.
- \rightarrow lower the impedance.
- Development in progress for LHC prototype with 20 faces.

- 'Cryogenic' collimators: catch losses in cold regions.
- Ion(Cryo)-catchers for SIS100.
- Cryo-collimators for HL-LHC.

MOPRI105

MOPRO042
\square Crystal assisted collimation: improved collimation efficiency with bend crystal extraction of the halo under a secondary collimator.

- RHIC, Tevatron, test installation on one LHC beam for 2015.

Beam halo

- Halo control and monitoring becomes an issue in many facilities.
- The HL-LHC beam halo ($\sim 4-5 \sigma$) will store ~ 10 's MJ (scaling from 4 TeV).
- A fast halo loss (by Crab Cavity failures) may lead to collimator damage! TUPRO003
- Similar worries for IFMIF, LCLS etc.
J. Marroncle et al, IBIC 2012

MOPRO117
\square Halo cleaning by electron lenses for synchrotrons (pioneered at the Tevatron) and monitoring techniques (very sensitive and fast BLMs, synchrotron light monitors) are under development.
a Potential issue for MP without halo due to faster onset of critical loss rates! Reduced margin for reaction - rings.

Hollow lens

\square Halo cleaning by electron lens demonstrated at Tevatron.

- Soft scrapper,
- No material damage,
- Tunable strength diffusion speed
- Such a lens is considered as an option for HL-LHC (CERN-LARP collaboration).
G. Stancari -TUOBA01

- Introduction

- Material robustness
\square Instrumentation
- Collimation and halo

๒ Availability, safety and operation
\square Conclusion

Availability and safety

\square Peak performance is not everything, a high availability and safety are a key factor for modern machines.

- In many projects availability considerations are included from the design phase.
- 100's to 1000's of inputs into the MPS.
- Right level between too safe and too relaxed.

SIS100 - THPME058

LINAC4 - THPRI020

Different approaches can be used:

- Failure mode, effects and criticality analysis (FMECA) to asses safety and availability of the main systems,
$>$ Defines needs for redundancy, testing etc
- Failure analysis based on IEC 61508 standard.
- Reviews by colleagues in the field of MPS.
- Input and review by external consultants in the field of safety (car industry, air traffic...). Fruitful exchange!
> Approach to safety system analysis and design.

Failure analysis

\square For LHC the detailed failure analysis (FMECA) provided reasonable estimates for safety and false triggers (within factor 2 or better).

- But it requires significant efforts and a systematic approach!
\square A key benefit of a failure analysis:
- In depth analysis of the system,
- Dangerous common mode failures may be revealed!

Masking and commissioning

\square When designing an MPS one should consider commissioning, machine experiments, operation phases where flexibility is required.

- Need some way of relaxing or masking interlocks.
\square The concept of accelerator mode or a combination of beam intensity and energy in the interlock logic are typically used to mask out interlock channels.

Beware of failure modes introduced by this flexibility !
LHC limit for interlock masking

Accelerator modes for FLASH

Diagnostics - post-mortem

\square When the MPS fires post-mortem (PM) diagnostics must be provided to identify the root cause(s) - all systems! trigger and time reference!

- For large MPS the analysis can be tedious, automatic analysis tools are developed to help the operator (and the MPS expert).

> Rule based automated analysis of PM data at PETRA III
M. Bieler et al, ARW 2013

- Post-operation checks based on PM data can ensure that the MPS reacted as expected, that no redundancy was lost, etc.
- At the LHC automatic post operation checks (POC) are performed for the beam dumping system (equipment \& beam data) - block operation is POC fails.
- System 'as good as new'.
- Requirements for high powers and large stored energy provides a steady flow of challenges for MPS.
- We will soon reach limits of materials, new concepts may be required - sacrificial devices.
- Monitoring of beam properties and equipment pushes to ever tighter tolerances with large dynamic ranges - instrumentation !!!
- Availability is a key aspect of a modern MPS - from the design !

US-CERN-JAPAN-RUSSIA Joint International Accelerator School

http://uspas.fnal.gov/programs/JAS/JAS14.shtml

Beam Loss

 andAccelerator Protection

November 5-14, 2014

Newport Beach, California, USA

This schoolisintended for physicists and engineers who are or may be engaged in the design, construction, and/or operation of accelerators with high power photon or particle beams and/or accelerator sub-systems with large stored energy.

The USPAS will offer a limited number of scholarships. Both U.S. and international participants are welcome to request a scholarship on their Application Form

