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Abstract

To guarantee an adequate design and a proper function-
ality of various machine components it is of primary im-
portance to perform detailed studies of the charged particle
transport. However, it is often not necessary to initiate in-
dividual kinetic simulations based on the discrete particle
movements.

When the time evolution of such integral quantities like
average or rms dimensions, total energy or projected emit-
tances is of the research interest, it is worth treating an
investigated particle ensemble as a whole and applying a
macroscopic formulation.

Based on the moment method a fast C++ code capable to
handle various beam line elements has been implemented.
The present paper treats the implementation issues of the
code and discusses the simulation results for such axial
magnetic multipoles like quadrupoles and sextupoles under
the influence of fringe field effects.

INTRODUCTION

A collision-less kinetic approach allows a straightfor-
ward derivation of the moment method model from the
well-known VLASOV equation. Instead of solving directly
this equation to obtain the phase space density of the real
particle distribution, one can use moments of the density
function obtained by means of an averaging process over
the entire space of coordinates and momenta [1].

This formalism had been implemented into the beam
dynamics simulation program V-Code and a fundamental
database of various beam line elements like cavities, drift
spaces, solenoids, quadrupoles, steerers and bending mag-
nets was set up [2].

The particular aim of extending the data base to higher
order axial magnetic multipoles and the obvious require-
ment to handle all the involved quantities effectively neces-
sitate the development of flexible realization for the auto-
matical determination of all the desired moment equations
up to an arbitrary order.

For this purpose a symbolic algebra program is used to
clearly represent all the derived update equations whereas
the C++ code is needed to control the time critical affairs
like the management of the beam line elements, the time
integration process and the graphical output of beam pa-
rameters to the user interface.
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ENSEMBLE MODEL

The ensemble model is based on the moment method and
uses a discrete set of moments of the particle distribution
function instead of the particle distribution itself.

In statistical calculations different types of moments are
usually used as the degrees of freedom. Apart from the
first order raw moments, which describe the centre of
mass/charge with averaged position and momentum there
are also centralized moments of higher order which de-
scribe the shape of the distribution. The more moments are
involved, the more precisely the beam can be modeled and
the more accurately the simulations are carried out. How-
ever, the analytical and numerical efforts to be invested in-
crease significantly.

The ensemble model is derived from the VLASOV equa-
tion and leads after rearrangement of formulas to a gov-
erning set of ordinary differential equations which can be
given in the compact form

∂ <µ>

c ∂t
= < grad<�r>(µ) > · <

�p

γ
>

+ < grad<�p>(µ) > · <
�F

m0c2
>

+ < grad�r(µ) · �p

γ
> + < grad�p(µ) ·

�F

m0c2
> .

The averaging process is performed in the 6D space Ω
spanned by the 3D position and the 3D momentum sub-
spaces and is described by

<µ> =
∫

Ω

µ f(�r, �p) dr3dp3

where f denotes the 6D particle distribution function and it
is usually abbreviated using the angle brackets [3].

The time dependent parameters µ used in the ensemble
model are chosen in Cartesian coordinates such that

µ∈ {x, y, z, px, py, pz} for the first and

µ∈ {(x−<x>)lx · (y−<y>)ly · (z−<z>)lz , . . .}
for the higher order moments.

All parts on the right hand side of the fundamental
equation including the momentum expression �p/γ have
to be applied permanently whereas those parts including
�F/m0c

2 are changed depending on whether internal space
charge forces are considered or not and which kind of ex-
ternal forces are currently taking effect on the model. In
what follows the influence of only axial magnetic multi-
poles are considered and electrical and space charge forces
are omitted.
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AXIAL MAGNETIC MULTIPOLES

Various kinds of magnetic fields are used for guiding
charged particle beams. Their principal behaviour can be
characterized by means of a multipole expansion either of
the field itself or of a corresponding scalar or vector poten-
tial [4].

Fundamental Properties

On account of the MAXWELL equations

curl �H = 0, div �B = 0 and �B = µ0
�H

which are valid for the considered sourcefree regions in-
side the vacuum tube one can introduce a magnetic scalar
potential Vm and/or a magnetic vector potential �A such that

�B = −gradVm and/or �B = −curl �A

are fulfilled. Furthermore it is possible to combine both
differential relations and deduce a complex function with
the longitudinal component of the vector potential as the
real part and the scalar potential as the imaginary part.

Series Expansion

The potential formulations then constitute the CAUCHY-
RIEMANN conditions of an analytic function which allows
a power series expansion in the transversal plane. The cir-
cular region of convergence can be chosen such that the
beam tube is completely covered and all source terms are
located anywhere outside the region of interest.

It is sufficient to concentrate on the magnetic scalar po-
tential

Vm(r, φ) =
∞∑

n=0

(
an cos(nφ) + bn sin(nφ)

)
· rn

which describes the magnetic field in the transverse plane.
Alternatively, the LAPLACE equation ∆Vm = 0 can be
solved applying the BERNOULLI separation technique in
the form Vm =

∑
R(r) · Φ(φ).

Extensions which allow to include the dependency in
longitudinal direction lead with Vm =

∑
R(r)·Φ(φ)·Z(z)

to the expression

Vm(r, φ, z) =
∞∑

n=0

(
an(z) cos(nφ) + bn(z) sin(nφ)

)
· rn

=
∞∑

n=0

An(z) · cos
(
nφ + φn(z)

) · rn

which can be further simplified to

Vm(r, φ, z) =
∞∑

n=0

An(z) · cos
(
n(φ − φ0)

) · rn

if the field is not twisted along the longitudinal axis and the
coordinate system is aligned in a way that only pure cos-
parts remain. Unfortunately, the divergence field property
as mentioned above can only be maintained using higher
order series expansion.

Axial Multipoles

For ideal 2n-pole magnets the expressions for the mag-
netic scalar potential and all field components can be given
as

Vm =
1
n

rn A(z) cos
(
n(φ − φ0)

)

and

Br = −rn−1 A(z) cos
(
n(φ − φ0)

)
Bφ = rn−1 A(z) sin

(
n(φ − φ0)

)
Bz = − 1

nrn A′(z) cos
(
n(φ − φ0)

)
,

consequently.

The evaluation of the field information is crucial for par-
ticle tracking whereas the knowledge of the scalar potential
behaviour is mainly used to get an impression of the pole
shoes shape during the magnet design phase.

V-CODE IMPLEMENTATION

In order to transfer a real magnetic multipole field in-
cluding the edge effects to V-Code one needs to have the
variation of the gradient along the longitudinal axis. This
can be achieved either via measurements using a real mag-
net or via magnet simulations. From this the magnitude
function A(z) can be derived as a function of the longitu-
dinal coordinate.

With all the available field components in the entire cal-
culational domain, the time evolution of each ensemble pa-
rameter can be deduced from the solution of the fundamen-
tal set of differential equations. The essential initial con-
ditions arise from such bunch properties like energy and
shape specified at that time instance when the ensemble
enters the corresponding beam line element.

Since the implementation of the governing set of differ-
ential equations prove to be extremely subtle due to the vast
amount of analytical transformations which have to be car-
ried out, a symbolic algebra program was used. This pro-
gram is organized in a way that any polynomial functional
dependencies of the applied forces can be handeled. With a
proper series expansion of the inverse relativistic factor 1/γ

any polynomial dependency of the electric field strength �E
and magnetic flux density �B can be processed so that the
moment equations up to an arbitrary order are generated
and converted into a proper C++ notation.

The time integration process is performed in C++ by
means of RUNGE-KUTTA methods. Additionally, a linear
implicit ROSENBROCK method is available where the re-
quired JACOBI matrix can also be extracted from the sym-
bolic algebra program. A high processing speed can be
achieved using an adaptive time stepping procedure where
the optimal time steps are deduced from the difference be-
tween a higher and a lower order solution in conjunction
with a user specified precision tolerance.
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Figure 1: Geometry information and simulation results for a) magnetic quadrupole and b) magnetic sextupole.

SIMULATION

To check whether the implementation was carried out
correctly two classic examples consisting of a single quad-
rupole and a single sextupole were chosen. The calcu-
lation results obtained by V-Code are compared with the
well established electromagnetic field simulation program
MAFIA [5] which is also capable of handling charged par-
ticle beams. Since V-Code is not able to simulate static
magnetic fields, the gradient data along the longitudinal
coordinate are transferred from a preceding MAFIA run
during a postprocessing operation.

All tests are performed for a low charged bunch so that
the space charge routines were switched off both in MAFIA
and in V-Code in order to check exclusively the magnetic
multipole routines. The simulation domain is stretched
over a distance of l = 200 mm and the magnets are placed
exactly in the center. The bore diameter as well as the
thickness of the yoke are set to d = 40 mm for the test
models.

In both programs the intrinsic simulation parameters like
the grid size in MAFIA and the order of moments in V-
Code were changed in order to get an impression of their
influence to the calculation results. The transversal grid
sizes were slightly varied in two steps from 0.375 mm for
the coarse one to 0.25 mm for the finer one while keeping
the longitudinal grid constant to 1.0 mm. Further refine-
ment results in a tremendous amount of memory consump-
tion.

Quadrupole

In Fig. 1a) the simulation results for a single magnetic
quadrupole applying MAFIA and V-Code are shown. The
quadrupole is operated in a way that it acts defocusing in
x and focusing in y direction. The simulated rms sizes of
the particle distribution vary in the micrometer range al-
though different grid sizes or different orders of moments
have been used. Within the chosen plot scale no difference
between the various schemes can be recognized.

Sextupole

In contrast to the perfect agreement of the simulation re-
sults in case of a quadrupole geometry, the adequate com-
parison is not possible for a sextupole magnet. This is due
to the fact that the sextupole geometry cannot be modeled
exactly in the MAFIA Cartesian grid. Different material
approximations of the yoke in the vicinity of the current ex-
citation lead to a slightly unsymmetric magnetic flux den-
sity distribution inside the beam tube thus causing asymme-
try even in the final bunch dimensions. With a higher grid
resolution these effects vanish. Taking this into account
one can conclude from Fig. 1b) that the results obtained by
V-Code are perfectly enclosed in the MAFIA solutions.

CONCLUSION

The proposed flexible implementation of the ensemble
model allows to deduce proper differential equations which
can be used by a subsequent time integration procedure
in V-Code without further treatment. It has been demon-
strated that this technique works well for such magnets as
quadrupoles and sextupoles. Additionally, the symbolic al-
gebra program is able to handle all types of magnetic multi-
poles, so extensions to even higher order fields are possible.
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